Skip to main content

Dynamically-Driven Winds

  • Chapter
  • First Online:
Mountain Weather Research and Forecasting

Part of the book series: Springer Atmospheric Sciences ((SPRINGERATMO))

Abstract

This chapter is concerned with dynamically-forced atmospheric flow phenomena which occur when the wind encounters mountains. The range of effects is wide and therefore attention is restricted to arguably the most important phenomena in terms of weather forecasting. These are mountain waves, rotors, downslope windstorms, gap winds and barrier jets. The essence of many of these phenomena is described by mountain wave theory. Recent advances in observation technologies and their application in field programs, as well as in numerical modeling, have led to new understanding, including the incorporation of complicating factors like boundary-layer processes. This chapter describes current theory for each of these phenomena, along with recent observational studies and the latest forecast techniques and models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Below the lower neutral isolating layer, the air next to the surface might be stably stratified (e.g. nocturnally) and blocked

  2. 2.

    Actually a gap flow in the opposite direction – southward – happened.

  3. 3.

    Spatial details were observed with two aircraft flights.

References

  • Afanasyev, Y. D., and W.R. Peltier, 1998: The three-dimensionalization of stratified flow over two-dimensional topography. J. Atmos. Sci., 55, 19–39.

    Google Scholar 

  • Afanasyev Y.D., and W.R. Peltier, 2001a: On breaking internal waves over the sill in Knight Inlet. Proc. R. Soc. Lond. A, 457, 2799–2825.

    Google Scholar 

  • Afanasyev Y.D., and W.R. Peltier, 2001b: Reply to comment on the paper ‘On breaking internal waves over the sill in Knight Inlet’. Proc. Roy. Soc. A, 457, 2831–2834.

    Google Scholar 

  • Alpers, W., A. Ivanov, and J. Horstmann, 2009: Observations of bora events over the adriatic sea and black sea by spaceborne synthetic aperture radar. Mon. Wea. Rev., 137, 1150–1161.

    Google Scholar 

  • Anthes, R.A., Y.H. Kuo, D.P. Baumhefner, R.P. Errico, and T.W. Bettge, 1985: Predictability of mesoscale atmospheric motions. Advances in Geophysics, 28B, Academic Press, 159–202.

    Google Scholar 

  • Arakawa, S. 1968: A proposed mechanism of fall winds and dashikaze. Met. Geophys., 19, 69–99.

    Google Scholar 

  • Arakawa, S. 1969: Climatological and dynamical studies on the local strong winds, mainly in Hokkaidō, Japan. Geophys. Mag., 34, 359–425.

    Google Scholar 

  • Armi, L. 1986: The hydraulics of two flowing layers with different densities. J. Fluid Mech., 163, 27–58.

    Google Scholar 

  • Armi, L., and D. Farmer, 2002: Stratified flow over topography: bifurcation fronts and transition to the uncontrolled state. Proc. R. Soc. London, 458, 513–538.

    Google Scholar 

  • Armi, L., and G.J. Mayr, 2007: Stratified flow across an alpine crest with a pass: Shallow and deep flows. Quar. J. Roy. Meteorol. Soc., 133, 459–477.

    Google Scholar 

  • Armi, L., and U. Riemenschneider, 2008: Two-layer hydraulics for a co-located crest and narrows. J. Fluid Mech., 615, 169–184.

    Google Scholar 

  • Armi, L., and R. Williams, 1993: The hydraulics of a stratified fluid flowing through a contraction. J. Fluid Mech., 251, 355–375.

    Google Scholar 

  • Bacmeister, J.T., and R. T. Pierrehumbert, 1988: On high-drag states of nonlinear flow over an obstacle. J. Atmos. Sci., 45, 63–80.

    Google Scholar 

  • Baines, P.G., 1980: The dynamics of the Southerly Buster. Australian Meteorological Magazine, 28, 175–200.

    Google Scholar 

  • Baines, P.G., 1995: Topographic effects in stratified flow. Cambridge University Press, 482 pp.

    Google Scholar 

  • Baines, P.G., 2001: Mixing in flows down gentle slopes into stratified environments. J. Fluid Mech., 443, 237–270.

