Skip to main content

Green Practices to Save Our Precious “Water Resource”

  • Chapter
  • First Online:
Advances in Water Treatment and Pollution Prevention

Abstract

Population explosion and increasing urbanization and industrialization are the major reasons behind the increasing water pollution causing a major threat to the quality of water content. To a large extent, due to human activities and to some extent due to natural processes, a large number of organic toxicants such as petroleum hydrocarbons, halogenated and nitroaromatic compounds, phthalate esters, solvents, and pesticides pollute the aquatic environments. Conventional methods used for water purification can be costly and cumbersome leading to secondary pollution. Eco-friendly and cheaper alternates are always the need of the day. In this chapter, the properties and behavior of water, the pollutants responsible for water borne illness and the precautions and preventions against water pollution are discussed in the frame of new “Green technologies” which are being actively researched on and applied at larger scale to clean up the polluted water resources. The focus here is on “Green” practices to save this precious resource.

Water is H 2 O, hydrogen two parts, oxygen one but there is also a third thing, that makes it water and nobody knows what that is. –D.H. Lawrence (1885–1930)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Speidel EDH, Ruedisili LC, Agnew AF (1988) Perspectives on water: uses and abuses. Oxford University Press, New York

    Google Scholar 

  2. Schwarzenbach RP, Escher BI, Fenner K, Hofstetter TB, Johnson CA (2006) The challenge of micropollutants in aquatic systems. Science 313:1072–1077

    CAS  Google Scholar 

  3. UNESCO (2009) UN Educ, Sci Cult, Organ. The United Nations World Water Development Report 3: Water in a changing world. UNESCO/Berghahn Books, Paris/New York

    Google Scholar 

  4. Huntington TG (2006) Evidence for intensification of the global water cycle review and synthesis. J Hydrol 319:83–95

    Google Scholar 

  5. Oki T, Kanae S (2006) Global hydrological cycles and world water resources. Science 313:1068–1072

    CAS  Google Scholar 

  6. Fenwick A (2006) Waterborne infectious diseases—could they be consigned to history? Science 313:1077–1081

    CAS  Google Scholar 

  7. Gruber N, Galloway JN (2008) An earth–system perspective of the global nitrogen cycle. Nature 451:293–296

    CAS  Google Scholar 

  8. Filippelli GM (2008) The global phosphorus cycle: past, present, future. Elements 4:89–95

    CAS  Google Scholar 

  9. Jorgenson AK (2009) Foreign direct investment the environment, the mitigating influence of institutional and civil society factors, and relationships between industrial pollution and human health: a panel study of less-developed countries. Organ Environ 22 (2)L:135–157

    Google Scholar 

  10. Dubus IG, Hollis JM, Brown CD (2000) Pesticides in rainfall in Europe. Environ Pollut 110(2):331–344

    CAS  Google Scholar 

  11. Cosgrove WJ, Rijsberman FR (2000) World water vision: making water everybody’s business. WorldWater Council, London

    Google Scholar 

  12. Bockstaller C, Guichard L, Keichinger O, Girardin P, Galan MB, Gaillard G (2009) Comparison of methods to assess the sustainability of agricultural systems. A review. Agron Sustain Dev 29:223–235

    Google Scholar 

  13. Eliopoulou E, Papanikolaou A (2007) Casualty analysis of large tankers. J Mar Sci Technol 12:240–250

    Google Scholar 

  14. Larsen TA, Maurer M, Udert KM, Lienert J (2007) Nutrient cycles and resource management: implications for the choice of wastewater treatment technology. Wat Sci Technol 56:229–237

    CAS  Google Scholar 

  15. Lohse KA, Brooks PD, McIntosh JC, Meixner T, Huxman TE (2009) Interactions between biogeochemistry hydrologic systems. Annu Rev Environ Resour 34:65–96

    Google Scholar 

  16. Heisler J, Glibert PM, Burkholder JM, Anderson DM, Cochlan W (2008) Eutrophication and harmful algal blooms: a scientific consensus. Harmful Algae 8:3–13

    CAS  Google Scholar 

  17. Kaushal SS, Groffman PM, Likens GE, Belt KT, Stack WP (2005) Increased salinization of fresh water in the northeastern United States. Proc Natl Acad Sci U S A 102:13517–13520

    CAS  Google Scholar 

  18. Post VEA (2005) Fresh and saline groundwater interaction in coastal aquifers: is our technology ready for the problems ahead? Hydrogeol J 13:120–123

    CAS  Google Scholar 

  19. Lohmann R, Breivik K, Dachs J, Muir D (2007) Global fate of POPs current and future research directions. Environ Pollut 150:150–165

    CAS  Google Scholar 

  20. Muir DCG, Howard PH (2006) Are there other persistent organic pollutants? A challenge for environmental chemists. Environ Sci Technol 40:7157–7166

