Skip to main content

Atmospheric Coupling by Gravity Waves: Climatology of Gravity Wave Activity, Mesospheric Turbulence and Their Relations to Solar Activity

  • Chapter
Climate and Weather of the Sun-Earth System (CAWSES)

Part of the book series: Springer Atmospheric Sciences ((SPRINGERATMO))

Abstract

Gravity waves (GW) are important for the coupling between the different regions of the middle atmosphere. They are normally generated in the troposphere, are filtered by the wind field in the stratosphere and lower mesosphere and dissipate at least partly in upper mesosphere and lower thermosphere (MLT). The activity of gravity waves, their filtering by the mean circulation, and the variation of GW activity with solar activity have been studied using long-term wind measurements with Medium Frequency (MF) radars and meteor radars at high and middle northern latitudes. The GW activity is characterized by a semi-annual variation with a stronger maximum in winter and a weaker in summer consistent with the selective filtering of westward and eastward propagating GWs by the mean zonal wind. The latitudinal variation of GW activity shows the largest values in summer at mid-latitudes between 65 km and 85 km accompanied with an upward shift of the height of wind reversal towards the pole. Long-term observations of the MLT winds at mid latitudes indicate a stable increase of westward directed winds below about 85 km and an increase of eastward directed winds above 85 km especially during summer. The observed long-term trend of zonal wind at about 75 km goes along with an enhanced activity of GWs with periods of 3 to 6 hours at altitudes between 80 km and 88 km. In addition, the mesosphere responds to severe solar proton events (SPE) with increased eastward directed winds above about 85 km. The vertical coupling from the troposphere up to the lower thermosphere due to gravity waves and planetary waves is discussed for major sudden stratospheric warmings (SSW) for the winters 2006 and 2009.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Becker, E. (2009). Sensitivity of the upper mesosphere to the Lorenz energy cycle of the troposphere. Journal of the Atmospheric Sciences, 66, 647–666.

    Article  Google Scholar 

  • Becker, E., & von Savigny, C. (2010). Dynamical heating of the polar summer mesopause by solar proton events. Journal of Geophysical Research, 115, D00I18. doi:10.1029/2009JD012,561.

    Article  Google Scholar 

  • Briggs, B. (1984). The analysis of spaced sensor records by correlation techniques. In R. Vincent (Ed.), Handbook for MAP: Vol. 13. Middle atmosphere program (pp. 166–186). SCOSTEP.

    Google Scholar 

  • Burrage, M. D., Skinner, W. R., Gell, D. A., Hays, P. B., Marshall, A. R., Ortland, D. A., Manson, A. H., Franke, S. J., Fritts, D. C., Hoffmann, P., McLandress, C., Niciejewski, R., Schmidlin, F. J., Shepherd, G. G., Singer, W., Tsuda, T., & Vincent, R. A. (1996). Validation of mesosphere and lower thermosphere winds from the high resolution Doppler imager on UARS. Journal of Geophysical Research, 101(D6), 10365–10392. doi:10.1029/95JD01700.

    Article  Google Scholar 

  • Engler, N., Singer, W., Latteck, R., & Strelnikov, B. (2008). Comparison of wind measurements in the troposphere and mesosphere by VHF/MF radars and in-situ techniques. Annales Geophysicae, 26, 3693–3705.

    Article  Google Scholar 

  • Fritts, D. C. (1984). Gravity wave saturation in the middle atmosphere: a review of theory and observations. Reviews of Geophysics and Space Physics, 22, 275–308.

    Article  Google Scholar 

  • Fritts, D. C., & Alexander, M. J. (2003). Gravity wave dynamics and effects in the middle atmosphere. Reviews of Geophysics, 41(1), 1003. doi:10.1029/2001RG000106.

    Article  Google Scholar 

  • Fritts, D. C., & Nastrom, G. D. (1992). Sources of mesoscale variability of gravity waves. Part II: frontal, convective, and jet stream excitation. Journal of the Atmospheric Sciences, 49, 111–127.

    Article  Google Scholar 

  • Fritts, D. C., Vadas, S. L., Wan, K., & Werne, J. A. (2006). Mean and variable forcing of the middle atmosphere by gravity waves. Journal of Atmospheric and Solar-Terrestrial Physics, 68, 247–265.