    Google Scholar 

  • Baines, P.G., 2005: Mixing regimes for the flow of dense fluid down slopes into stratified environments. J. Fluid Mech., 538, 247–267.

    Google Scholar 

  • Bajić A., 1989: Severe bora on the northern Adriatic Part 1: Statistical analysis. RASPRAVE, 24,1–9.

    Google Scholar 

  • Banta, R.M., L.D. Olivier, and J.M. Intrieri, 1990: Doppler lidar observations of the 9 January 1989 severe downslope windstorm in Boulder, Colorado. Preprints, Fifth Conf. on Mountain Meteorology, Boulder, CO, Amer. Meteor. Soc., 68–89.

    Google Scholar 

  • Barstad, I., and S. Grønås, 2005: Southwesterly flows over southern Norway – Mesoscale sensitivity to large-scale wind direction and speed. Tellus, 57A, 136–152.

    Google Scholar 

  • Bell, G.D., and L.F. Bosart, 1988: Appalachian cold-air damming. Mon. Wea. Rev., 116, 137–161.

    Google Scholar 

  • Belušić, D., M. Žagar, and B. Grisogono, 2007: Numerical simulation of pulsations in the bora wind. Quar. J. Roy. Meteorol. Soc., 133, 1371–1388.

    Google Scholar 

  • Benjamin TB. 1981. Steady flows drawn from a stably stratified reservoir. J. Fluid Mech., 106, 245–260.

    Google Scholar 

  • Bond, N.A., C.F. Dierking, and J.D. Doyle, 2006: Research aircraft and wind profiler observations in Gastineau Channel during a Taku wind event. Wea. Forecasting, 21, 489–501.

    Google Scholar 

  • Bond, N.A. and S.A. Macklin, 1993: Aircraft observations of offshore-directed flow near wide bay, Alaska. Mon. Wea. Rev., 121, 150–161.

    Google Scholar 

  • Bond, N.A., C. F. Mass, and J.E. Overland, 1996: Coastally trapped wind reversals along the United States west coast during the warm season, Part I: Climatology and temporal evolution. Mon. Wea. Rev., 124, 430–445.

    Google Scholar 

  • Bougeault, P., P. Binder, A. Buzzi, R. Dirks, R. Houze, J.P. Kuettner, R.B. Smith, R. Steinacker, and H. Volkert, 2001: The MAP Special Observing Period. Bull. Amer. Meteor. Soc., 82, 433–462.

    Google Scholar 

  • Bougeault, P., and coauthors, 1993: The atmospheric momentum budget over a major mountain range: First results of the PYREX field program. Ann. Geophys., 11, 395–418.

    Google Scholar 

  • Braun, S.A., R.A. Houze Jr., B.F. Smull, 1997: Airborne dual-Doppler observations of an intense frontal system approaching the Pacific Northwest coast. Mon. Wea. Rev., 125, 3131–3156.

    Google Scholar 

  • Braun, S.A., R. Rotunno, J.B. Klemp, 1999: Effects of coastal orography on landfalling cold fronts. Part I: Dry, inviscid dynamics. J. Atmos. Sci., 56, 517–533.

    Google Scholar 

  • Brinkmann, W.A.R., 1974: Strong downslope winds at Boulder, Colorado. Mon. Wea. Rev., 102, 592–602.

    Google Scholar 

  • Brown, J.M., 1986: A decision tree for forecasting downslope windstorms in Colorado. Preprints, 11th Conf. on Weather Forecasting and Analysis, Kansas City, MO, Amer. Meteor. Soc., 83–88.

    Google Scholar 

  • Cameron, D.C., 1931: Easterly gales in the Columbia River Gorge during the winter of 1930–1931 – Some of their causes and effects. Mon. Wea. Rev., 59, 411–413.

    Google Scholar 

  • Casswell, S.A., 1966: A simplified calculation of maximum vertical velocities in mountain lee waves. Meteorol. Mag, 95, 68–80.