    CAS  Google Scholar 

  21. Vonderheide AP, Mueller KE, Meija J, Welsh GL (2008) Polybrominated diphenyl ethers causes for concern and knowledge gaps regarding environmental distribution, fate toxicity. Sci Total Environ 400:425–436

    CAS  Google Scholar 

  22. Yogui GT, Sericano JL (2009) Polybrominated diphenyl ether flame retardants in the US marine environment: a review. Environ Int 35:655–666

    CAS  Google Scholar 

  23. Goss KU, Bronner G (2006) What is so special about the sorption behavior of highly fluorinated compounds? J Phys Chem A 110:9518–9522

    CAS  Google Scholar 

  24. Prevedouros K, Cousins IT, Buck RC, Korzeniowski SH (2006) Sources fate and transport of perfluorocarboxylates. Environ Sci Technol 40:32–44

    CAS  Google Scholar 

  25. Schwarzenbach RP, Egli T, Hofstetter TB, Von Gunten U, Wehrli B (2010) Global water pollution and human health. Annu Rev Environ Resour 35:109–136

    Google Scholar 

  26. Giger W (2009) Hydrophilic and amphiphilic water pollutants: using advanced analytical methods for classic and emerging contaminants. Anal Bioanal Chem 393:37–44

    CAS  Google Scholar 

  27. Richardson SD (2009) Water analysis emerging contaminants and current issues. Anal Chem 81:4645–4677

    CAS  Google Scholar 

  28. Kelly BC, Ikonomou MG, Blair JD, Morin AE, Gobas F (2007) Food web–specific biomagnification of persistent organic pollutants. Science 317:236–239

    CAS  Google Scholar 

  29. Kelly BC, Ikonomou MG, Blair JD, Surridge B, Hoover D (2009) Perfluoroalkyl contaminants in an Arctic marine food web trophic magnification and wildlife exposure. Environ Sci Technol 43:4037–4043

    CAS  Google Scholar 

  30. Porta M, Puigdomenech E, Ballester F, Selva J, Ribas–Fito N (2008) Monitoring concentrations of persistent organic pollutants in the general population the international experience. Environ Int 34:546–561

    CAS  Google Scholar 

  31. Brown TN, Wania F (2008) Screening chemicals for the potential to the persistent organic pollutants: a case study of Arctic contaminants. Environ Sci Technol 42:5202–5209

    CAS  Google Scholar 

  32. Atapattu SS, Kodituwakku DC (2009) Agriculture in South Asia and its implications on downstream health and sustainability: a review. Agric Wat Manag 96:361–373

    Google Scholar 

  33. FAO (2008) UN Food Agric Organ FAOSTAT statistical database. http://faostat.fao.org/site/424/default.aspx

  34. USEPA (2008) Environ Prot Agency Pesticides. http://www.epa.gov/pesticides/

  35. Galt RE (2008) Beyond the circle of poison: significant shifts in the global pesticide complex 1976–2008. Glob Environ Change 18:786–799

    Google Scholar 

  36. Reus J, Leendertse P, Bockstaller C, Fomsgaard I, Gutsche V (2002) Comparison and evaluation of eight pesticide environmental risk indicators developed in Europe and recommendations for future use. Agric Ecosyst Environ 90:177–187

    Google Scholar 

  37. UNEP (2007) UN Environment Programme. Global Environment Outlook GEO4. Environment for Development

    Google Scholar 

  38. Tilman D, Fargione J, Wolff B, D’Antonio C, Dobson A (2001) Forecasting agriculturally driven global environmental change. Science 292:281–284

    CAS  Google Scholar 

  39. Oluwole O, Cheke RA (2009) Health and environmental impacts of pesticide use practices a case study of farmers in Ekiti State Nigeria. Int J Agric Sustain 7:153–163

    Google Scholar 

  40. Williamson S, Ball A, Pretty J (2008) Trends in pesticide use and drivers for safer pest management in four African countries. Crop Prot 27:1327–1334

    Google Scholar 

  41. Menezes CT, Heller L (2008) A method for prioritization of areas for pesticides surveillance on surface waters a study in Minas Gerais Brazil. Wat Sci Technol 57:1693–1698

    CAS  Google Scholar 

  42. Agrawal GD (1999) Diffuse agricultural water pollution in India. Wat Sci Technol 39:33–47

    CAS  Google Scholar 

  43. Sarkar SK, Bhattacharya BD, Bhattacharya A, Chatterjee M, Alam A (2008) Occurrence distribution and possible sources of organochlorine pesticide residues in tropical coastal environment of India an overview. Environ Int 34:1062–1071

    CAS  Google Scholar 

  44. Shi LL, Shan ZJ, Kong DY, Cai DJ (2006) The health and ecological impacts of organochlorine pesticide pollution in China bioaccumulation of organochlorine pesticides in human and fish fats. Hum Ecol Risk Assess 12:402–407