    Article  Google Scholar 

  • Hines, C. O. (1960). Internal atmospheric gravity waves at ionospheric heights. Canadian Journal of Physics, 38, 1441–1481.

    Article  Google Scholar 

  • Hocking, W. K., & Thayaparan, T. (1997). Simultaneous and colocated observation of winds and tides by MF and meteor radars over London, Canada (43°N, 81°W), during 1994–1996. Radio Science, 32(2), 833–865. doi:10.1029/96RS03467.

    Article  Google Scholar 

  • Hocking, W. K., Fuller, B., & Vandepeer, B. (2001). Real-time determination of meteor-related parameters utilizing modern digital technology. Journal of Atmospheric and Solar-Terrestrial Physics, 63, 155–169.

    Article  Google Scholar 

  • Hocking, W. K., Singer, W., Bremer, J., Mitchell, N. J., Batista, P., Clemensha, B., & Donner, M. (2004). Meteor radar temperatures at multiple sites derived with SKiMET radars and compared to OH, rocket and lidar measurements. Journal of Atmospheric and Solar-Terrestrial Physics, 66, 585–593.

    Article  Google Scholar 

  • Hoffmann, P., Singer, W., Keuer, D., Hocking, W. K., Kunze, M., & Murayama, Y. (2007). Latitudinal and longitudinal variability of mesospheric winds and temperatures during stratospheric warming events. Journal of Atmospheric and Solar-Terrestrial Physics, 69(17–18), 2355–2366. doi:10.1016/j.jastp.2007.06.010.

    Article  Google Scholar 

  • Hoffmann, P., Becker, E., Singer, W., & Placke, M. (2010). Seasonal variation of mesospheric waves at northern middle and high latitudes. Journal of Atmospheric and Solar-Terrestrial Physics, 72(14–15), 1068–1079. doi:10.1016/j.jastp.2010.07.002.

    Article  Google Scholar 

  • Hoffmann, P., Rapp, M., Singer, W., & Keuer, D. (2011). Trends of mesospheric gravity waves at northern middle latitudes during summer. Journal of Geophysical Research, 116, D00P08. doi:10.1029/2011JD015717.

    Article  Google Scholar 

  • Holland, P. W., & Welsch, R. (1977). Robust regression using iteratively reweighted least squares. Communications in Statistics. Theory and Methods, A6, 813–827.

    Article  Google Scholar 

  • Jackman, C. H., Roble, R. G., & Fleming, E. L. (2007). Mesospheric dynamical changes induced by the solar proton events in October–November 2003. Geophysical Research Letters, 34, L04812. doi:10.1029/2006GL028328.

    Article  Google Scholar 

  • Jacobi, C., Arras, C., Kürschner, D., Singer, W., Hoffmann, P., & Keuer, D. (2009). Comparison of mesopause region meteor radar winds, medium frequency radar winds and low frequency drifts over Germany. Advances in Space Research, 43, 247–252. doi:10.1016/j.asr.2008.05.009.

    Article  Google Scholar 

  • Keuer, D., Hoffmann, P., Singer, W., & Bremer, J. (2007). Long-term variations of the mesospheric wind field at mid-latitudes. Annales Geophysicae, 25(8), 1779–1790.

    Article  Google Scholar 

  • Latteck, R., Singer, W., & Hocking, W. K. (2005). Measurement of turbulent kinetic energy dissipation rates in the mesosphere by a 3 MHz Doppler radar. Advances in Space Research, 35(11), 1905–1910.

    Article  Google Scholar 

  • Lindzen, R. S. (1981). Turbulence and stress owing to gravity wave and tidal breakdown. Journal of Geophysical Research, 86, 9707–9714.

    Article  Google Scholar 

  • Livesey, N. J., Read, W. G., Lambert, A., Cofield, R. E., Cuddy, D. T., Froidevaux, L., Fuller, R. A., Jarnot, R. F., Jiang, J. H., Jiang, Y. B., Knosp, B. W., Kovalenko, L. J., Pickett, H. M., Pumphrey, H. C., Santee, M. L., Schwartz, M. J., Stek, P. C., Wagner, P. A., Waters, J. W., & Wu, D. L. (2007). EOS MLS version 2.2 level 2 data quality and description document (Technical Report, Version 2.2 D-33509). Jet Propulsion Lab., California Institute of Technology, Pasadena, California, 91198-8099.