    Google Scholar 

  • Clark. T.L., and R.D. Farley, 1984: Severe downslope windstorm calculations in two and three spatial dimensions using anelastic interactive grid nesting: A possible mechanism for gustiness. J. Atmos. Sci., 41, 329–350.

    Google Scholar 

  • Clark, T.L., and W.R. Peltier, 1977: On the evolution and stability of finite-amplitude mountain waves. J. Atmos. Sci., 34, 1715–1730.

    Google Scholar 

  • Colle, B.A., and C.F. Mass, 1995: The structure and evolution of cold surges east of the Rocky Mountains. Mon. Wea. Rev., 123, 2577–2610.

    Google Scholar 

  • Colle, B.A., and C.F. Mass, 1998: Windstorms along the Western Side of the Washington Cascade Mountains. Part I: A High-Resolution Observational and Modeling Study of the 12 February 1995 Event. Mon. Wea. Rev., 126, 28–52.

    Google Scholar 

  • Colle, B.A., and C.F. Mass, 2000: High-resolution observations and numerical simulations of easterly gap flow through the Strait of Juan de Fuca on 9–10 December 1995. Mon. Wea. Rev., 128, 2398–2422.

    Google Scholar 

  • Colle, B.A., B.F. Smull, and M.-J. Yang, 2002: Numerical simulations of a landfalling cold front observed during COAST: Rapid evolution and responsible mechanisms. Mon. Wea. Rev., 130, 1945–1966.

    Google Scholar 

  • Colle, B.A., K.A. Loescher, G.S. Young, and N.S. Winstead, 2006: Climatology of barrier jets along the Alaskan coast. Part II: Large-scale and sounding composites. Mon. Wea. Rev., 134, 454–477.

    Google Scholar 

  • Collier, C., 2002: Developments in radar and remote-sensing methods for measuring and forecasting rainfall. Phil. Trans. Roy. Soc., series A, 360, 1345–1361

    Google Scholar 

  • Colman, B.R., and C. F. Dierking, 1992: The Taku Wind of Southeast Alaska: Its Identification and Prediction. Wea. Forecasting, 7, 49–64.

    Google Scholar 

  • Colson, D., 1954: Meteorological problems in forecasting mountain waves. Bull. Amer. Meteor. Soc., 35, 363–371.

    Google Scholar 

  • COMET, 2008: MetEd: Mountain Meteorology training module. Available online at: http://www.meted.ucar.edu/mesoprim/mtnwave/, University Corporation for Atmospheric Research.

  • Cui, Z., M. Tjernström, and B. Grisogono, 1998: Idealized simulations of atmospheric coastal flow along the central coast of California, J. Appl. Meteor., 37, 1332–1363.

    Google Scholar 

  • Darby, L.S. and G.S. Poulos, 2006: The evolution of lee-wave rotor activity in the lee of Pike’s Peak under the influence of a cold frontal passage: Implications for aircraft safety. Mon. Wea. Rev., 134, 2857–2876.

    Google Scholar 

  • Dierking, C.F., 1998: Effects of a mountain wave windstorm at the surface. Wea. Forecasting, 13, 606–613.

    Google Scholar 

  • Doran, J.C., and S. Zhong, 2000: Thermally driven gap winds into the Mexico City basin. J. Appl. Meteorol., 39, 1330–1340.

    Google Scholar 

  • Dorman, C.E., R.C. Beardsley, and R. Limeburner, 1995: Winds in the Strait of Gibraltar. Quart. J. Roy. Meteorol. Soc., 121, 1903–1921.

    Google Scholar 

  • Doswell, C.A., H.E. Brooks, and R.A. Maddox, 1996: Flash flood forecasting: An ingredients-based methodology. Wea. Forecasting, 11, 560–581.

    Google Scholar 

  • Doyle, J.D., 1997: The influence of mesoscale orography on a coastal jet and rainband. Mon. Wea. Rev., 125, 1465–1488.