    CAS  Google Scholar 

  45. van Geen A, Protus T, Cheng Z, Horneman A, Seddique AA, Hoque MA, Ahmed KM (2004) Testing groundwater for arsenic in Bangladesh before installing a well. Environ Sci Technol 38:6783–6789

    Google Scholar 

  46. Lafferty B (2008) Kinetics of Arsenic transformations in the soil environment. The 2008 Joint Annual Meeting

    Google Scholar 

  47. Smith PG (2007) Arsenic biotransformation in terrestrial organisms, A study of the transport and transformation of arsenic in plants fungi fur and feathers using conventional speciation analysis and X–ray absorption spectroscopy. PhD Thesis, Queen’s University Canada

    Google Scholar 

  48. Smith AH, Lingas EO, Rahman M (2000) Contamination of drinking water by arsenic in Bangladesh a public health emergency. Bull World Health Organ 78:1093–1103

    CAS  Google Scholar 

  49. Opar A, Pfaff A, Seddique AA, Ahmed KM, Graziano JH, van Geen A (2007) Responses of 6500 households to arsenic mitigation in Araihazar Bangladesh. Health Place 13:164–172

    Google Scholar 

  50. Steinmaus C, Yuan Y, Bates MN, Smith AH (2003) Case control study of bladder cancer and drinking water arsenic in the Western United States. Am J Epidemiol 158:1193–1201

    Google Scholar 

  51. Tseng CH (2005) Blackfoot disease and arsenic: a never ending story. J Environ Sci Health C 23:55–74

    Google Scholar 

  52. Mandal BK, Suzuki KT (2002) Arsenic round the world: a review. Talanta 58:2–235

    Google Scholar 

  53. Buschmann J, Berg M, Stengel C, Winkel L, Sampson MK, Trang PTK, Viet PH (2008) Contamination of drinking water resources in the Mekong delta floodplains arsenic and other trace metals pose serious health risks to population. Environ Int 34:756–764

    CAS  Google Scholar 

  54. Chen YN, Chai LY, Shu YD (2008) Study of arsenic (V) adsorption on bone char from aqueous solution. J Hazard Mater 160:168–172

    CAS  Google Scholar 

  55. Johnston R, Heijnen H (2001) Safe water technology for arsenic removal. Technologies for arsenic removal from drinking water 1–22. http://www.bvsde.ops–oms.org/bvsacd/arsenico/technologies/Han.pdf. Accessed July 2008

    Google Scholar 

  56. Lu X, Kruatrachue M, Pokethitiyook P, Homyok K (2004) Removal of cadmium and zinc by water hyacinth Eichhornia crassipes. ScienceAsia 30:93–103

    CAS  Google Scholar 

  57. Tyler G, Pahlsson AM, Bengtsson G, Baath E, Tranvik L (1989) Heavy metal ecology and terrestrial plants microorganisms and invertebrates a review. Wat Air Soil Pollut 47:189–215

    CAS  Google Scholar 

  58. Dang VBH, Doan HD, Dang–Vu T, Lohi A (2009) Equilibrium and kinetics of biosorption of cadmium(II) and copper(II) ions by wheat straw. Bioresour Technol 100:211–219

    CAS  Google Scholar 

  59. Adriano DC (2001) Trace elements in terrestrial environments biochemistry bioavailability and risks of metals. Springer Verlag, New York

    Google Scholar 

  60. Peng K, Li X, Luo C, Shen Z (2006) Vegetation composition and heavy metal uptake by wild plants at three contaminated sites in Xiangxi area China. J Environ Sci Health Part A 40:65–76

    Google Scholar 

  61. Baszynski T (1986) Interference of Cd2+ in functioning of the photosynthetic apparatus of higher plants. Acta Soc Bot Pol 99:291–304

    Google Scholar 

  62. Drasch GA (1993) Increase of cadmium body burden for this century. Sci Tot Environ 67:75–89

    Google Scholar 

  63. Demirbas E, Kobya M, Senturk E, Ozkan T (2004) Adsorption kinetics for the removal of chromium (VI) from aqueous solutions on the activated carbons prepared from agricultural wastes. Wat SA 30:533–539

    CAS  Google Scholar 

  64. Carrasquero Durán A, Flores I, Perozo C, Pernalete Z (2006) Immobilization of lead by a vermicompost and its effect on white bean (Vigna Sinenis var Apure) uptake. Int J Environ Sci Technol 3:203–212

    Google Scholar 

  65. Brune A, Urbach W, Dietz KJ (1994) Compartmentation and transport of zinc in barley primary leaves as basis mechanisms involved in zinc tolerance. Plant Cell Environ 17:153–162

    CAS  Google Scholar 

  66. Aksu Z (2005) Application of biosorption for the removal of organic pollutants a review. Process Biochem 40:997–1026

    CAS  Google Scholar 

  67. Kidwai M, Mohan R (2005) Green chemistry: an innovative technology. Foundations Chem 7:269–287

    CAS  Google Scholar 

  68. Saeed A, Iqbal M (2003) Bioremoval of cadmium from aqueous solution by black gram husk (Cicer arientinum). Wat Res 37:3472–3480