    Google Scholar 

  • Lübken, F.-J. (1997). Seasonal variation of turbulent energy dissipation rates at high latitudes as determined by in situ measurements of neutral density fluctuations. Journal of Geophysical Research, 102, 13441–13456.

    Article  Google Scholar 

  • Manson, A. H., & Meek, C. E. (1986). Dynamics of the middle atmosphere at Saskatoon (52°N, 107°W): a spectral study during 1981, 1982. Journal of Atmospheric and Solar-Terrestrial Physics, 48, 1039–1055.

    Article  Google Scholar 

  • Manson, A. H., Meek, C. E., Hall, C. M., Nozawa, S., Mitchell, N. J., Pancheva, D., Singer, W., & Hoffmann, P. (2004). Mesopause dynamics from the Scandinavian triangle of radars within the PSMOS-DATAR project. Annales Geophysicae, 22, 367–386.

    Article  Google Scholar 

  • MATLAB (2011). Toolbox statistics. www.mathworks.de.

  • Mitchell, N., Pancheva, D., Middleton, H., & Hagan, M. (2002). Mean winds and tides in the arctic mesosphere and lower thermosphere. J. Geophys. Res., 107. doi:10.1029/2001JA900127.

  • Nastrom, G. D., & Fritts, D. C. (1992). Sources of mesoscale variability of gravity waves. I: topographic excitation. Journal of the Atmospheric Sciences, 49, 101–110.

    Article  Google Scholar 

  • Pancheva, D., Singer, W., & Mukhatarov, P. (2007). Regional response of the mesosphere-lower thermosphere dynamics over Scandinavia to solar proton events and geomagnetic storms in late October 2003. Journal of Atmospheric and Solar-Terrestrial Physics, 69, 1075–1094. doi:10.1016/j.jastp.2007.04.005.

    Article  Google Scholar 

  • Salmi, S.-M., Verronen, P. T., Thölix, L., Kyrölä, E., Backman, L., Karpechko, A. Y., & Seppälä, A. (2011). Mesosphere-to-stratosphere descent of odd nitrogen in early 2009 after a major stratospheric warming. In 3rd workshop on high energy particle precipitation in the atmosphere, Granada, Spain, 9–11 May.

    Google Scholar 

  • Schmidt, H., Brasseur, G. P., Charron, M., Manzini, E., Giorgetta, M. A., Diehl, T., Fomichev, V. I., Kinnison, D., Marsh, D., & Walters, S. (2006). The HAMMONIA chemistry climate model: sensitivity of the mesopause region to the 11-year solar cycle and CO2 doubling. Journal of Climate, 19(16), 3903–3931. doi:10.1175/JCLI3829.1.

    Article  Google Scholar 

  • Serafimovich, A., Hoffmann, P., Peters, D., & Lehmann, V. (2005). Investigation of inertia-gravity waves in the upper troposphere/lower stratosphere over Northern Germany observed with collocated VHF/UHF radars. Atmospheric Chemistry and Physics, 5, 295–310.

    Article  Google Scholar 

  • Singer, W., Keuer, D., & Eriksen, W. (1997). The ALOMAR MF radar: technical design and first results. In B. Kaldeich-Schürmann (Ed.), Proceedings 13th ESA symposium on European rocket and balloon programmes and related research, Oeland, Sweden, 26–29 May 1997 (ESA SP-397) (pp. 101–103). ESA Publications Division.

    Google Scholar 

  • Singer, W., Bremer, J., Hocking, W. K., Weiss, J., Latteck, R., & Zecha, M. (2003). Temperature and wind tides around the summer mesopause at middle and arctic latitudes. Advances in Space Research, 31(9), 2055–2060.

    Article  Google Scholar 

  • Singer, W., Bremer, J., Weiss, J., Hocking, W. K., Höffner, J., Donner, M., & Espy, P. (2004). Meteor radar observations at middle and arctic latitudes, part 1: mean temperatures. Journal of Atmospheric and Solar-Terrestrial Physics, 66, 607–616.