    Google Scholar 

  • Doyle, J.D., D.R. Durran, C. Chen, B.A. Colle, M. Georgelin, V. Grubišić, W.R. Hsu, C.Y. Huang, D. Landau, Y.L. Lin, G.S. Poulos, W.Y. Sun, D.B. Weber, M.G. Wurtele, and M. Xue, 2000: An intercomparison of model-predicted wave breaking for the 11 January 1972 Boulder windstorm. Mon. Wea. Rev., 128, 901–914.

    Google Scholar 

  • Doyle, J.D., and M.A. Shapiro, 2000: A multi-scale simulation of an extreme downslope windstorm over complex topography. Meteor. Atmos. Phys., 74, 83–101.

    Google Scholar 

  • Doyle, J.D., and N.A. Bond, 2001: Research aircraft observations and numerical simulations of a warm front approaching Vancouver Island, Mon. Wea. Rev., 129, 978–998.

    Google Scholar 

  • Doyle, J.D., and Durran, D.R. 2002. The dynamics of mountain-wave induced rotors. J. Atmos. Sci., 59, 186–201.

    Google Scholar 

  • Doyle, J.D., and R.B. Smith, 2003: Mountain waves over the Hohe Tauern. Quart. J. Roy. Meteor. Soc., 129, 799–823.

    Google Scholar 

  • Doyle, J.D., and Durran, D.R. 2007. Rotor and sub-rotor dynamics in the lee of three-dimensional terrain. J. Atmos. Sci., 64, 4202–4221.

    Google Scholar 

  • Doyle, J.D., and Q. Jiang, 2006: Observations and numerical simulations of mountain waves in the presence of directional wind shear. Q. J. R. Meteorol. Soc., 132, 1877–1905.

    Google Scholar 

  • Doyle, J.D., and C.A. Reynolds, 2008: Implications of regime transitions for mountain-wave-breaking predictability. Mon. Wea. Rev., 136, 5211–5223.

    Google Scholar 

  • Drechsel, S., and G.J. Mayr, 2008: Objective forecasting of foehn winds for a subgrid-scale alpine valley. Wea. Forecasting, 23, 205–218.

    Google Scholar 

  • Durran, D.R., and Klemp, J.B. 1982. The effects of moisture on trapped lee waves. J. Atmos. Sci., 39 2490–2506.

    Google Scholar 

  • Durran, D.R., 1986: Another look at downslope windstorms. Part I: The development of analogs to supercritical flow in an infinitely deep, continuously stratified fluid. J. Atmos. Sci., 43, 2527–2543.

    Google Scholar 

  • Durran, D.R., and J.B. Klemp, 1987: Another look at downslope winds. Part II: Nonlinear amplification beneath wave-overturning layers. J. Atmos. Sci., 44, 3402–3412.

    Google Scholar 

  • Durran, D.R., 1990: Mountain waves and downslope winds. Atmospheric Processes over Complex Terrain, Meteor. Monogr., No. 45, Amer. Meteor. Soc., 59–81.

    Google Scholar 

  • Durran, D.R., 1992: Two-layer solutions to Long’s equation for vertically propagating mountain waves: How good is linear theory? Quart. J. Roy. Meteor. Soc., 118, 415–433.

    Google Scholar 

  • Durran, D.R., 1999: Numerical methods for wave equations in geophysical fluid dynamics. Springer, 465 pp.

    Google Scholar 

  • Enger, L. and B. Grisogono, 1998: The response of bora-type flow to sea surface temperature. Quart. J. Roy. Meteorol. Soc., 124, 1227–1244.

    Google Scholar 

  • Epifanio, C.C., and T. Qian, 2008: Wave–turbulence interactions in a breaking mountain wave. J. Atmos. Sci., 65, 3139–3158.

    Google Scholar 

  • Etling, D. 1989: On atmospheric vortex sheets in the wake of large islands. Meteor. Atmos. Phys., 41, 157–164.

    Google Scholar 

  • Farmer, D.M., and L. Armi, 1999: Stratified flow over topography: the role of small-scale entrainment and mixing in flow establishment. Proc. Roy. Soc. London A, 455, 3221–3258.

    Google Scholar 

  • Farmer, D.M., and L. Armi, 2001: Stratified flow over topography: models versus observations. Proc. Roy. Soc. A, 457, 2827–2830.