    CAS  Google Scholar 

  69. Singh KK, Rastogi R, Hasan SH (2005) Removal of cadmium from wastewater using agricultural waste rice polish. J Hazard Mater 121:51–58

    CAS  Google Scholar 

  70. Pérez–Marín AB, Meseguer Zapata V, Ortuño JF, Aguilar M, Sáez J, Lloréns M (2007) Removal of cadmium from aqueous solutions by adsorption onto orange waste. J Hazard Mater 139:122–131

    Google Scholar 

  71. Göksungur Y, Üren S, Güvenç U (2005) Biosorption of cadmium and lead ions by ethanol treated waste baker’s yeast biomass. Bioresour Technol 99:103–109

    Google Scholar 

  72. Sarı A, Tuzen M (2008) Biosorption of cadmium(II) from aqueous solution by red algae (Ceramium virgatum) Equilibrium kinetic and thermodynamic studies. J Hazard Mater 157:448–454

    Google Scholar 

  73. Tunali S, Kiran I, Akar T (2005) Chromium(VI) biosorption characteristics of Neurospora crassa fungal biomass. Miner Eng 18:681–689

    CAS  Google Scholar 

  74. Melo JS, D’Souza SF (2004) Removal of chromium by mucilaginous seeds of Ocimum basilicum. Bioresour Technol 92:151–155

    CAS  Google Scholar 

  75. Elangovan R, Philip L, Chandraraj K (2008) Biosorption of hexavalent and trivalent chromium by palm flower (Borassus aethiopum). Chem Eng J 141:99–111

    CAS  Google Scholar 

  76. Pehlivan E, Altun T (2008) Biosorption of chromium(VI) ion from aqueous solutions using walnut hazelnut and almond shell. J Hazard Mater 155:378–384

    CAS  Google Scholar 

  77. Aravindhan R, Madhan B, Raghava Rao J, Unni Nair B (2004) Recovery and reuse of chromium from tannery wastewaters using Turbinaria ornata seaweed. J Chem Technol Biotechnol 79:1251–1258

    CAS  Google Scholar 

  78. Jain M, Garg VK, Kadirvelu K (2009) Chromium(VI) removal from aqueous system using Helianthus annuus (sunflower) stem waste. J Hazard Mater 162:365–372

    CAS  Google Scholar 

  79. Laurino JP (2008) Removal of Lead (II) Ions by poly 2 octadecyl butanedioic acid isothermal and kinetic studies. J Macromol Sci A Pur Appl Chem 45:612–619

    CAS  Google Scholar 

  80. Şölener M, Tunali S, Safa Özcan A, Özcan A, Gedikbey T (2008) Adsorption characteristics of lead (II) ions onto the clay poly (methoxyethyl) acrylamide (PMEA) composite from aqueous solutions. Desalination 223:308–322

    Google Scholar 

  81. Shen W, Chen S, Shi S, Li X, Zhang X, Hu W, Wang H (2009) Adsorption of Cu (II) and Pb (II) onto diethylenetriamine bacterial cellulose. Carbohydr Polym 75:110–114

    CAS  Google Scholar 

  82. Nadeem R, Nasir MH, Hanif MS (2009) Pb (II) sorption by acidically modified Cicer arientinum biomass. Chem Eng J 150:40–48

    CAS  Google Scholar 

  83. Margesin R, Schinner F (2001) Bioremediation (natural attenuation and biostimulation) of diesel oil contaminated soil in an Alpine glacier skiing area. Appl Environ Microbiol 67(7):3127–3133

    CAS  Google Scholar 

  84. Paul JF, McDonald ME (2005) Development of empirical geographically specific water quality criteria A conditional probability analysis approach. J Am Wat Resour Assoc 41(5) art. no. 04095:1211–1223

    Google Scholar 

  85. Raji C, Anirudhan TS (1998) Copper-impregnated sawdust carbon for the treatment of as (III) rich water. J Sci Ind Res 57(1):10–15

    CAS  Google Scholar 

  86. Gardea-Torresdey JL, Tiemann KJ, Armendariz V, Bess-Oberto L, Chianelli RR, Rios J, Parsons JG, Gamez G (2000) Characterization of Cr (VI) binding and reduction to Cr (III) by the agricultural byproducts of Avena monida (Oat) biomass. J Hazard Mater 80(1–3):175–188

    CAS  Google Scholar 

  87. Robinson T, McMullan G, Marchant R, Nigam P (2001) Remediation of dyes in textile effluent a critical review on current treatment technologies with a proposed alternative. Biores Technol 77:247–255

    CAS  Google Scholar 

  88. Willmott N, Guthrie J, Nelson G (1998) The biotechnology approach to colour removal from textile effluent. J Soc Dyers Colour 114:38–41