    Article  Google Scholar 

  • Singer, W., Latteck, R., Hoffmann, P., Williams, B. P., Fritts, D. C., Murayama, Y., & Sakanoi, K. (2005). Tides near the Arctic summer mesopause during the MaCWAVE/MIDAS summer program. Geophysical Research Letters, 32, L07S90. doi:10.1029/2004GL021607.

    Article  Google Scholar 

  • Singer, W., Latteck, R., & Holdsworth, D. (2008). A new narrow beam Doppler Radar at 3 MHz for studies of the high-latitude middle atmosphere. Advances in Space Research, 41, 1487–1493. doi:10.1016/j.asr.2007.10.006.

    Article  Google Scholar 

  • Singer, W., Latteck, R., Friedrich, M., Wakabayashi, M., & Rapp, M. (2011). Seasonal and solar activity variability of D-region electron density at 69°N. Journal of Atmospheric and Solar-Terrestrial Physics, 73, 925–935.

    Article  Google Scholar 

  • Smith, A. K., Garcia, R., Marsh, D., & Richter, J. (2011). WACCM simulations of the mean circulation and trace species transport in the winter mesosphere. Journal of Geophysical Research, 116, D20115. doi:10.1029/2011JD016083.

    Article  Google Scholar 

  • Torrence, C., & Compo, G. P. (1998). A practical guide to wavelet analysis. Bulletin of the American Meteorological Society, 79(1), 61–78.

    Article  Google Scholar 

  • Vincent, R. A., & Alexander, M. J. (2000). Gravity waves in the tropical lower stratosphere: an observational study of seasonal and interannual variability. Journal of Geophysical Research, 105, 17971–17982.

    Article  Google Scholar 

  • von Zahn, U., Fiedler, J., Naujokat, B., Langematz, U., & Krüger, K. (1998). A note on record–high temperatures at the northern polar stratopause in winter 1997/98. Geophysical Research Letters, 25, 4169–4172.

    Article  Google Scholar 

  • Ward, W. E., Oberheide, J., Goncharenko, L. P., Nakamura, T., Hoffmann, P., Singer, W., Chang, L. C., Du, J., Wang, D.-Y., Batista, P., Clemesha, B., Manson, A. H., Riggin, D. M., She, C.-Y., Tsuda, T., & Yuan, T. (2010). On the consistency of model, ground-based, and satellite observations of tidal signatures: initial results from the CAWSES tidal campaigns. Journal of Geophysical Research, D115, D07107. doi:10.1029/2009JD012593.

    Article  Google Scholar 

  • Weatherhead, E. C., Reinsel, G., Tiao, G., Meng, X.-L., Choi, D., Cheang, W.-K., Keller, T., DeLuisi, J., Wuebbles, D., Kerr, J., Miller, A., Oltmans, S., & Frederick, J. (1998). Factors affecting the detection of trends: statistical considerations and applications to environmental data. Journal of Geophysical Research, 103(D14), 17149–17161.

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Erich Becker and Markus Rapp for their support and helpful discussions. We also thank Ralph Latteck and Dieter Keuer for their support running the radars at Andenes and Juliusruh. This work has been supported by DFG in the frame of the CAWSES priority program SPP 1176 under grants SI 501/5-1 and SI 501/5-2. We thank the Jet Propulsion Laboratory/NASA for providing data access to the Aura/MLS level 2.2 retrieval product. The data originated from the Imaging Riometer for Ionospheric Studies (IRIS), operated by the Space Plasma Environment and Radio Science (SPEARS) group, Department of Physics, Lancaster University (UK) in collaboration with the Sodankylä Geophysical Observatory.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Werner Singer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Singer, W., Hoffmann, P., Kishore Kumar, G., Mitchell, N.J., Matthias, V. (2013). Atmospheric Coupling by Gravity Waves: Climatology of Gravity Wave Activity, Mesospheric Turbulence and Their Relations to Solar Activity. In: Lübken, FJ. (eds) Climate and Weather of the Sun-Earth System (CAWSES). Springer Atmospheric Sciences. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-4348-9_22

Download citation

Publish with us

Policies and ethics