    Google Scholar 

  • Finnigan, T.D., J.A.Vine, P.L. Jackson, S.E. Allen, G.A. Lawrence, and D.G. Steyn, 1994: Hydraulic physical modeling and observations of a severe gap wind. Mon. Wea. Rev., 122, 2677–2687.

    Google Scholar 

  • Gaberšek, S., and D.R. Durran, 2006: Gap Flows through Idealized Topography. Part II: Effects of rotation and surface friction. J. Atmos. Sci., 63, 2720–2739.

    Google Scholar 

  • Georgelin, M., E. Richard, M. Petitdidier, A. Druilhet, 1994: Impact of subgrid-scale orography parameterization on the simulation of orographic flows. Mon. Wea. Rev., 122, 1509–1522.

    Google Scholar 

  • Glasnovic, D., and V. Jurčec, 1990: Determination of upstream bora layer depth. Meteor. Atmos. Phys., 43, 137–144.

    Google Scholar 

  • Gohm, A., and G.J. Mayr, 2004: Hydraulic aspects of föhn winds in an Alpine valley. Quart. J. Roy. Meteorol. Soc., 130, 449–480.

    Google Scholar 

  • Gohm, A., and G.J. Mayr, 2005: Numerical and observational case study of a deep Adriatic bora. Quart. J. Roy. Meteorol. Soc., 131, 1363–1392.

    Google Scholar 

  • Gohm, A., G.J. Mayr, A. Fix, and A. Giez, 2008: On the onset of bora and the formation of rotors and jumps near a mountain gap. Quart. J. Roy. Meteorol. Soc., 134, 21–46.

    Google Scholar 

  • Gohm, A., G. Zängl, and G.J. Mayr, 2004: South foehn in the Wipp Valley on 24 October 1999 (MAP IOP 10): Verification of high-resolution numerical simulations with observations. Mon. Weather Rev., 132, 78–102.

    Google Scholar 

  • Grisogono, B., and D. Belušić, 2009: A review of recent advances in understanding the meso- and microscale properties of the severe bora wind. Tellus A, 61, 1–16.

    Google Scholar 

  • Grisogono, B. and L. Enger, 2004: Boundary-layer variations due to orographic-wave breaking in the presence of rotation. Quart. J. Roy. Meteorol. Soc., 130, 2991–3014.

    Google Scholar 

  • Grubišić, V., 1989: Application of the hydraulic theory in cases of bora with strong upstream flow. RASPRAVE, 24, 21–27.

    Google Scholar 

  • Grubišić, V. and B.J. Billings, 2007: The intense lee-wave rotor event of Sierra Rotors IOP8. J. Atmos. Sci., 64, 41784201.

    Google Scholar 

  • Grubišić, V., J.D. Doyle, J. Kuettner, S. Mobbs, R.B. Smith, C.D. Whiteman, R. Dirks, S. Czyzyk, S.A. Chon, S. Vosper, M. Weissmann, S. Haimov, S.F.J. De Wekker, L.L. Pan, and F.K. Chow, 2008: The Terrain-induced Rotor Experiment. A field campaign overview including observational highlights. Bull. Amer. Meteor. Soc., 89, 1513–1533.

    Google Scholar 

  • Grubišić, V. and Lewis, J.M. 2004. Sierra Wave Project revisited: 50 years later. Bull. Amer. Meteor. Soc., 85, 1127–1142.

    Google Scholar 

  • Grubišić, V. and M. Orlic 2007: Early observations of rotor clouds by Andrija Mohorovičić. Bull. Amer. Meteor. Soc., 88, 683–700.

    Google Scholar 

  • Grubišić, V., R.B. Smith, and C. Schär, 1995: The effect of bottom friction on shallow-water flow past an isolated obstacle. J. Atmos. Sci., 52, 1985–2005.

    Google Scholar 

  • Grubišić, V. and I. Stiperski, 2009: Lee-wave resonances over double bell-shaped obstacles. J. Atmos. Sci., 66, 1205-1228.