    CAS  Google Scholar 

  89. Borchert M, Libra JA (2001) Decolorization of reactive dyes by the white rot fungus Trametes versicolor in sequencing batch reactors. Biotechnol Bioeng 75(3):313–321

    CAS  Google Scholar 

  90. Beydilli MI, Pavlostathis SG, Tincher WC (1998) Decolorization and toxicity screening of selected reactive azo dyes under methanogenic conditions. Wat Sci Technol 38(4–5 -5 4):225–232

    CAS  Google Scholar 

  91. Zissi U, Lyberatos G (2001) Improvement in bioreactor productivities using free radicals HOCl induced overproduction of xanthan gum from Xanthomonas campestris and its mechanism. Biotechnol Bioeng 72(1):62–68

    Google Scholar 

  92. Pointing SB (2001) Feasibility of bioremediation by white-rot fungi. Appl Microbiol Biotechnol 57(1–2):20–33

    CAS  Google Scholar 

  93. Field JA, Barber LB II, Thurman EM, Moore BL, Lawrence DL, Peake DA (1992) Fate of alkylbenzenesulfonates and dialkyltetralinsulfonates in sewage contaminated groundwater. Environ Sci Technol 26(6):1140–1147

    CAS  Google Scholar 

  94. Novotny V, Witte JW (1997) Ascertaining aquatic ecological risks of urban stormwater discharges. Water Res 31(10):2573–2585

    CAS  Google Scholar 

  95. Bumpus John A, Aust Steven D (1985) Studies on the biodegradation of organopollutants by a white rot fungus. United States Environmental Protection Agency, Office of Research and Development, (Report) EPA, 404–410

    Google Scholar 

  96. Yadav JS, Reddy CA (1993) Degradation of benzene toluene ethylbenzene and xylenes (BTEX) by the lignin degrading basidiomycete Phanerochaete chrysosporium. Appl Environ Microbiol 59(3):756–762

    CAS  Google Scholar 

  97. Baker JA (1989) Case studies in organic contaminant hydrogeology. Environ Geol Wat Sci 14(1):17–33

    CAS  Google Scholar 

  98. Entry JA, Watrud LS, Reeves M (1999) Accumulation of 137Cs and 90Sr from contaminated soil by three grass species inoculated with mycorrhizal fungi. Environ Pollut 104(3):449–457

    CAS  Google Scholar 

  99. Raskin I, Smith RD, Salt DE (1997) Phytoremediation of metals: using plants to remove pollutants from the environment. Curr Opin Biotechnol 8(2):221–226

    CAS  Google Scholar 

  100. Meagher RB (2000) Phytoremediation of toxic elemental and organic pollutants. Current Opin Plant Biol 3(2):153–162

    CAS  Google Scholar 

  101. Lasat MM (2002) Phytoextraction of toxic metals: a review of biological mechanisms. J Environ Qual 31(1):109–120

    CAS  Google Scholar 

  102. McGrath RJ, Styles P, Thomas E, Neale S (2002) Integrated high-resolution geophysical investigations as potential tools for water resource investigations in karst terrain. Environ Geol 42(5):552–557

    Google Scholar 

  103. Garbisu C, Alkorta I (2001) Phytoextraction A cost-effective plant based technology for the removal of metals from the environment. Bioresour Technol 77(3):229–236

    CAS  Google Scholar 

  104. Ghosh M, Singh SP (2005) A review on phytoremediation of heavy metals and utilization of its byproducts. Appl Ecol Environ Res 3(1):1–18

    Google Scholar 

  105. Pilon-Smits E (2005) Phytoremediation. Annu Rev Plant Biol 56:15–39

    CAS  Google Scholar 

  106. Boyd CE (1970) Vascular aquatic plants for mineral nutrient removal from polluted waters. Econ Bot 24:95–103

    Google Scholar 

  107. Cornwell DA, Zoltek J Jr, Patrinely CD, Furman TS, Kim JI (1977) Nutrient removal by water hyacinths. J Wat Pollut Contr Fed 49:57–65

    CAS  Google Scholar 

  108. Stewart KK (1970) Nutrient removal potential of various aquatic plants. Hyacinth Contr J 8:34–35

    Google Scholar 

  109. Wooten JW, Dodd JD (1976) Growth of water hyacinth in treated sewage effluent. Econ Bot 30:29–37

    Google Scholar 

  110. Scheffield CW (1967) Water hyacinth for nutrient removal. Hyacinth Contr J 6:27–30

    Google Scholar 

  111. Yount JL (1964) Aquatic nutrient reduction and possible methods. Report of the 35th Anniversary Meeting, FL Anti–mosquito Association, pp 83–85

    Google Scholar 

  112. Wolverton BC, Mckown MM (1976) Water hyacinth for removal of phenols from polluted waters. Aquatic Bot 30:29–37

    Google Scholar 

  113. Seidal K (1976) Macrophytes and water purification. In: Tourbier J, Pierson RW (eds) Biological control for water pollution. Pennsylvania University Press, Pennsylvania, pp 109–121

    Google Scholar 

  114. Pip E, Stepaniuk J (1992) Cadmium, copper and lead in sediments. Arch fur Hydrobilogie 124:337–355

    CAS  Google Scholar 

  115. Holm LG, Plucknett DL, Pancho V, Herberger JP (1977) The world’s worstweeds: distribution and biology.University Press of Hawaii, Honolulu, 609 p

    Google Scholar 

  116. Mitchell DS (1976) The growth and management of Eichhornia crassipes and Salvinia spp. in their native environment and in alien situations. In: Varshney CK, Rzoska J (eds) Aquatic weeds in Southeast Asia 396. Dr. W. Junk, The Hague

    Google Scholar 

  117. Salati E (1987) Edaphic–phytodepuration: a new approach to waste water treatment. In: Reddy KR, Smith WH (eds) Aquatic plants for water treatment and resource recovery. Magnolia, Orlando, pp 199–208

    Google Scholar 

  118. Nor YM (1990) The absorption of metal ions by Eichhornia crassipes. Chem Speciation Bioavailability 2:85–91

    CAS  Google Scholar 

  119. Tiwari S, Dixit S, Verma N (2007) An effective means of bio–filtration of heavy metal contaminated water bodies using aquatic weed Eichhornia crassipes. Environ Monit Assess 129:253–256

    CAS  Google Scholar 

  120. Pinto CLR, Caconia A, Souza MM (1987) Utilization of water hyacinth for removal and recovery of silver from industrial waste water. Wat Sci Technol 19(10):89–101

    CAS  Google Scholar 

  121. Wolverton BC (1989) Aquatic plant/microbial filters for treating septic tank effluent in wastewater treatment. In: Hammer DA (ed) Municipal industrial and agricultural waste. Lewis, Chelsea

    Google Scholar 

  122. Brix H (1993) Macrophytes–mediated oxygen transfer in wetlands: transport mechanism and rate. In: Moshiri GA (ed) Constructed wetlands for water quality improvement. Lewis, Ann Arbor/London

    Google Scholar 

  123. Johnston CA (1993) Mechanism of water wetland water quality interaction. In: Moshiri GA (ed) Constructed wetland for water quality improvement. Lewis, Ann Arbor, pp 293–299

    Google Scholar 

  124. Stowell R, Ludwig R, Colt J, Tchobanoglous T (1981) Concepts in aquatic treatment design. J Environ Eng 112:885–894

    Google Scholar 

  125. Rai PK (2009) Heavy metal phytoremediation from aquatic ecosystems with special reference to macrophytes. Crit Rev Environ Sci Technol 39(9):697–753

    CAS  Google Scholar 

  126. Bradley BR, Daigger GT, Rubin R, Tchobanoglous G (2002) Evaluation of onsite wastewater treatment technologies using sustainable development criteria. Clean Technol Environ Policy 4:87–99

    CAS  Google Scholar 

  127. Lapena L, Cerezo M, Garcia–Augustin P (1995) Possible reuse of treated municipal wastewater for Citrus spp. plant irrigation. Bull Environ Contam Toxicol 55:697–703

    CAS  Google Scholar 

  128. Viessman W Jr, Hammer MJ (1998) Water supply and pollution control, 6th edn. Addison Wesley Longman Inc, Menlo Park

    Google Scholar 

  129. Padmanabhan PVA, Sreekumar KP, Thiyagarajan TK, Satpute RU, Bhanumurthy K, Sengupta P, Dey GK, Warrier KGK (2006) Nano–crystalline titanium dioxide formed by reactive plasma synthesis. Vacuum 80:11–12

    Google Scholar 

  130. Gaya UI, Abdullah AH (2008) Heterogeneous photocatalytic degradation of organic contaminants over titanium dioxide: a review of fundamentals, progress and problems. J Photochem Photobiol C: Photochem Rev 9:1–12

    CAS  Google Scholar 

  131. Yang H, Cheng H (2007) Controlling nitrite level in drinking water by chlorination and chloramination. Sep Purif Technol 56:392–396

    CAS  Google Scholar 

  132. Lu J, Zhang T, Ma J, Chen Z (2009) Evaluation of disinfection by–products formation during chlorination and chloramination of dissolved natural organic matter fractions isolated from a filtered river water. J Hazard Mater 162:140–145

    CAS  Google Scholar 

  133. Coleman HM, Marquis CP, Scott JA, Chin SS, Amal R (2005) Bactericidal effects of titanium dioxide–based photocatalysts. Chem Eng J 113:55–63

    CAS  Google Scholar 

  134. Serpone N, Sauve G, Koch R, Tahiri H, Pichat P, Piccinini P, Pelizetti E, Hidaka H (1996) Standardization protocol of process efficiencies and activation parameters in heterogeneous photocatalysis: relative photonic efficiencies. J Photochem Photobiol A: Chem 94:191–203