    Google Scholar 

  • Hertenstein, R.F. and J.P. Kuettner, 2005. Rotor types associated with steep lee topography: influence of the wind profile. Tellus A, 57, 117135.

    Google Scholar 

  • Hoinka, K.P., 1985: A comparison of numerical simulations of hydrostatic flow over mountains and observations. Mon. Wea. Rev., 113, 719–735.

    Google Scholar 

  • Howells, P.A.C, and Y.H. Kuo, 1988: A numerical study of the mesoscale environment of a southerly buster event. Mon. Wea. Rev., 116, 1771–1788.

    Google Scholar 

  • Holmboe, J. and H. Klieforth, 1957: Investigation of mountain lee waves and the air flow over the Sierra Nevada. Final Report. Contract No. AF19(604)-728, University of California ADNo. 133606, Dept. of Meteorology, University of California, Los Angeles, 290 pp.

    Google Scholar 

  • Houghton, D.C., and E. Isaacson, 1968: Mountain winds. Stud. Numer. Anal., 2, 21–52.

    Google Scholar 

  • Houghton, D.D., and A. Kasahara, 1968: Nonlinear shallow fluid flow over an isolated ridge. Commun. Pure and Appl. Math., 21, 1–23.

    Google Scholar 

  • Huppert, H.E., and J.W. Miles, 1969: Lee waves in a stratified flow Part 3: Semi-elliptical obstacles. J. Fluid Mech., 35, 481–496.

    Google Scholar 

  • Hunt, J.C.R., H. Olafsson and P. Bougeault, 2001: Coriolis effects on orographic and mesoscale flows. Quart. J. Roy. Meteorol. Soc., 127, 601–633.

    Google Scholar 

  • Hurd, W.E., 1929: Northers of the Gulf of Tehuantepec. Mon. Wea. Rev., 57, 192–194.

    Google Scholar 

  • Ishii, S., K. Sasaki, K. Mizutani, T. Aoki, T. Itabe, H. Kanno, D. Matsushima, W. Sha, A. Noda, M. Sawada, M. Ujiie, Y. Matsuura, and T. Iwasaki, 2007: Temporal evolution and spatial structure of the local easterly wind “kiyokawa-dashi” in Japan part I: Coherent Doppler lidar observations. J. Meteorol. Soc. Japan, 85, 797–813.

    Google Scholar 

  • Ivančan-Picek,B. and V.Tutiš, 1995: Mesoscale bora flow and mountain pressure drag. Meteorol.Z., 4, 119–128

    Google Scholar 

  • Ivančan-Picek,B. and V.Tutiš, 1996: A case study of a severe Adriatic bora on 28 December 1992. Tellus A, 48, 357–367

    Google Scholar 

  • Jackson, P.L., and D.G. Steyn, 1994a: Gap winds in a fjord. Part I: Observations and numerical simulation. Mon. Wea. Rev., 122, 2645–2665.

    Google Scholar 

  • Jackson, P.L., and D.G. Steyn, 1994b: Gap winds in a fjord. Part II: Hydraulic analog. Mon. Wea. Rev., 122, 2666–2676.

    Google Scholar 

  • Jackson, P.L., C.J.C. Reason, S. Guan, 1999: Numerical modeling of a coastal trapped disturbance. Part II: Structure and dynamics, Mon.Wea. Rev., 127, 535–550.

    Google Scholar 

  • Jurčec, V., 1981: On mesoscale characteristics of bora conditions in Yugoslavia, Pure Appl. Geophys., 119, 640–657.

    Google Scholar 

  • Jiang, J.H., D.L. Wu, and S.D. Eckermann, 2002: Upper Atmosphere Research Satellite (UARS) MLS observation of mountain waves over the Andes. J. Geophys. Res., 107: 10.1029/2002JD002091.

  • Jiang, Q., R.B. Smith, and J.D. Doyle, 2003: The nature of the mistral: Observations and modelling of two MAP events. Q. J. R. Meteorol. Soc. 129, 857–875.

    Google Scholar 

  • Jiang, Q., and J.D. Doyle, 2004: Gravity wave breaking over the central Alps: Role of complex terrain, J. Atmos. Sci., 61, 2249–2266.

    Google Scholar 

  • Jiang, Q., J.D. Doyle, and R.B. Smith, 2005: Blocking, descent and gravity waves: Observations and modeling of a MAP northerly föhn event. Quart. J. Roy. Meteorol. Soc., 131, 675–701.

    Google Scholar 

  • Jiang, Q., J.D. Doyle, and R.B. Smith, 2006: Interactions between lee waves and boundary layers. J. Atmos. Sci., 63, 617–633.

    Google Scholar 

  • Jiang, Q., J.D. Doyle, S. Wang, and R.B. Smith, 2007: On boundary layer separation in the lee of mesoscale topography. J. Atmos. Sci., 64, 401–420.

    Google Scholar 

  • Jiang, Q., and J.D. Doyle, 2008: Diurnal variation of downslope winds in Owens Valley during the Sierra Rotor Experiment. Mon. Wea. Rev., 136, 3760–3780.

    Google Scholar 

  • King, J.C., P.S. Anderson, D.G. Vaughan, G.W. Mann, S.D. Mobbs, and S.B. Vosper, 2004: Wind-borne redistribution of snow across an Antarctic ice rise. J. Geoph. Res., 109, No. D11, D11104.

    Google Scholar 

  • Klemp J.B., and D.K. Lilly, 1975. The dynamics of wave-induced downslope winds. J. Atmos. Sci., 32, 320–339.

    Google Scholar 

  • Klemp J.B., and D.K. Lilly, 1978. Numerical simulation of hydrostatic mountain waves. J. Atmos. Sci., 35, 78–107.

    Google Scholar 

  • Klemp, J.B., and D.R. Durran, 1987: Numerical modeling of bora winds. Meteor. Atmos. Phys., 36, 215–227.

    Google Scholar 

  • Klemp, J.B., W.C., Skamarock, and O. Fuhrer, 2003: Numerical consistency of metric terms in terrain-following coordinates. Mon. Wea. Rev., 131, 1229–1239.

    Google Scholar 

  • Koop, C.G., and F.K. Browand, 1979: Instability and turbulence in a stratified fluid with shear. J. Fluid Mech., 93, 135–159.

    Google Scholar 

  • Lackmann, G.M., and J. Overland, 1989: Atmospheric structure and momentum balance during a gap-wind event in Shelikof Strait, Alaska. Mon. Wea. Rev., 117, 1817–1833.

    Google Scholar 

  • Lane, T.P., M.J. Reeder, B.R. Morton, and T.L. Clark, 2000: Observations and numerical modelling of mountain waves over the Southern Alps of New Zealand. Quart. J. Roy. Meteorol. Soc., 126, 2765–2788.

    Google Scholar 

  • Lester, P.F., and W.A. Fingerhut, 1974: Lower turbulent zones associated with mountain lee waves. J. Appl. Meteor., 13, 54–61.

    Google Scholar 

  • Li, J., and Y.-L. Chen, 1998: Barrier jets during TAMEX. Mon. Wea. Rev., 126, 959–971.

    Google Scholar 

  • Lilly, D.K., 1978: A severe downslope windstorm and aircraft turbulence event induced by a mountain wave. J. Atmos. Sci., 35, 5977.

    Google Scholar 

  • Lilly, D.K., and J.B. Klemp, 1979: Effects of terrain shape on non-linear hydrostatic mountain waves. J. Fluid Mech., 95, 241–261.

    Google Scholar 

  • Lilly, D.K., and E.J. Zipser, 1972: The Front Range windstorm of January 11 1972. Weatherwise, 25, 56–63.

    Google Scholar 

  • Liu, H., P. Olsson, and K. Volz, 2008: SAR observation and modeling of gap winds in the Prince William Sound of Alaska. Sensors, 8, 4894–4914.

    Google Scholar 

  • Loescher, K.A., G.S. Young, B.A. Colle, and N.S. Winstead, 2006: Climatology of barrier jets along the Alaskan Coast. Part I: Spatial and temporal distributions. Mon. Wea. Rev., 134, 437–453.