    CAS  Google Scholar 

  135. Ensminger D (1973) Ultrasonics: the low− and high−intensity applications. Marcel Dekker, New York

    Google Scholar 

  136. Thompson LH, Doraiswamy LK (1999) Sonochemistry: science and engineering. Ind Eng Chem Res 38:1215–1249

    CAS  Google Scholar 

  137. Suslick KS (1990) Sonochemistry. Science 247:1439–1445

    CAS  Google Scholar 

  138. Riesz P, Berdahl D, Christman CL (1985) Free radical generation by ultrasound in aqueous and nonaqueous solutions. Environ Health Perspect 64:233–252

    CAS  Google Scholar 

  139. Liang J, Komarov S, Hayashi N, Kasai E (2007) Improvement in sonochemical degradation of 4−chlorophenol by combined use of Fenton−like reagents. Ultrason Sonochem 14:201–207

    CAS  Google Scholar 

  140. Zeng L, McKinley JW (2006) Degradation of pentachlorophenol in aqueous solution by audible–frequency sonolytic ozonation. J Hazard Mater 135:218–225

    CAS  Google Scholar 

  141. Lim MH, Kim SH, Kim YU, Khim J (2007) Sonolysis of chlorinated compounds in aqueous solution. Ultrason Sonochem 14:93–98

    CAS  Google Scholar 

  142. Guo Z, Gu C, Zheng Z, Feng R, Jiang F, Gao G, Zheng Y (2006) Sonodegradation of halomethane mixtures in chlorinated drinking water. Ultrason Sonochem 13:487–492

    CAS  Google Scholar 

  143. Matouq MA-D, Al-Anber ZA (2007) The application of high frequency ultrasound waves to remove ammonia from simulated industrial wastewater. Ultrason Sonochem 14(3):393–397

    CAS  Google Scholar 

  144. Mason TJ, Collings A, Sumel A (2004) Sonic and ultrasonic removal of chemical contaminants from soil in the laboratory and on a large scale. Ultrason Sonochem 11:205–210

    CAS  Google Scholar 

  145. Moriwaki H, Takagi Y, Tanaka M, Tsuruho K, Okitsu K, Maeda Y (2005) Sonochemical decomposition of perfluorooctane sulfonate and perfluorooctanoic acid. Environ Sci Technol 39:3388–3392

    CAS  Google Scholar 

  146. Vecitis CD, Wang Y, Cheng J, Park H, Mader BT, Hoffmann MR (2010) Sonochemical degradation of perfluorooctane sulfonate in aqueous film−forming foams. Environ Sci Technol 44:432–438

    CAS  Google Scholar 

  147. Francony A, Petrier C (1996) Sonochemical degradation of carbon tetrachloride in aqueous solution at two frequencies: 20 kHz and 500 kHz. Ultrason Sonochem 3:77–82

    Google Scholar 

  148. Lee M, Oh J (2010) Sonolysis of trichloroethylene and carbon tetrachloride in aqueous solution. Ultrason Sonochem 17:207–212

    CAS  Google Scholar 

  149. Suri RPS, Nayak M, Devaiah U, Helmig E (2007) Ultrasound assisted destruction of estrogen hormones in aqueous solution: effect of power density, power intensity and reactor configuration. J Hazard Mater 146:472–478

    CAS  Google Scholar 

  150. Isariebel QP, Carine JL, Ulises − Javier JH, Anne − Marie W, Henri D (2009) Sonolysis of levodopa and paracetamol in aqueous solutions. Ultrason Sonochem 16:610–616

    CAS  Google Scholar 

  151. Neppolian B, Jung H, Choi H, Lee JH, Kang J-W (2002) Sonolytic degradation of methyl tert-butyl ether: the role of coupled Fenton process and persulphate ion. Water Res 19:4699–4708

    Google Scholar 

  152. Tuziuti T, Yasui K, Iida Y et al (2004) Effect of particle addition on sonochemical reaction. Ultrasonics 42:597–601

    CAS  Google Scholar 

  153. Shimizu K, Matsuda Y, Nonomura T, Ikeda H, Tamura N, Kusakari S, Kimbara J, Toyoda H (2007) Dual protection of hydroponic tomatoes from rhizosphere pathogens Ralstonia solanacearum and Fusarium oxysporum f.sp. radicis lycopersici and airborne conidia of Oidium neolycopersici with an ozone-generative electrostatic spore precipitator. Plant Pathol 56:987–997

    Google Scholar 

  154. Abdullah AZ, Ling PY (2010) Heat treatment effects on the characteristics and sonocatalytic performance of TiO2 in the degradation of organic dyes in aqueous solution. J Hazard Mater 173:159–167

    CAS  Google Scholar 

  155. Hill JM, Marchant TR (1996) Modelling microwave heating. Appl Math Model 20:3–15

    Google Scholar 

  156. Wu T-N (2008) Environmental perspectives of microwave applications as remedial alternatives: review. Pract Periodical Hazard Toxic Radioactive Waste Manag 12:102–115

    CAS  Google Scholar 

  157. Nüchter M, Ondruschka B, Bonrath W, Gum A (2004) Microwave assisted synthesis – a critical technology overview. Green Chem 6:128–141

    Google Scholar 

  158. Jones DA, Lelyveld TP, Mavrofidis SD (2002) Microwave heating applications in environmental engineering—a review. Resour Conserv Recycl 34:75–90

    Google Scholar 

  159. Cravotto G, Di Carlo S, Tumiatti V (2005) Degradation of persistent organic pollutants by Fenton’s reagent facilitated by microwave or high–intensity ultrasound. Environ Technol 26:721–724

    CAS  Google Scholar 

  160. Theron J, Walker JA, Cloete TE (2008) Nanotechnology and water treatment: applications and emerging opportunities. Crit Rev Microbiol 34(1):43–69

    CAS  Google Scholar 

  161. Bottero JY, Rose J, Wiesner MR (2006) Nanotechnologies: tools for sustainability in a new wave of water treatment processes. Integr Environ Assess Manag 4(2):391–395

    Google Scholar 

  162. Terrones M (2003) Science and technology of the twenty-first century: synthesis, properties and applications of carbon nanotubes. Ann Rev Mater Res 33:419–501

    CAS  Google Scholar 

  163. Tribolet P, Kiwi–Minsker L (2005) Carbon nanofibers grown on metallic filters as novel catalytic materials. Catal Today 102:15–22

    Google Scholar 

  164. Sato S, Takahashi R, Sodesawa T, Nozaki F, Jin XZ, Suzuki S (2000) Mass–transfer limitation in mesopores of Ni–MgO catalyst in liquid–phase hydrogenation. J Catal 191(2):261–270

    CAS  Google Scholar 

  165. Garcia J, Gomes HT, Serp Ph, Kalck Ph, Figueiredo JL, Faria JL (2006) Carbon nanotube supported ruthenium catalysts for the treatment of high strength wastewater with aniline using wet air oxidation. Carbon 44:2384–2391

    CAS  Google Scholar 

  166. Daneshvar N, Aber S, Seyed Dorraji MS, Khataee AR, Rasoulifard MH (2007) Photocatalytic degradation of the insecticide diazinon in the presence of prepared nanocrystalline ZnO powders under irradiation of UV–C light. Sep Purif Technol 58:91–98

    CAS  Google Scholar 

  167. Shi WY, Gu JZ, Wu WJ (2011) Removal of dye from textile dyeing wastewater by using oxidized multiwalled carbon nanotubes. Adv Mater Res 193:343–344

    Google Scholar 

  168. Xiao H, Ai Z, Zhang L (2009) Nonaqueous sol − gel synthesized hierarchical CeO2 nanocrystal microspheres as novel adsorbents for wastewater treatment. J Phys Chem C 113(38):16625–16630

    CAS  Google Scholar 

  169. Hu J, Chen G, Lo IMC (2006) Selective removal of heavy metals from industrial wastewater using maghemite nanoparticle: performance and mechanisms. J Environ Eng 132(7):709–715

    CAS  Google Scholar 

  170. Zhang Y, Xu S, Luo Y, Pan S, Ding H, Li G (2011) Synthesis of mesoporous carbon capsules encapsulated with magnetite nanoparticles and their application in wastewater treatment. J Mater Chem 21:3664–3671

    CAS  Google Scholar 

  171. Lau WJ, Ismail AF (2009) Polymeric nanofiltration membranes for textile dye wastewater treatment: preparation, performance evaluation, transport modelling, and fouling controls — a review. Desalination 245:321–348

    CAS  Google Scholar 

  172. Choi JH, Fukushi K, Yamamoto K (2007) A submerged nanofiltration membrane bioreactor for domestic wastewater treatment: the performance of cellulose acetate nanofiltration membranes for long–term operation. Sep Purif Technol 52:470–477

    CAS  Google Scholar 

  173. Mo JH, Lee YH, Kim J (2008) Treatment of dye aqueous solutions using nanofiltration polyamide composite membranes for the dye wastewater reuse. Dyes Pigments 76(2):429–434

    CAS  Google Scholar 

  174. Curcio E, Ji X, Quazi AM, Barghi S (2010) Hybrid nanofiltration–membrane crystallization system for the treatment of sulfate wastes. J Membrane Sci 360:493–498

    CAS  Google Scholar 

  175. Misra AK (2011) Impact of urbanization on the hydrology of Ganga Basin (India). Water Resour Manag 25:705–719

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sanjay K. Sharma .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Sharma, S.K., Sanghi, R., Mudhoo, A. (2012). Green Practices to Save Our Precious “Water Resource”. In: Sharma, S., Sanghi, R. (eds) Advances in Water Treatment and Pollution Prevention. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-4204-8_1

Download citation

Publish with us

Policies and ethics