    Google Scholar 

  • Long, R.R., 1953: Some aspects of the flow of stratified fluids. I. A theoretical investigation. Tellus, 5, 42–57.

    Google Scholar 

  • Long, R.R., 1954: Some aspects of the flow of stratified fluids. II. Experiments with a two-fluid system. Tellus, 6, 97–115.

    Google Scholar 

  • Lorenz, E.M., 1969: The predictability of a flow which possesses many scales of motion. Tellus, 21, 289–307.

    Google Scholar 

  • Lyra, G. 1943. Theorie der stationären Leewellenstromung in freier Atmosphäre. Z. Angew. Math. Mech., 23, 1–128.

    Google Scholar 

  • Marwitz, J., and J. Toth, 1993: The Front range blizzard of 1990. Part I: Synoptic and mesoscale structure. Mon. Wea. Rev., 121, 402–415.

    Google Scholar 

  • Mashiko, W., 2008: Formation mechanism of a low-level jet during the passage of typhoon Ma-on (2004) over the Southern Kanto District. J. Meteorol. Soc. Japan. Ser. II, 86, 183–202, URL http://ci.nii.ac.jp/naid/110006633437/en/.

  • Mass, C.F., and M.D. Albright, 1985: A severe windstorm in the lee of the Cascade mountains of Washington State, Mon. Wea. Rev., 113, 1261–1281.

    Google Scholar 

  • Mass, C.F., and G.K. Ferber, 1990: Surface pressure perturbations produced by an isolated mesoscale topographic barrier. Part I: General characteristics and dynamics. Mon. Wea. Rev., 118, 2579–2596.

    Google Scholar 

  • Mass, C.F., and N.A. Bond, 1996: Coastally trapped wind reversals along the United States west coast during the warm season, Part II: Synoptic evolution. Mon. Wea. Rev., 124, 446–461.

    Google Scholar 

  • Mayr, G.J., and L. Armi, 2008: Föhn as a response to changing upstream and downstream air masses. Quart. J. Roy. Meteorol. Soc., 134, 1357–1369.

    Google Scholar 

  • Mayr, G.J., J. Vergeiner, and A. Gohm, 2002: An Automobile Platform for the Measurement of Foehn and Gap Flows. J. Atmos. Oceanic Tech., 19, 1545–1556.

    Google Scholar 

  • McInnes, K.L., and J.L. McBride, 1993: Australian southerly busters. Part I: Analysis of a numerically simulated case-study. Mon. Wea. Rev., 121, 1904–1920.

    Google Scholar 

  • Mercer, A.E., M.B. Richman, and H.B. Bluestein, 2008: Statistical modeling of downslope windstorms in Boulder, Colorado. Wea. Forecasting, 23, 1176–1194.

    Google Scholar 

  • Miranda, P.M.A. and I.N. James, 1992: Nonlinear three-dimensional effects on gravity wave drag: Splitting flow and breaking waves. Quart. J. Roy. Meteor. Soc., 118, 1057–1081.

    Google Scholar 

  • Mobbs, S., S. Vosper, P. Sheridan, R. Cardoso, R. Burton, S. Arnold, M. Hill, V. Horlacher, and A. Gadian, 2005: Observations of downslope winds and rotors in the Falkland Islands. Quart. J. Roy. Meteorol. Soc., 131, 329–351.

    Google Scholar 

  • Mohorovičić, A. 1889: Interessante Wolkenbildung über der Bucht von Buccari (with a comment from the editor J. Hann). Meteor. Z., 24, 56–58.

    Google Scholar 

  • Müller, H., R. Reiter, and R. Sládkovič, 1984: Die vertikale windstruktur beim merkur-schwerpunkt ’tagesperiodische windsysteme’ aufgrund von aerologischen messungen im inntal und im rosenheimer becken (engl.: Vertical structure of the diurnal wind system within the inn valley and the adjacent plain: results from aerological soundings during the merkur campaign). Arch. Met. Geophys. Biokl. B, 33, 359–372.

    Google Scholar 

  • Nance, L. B., and B. R. Colman, 2000: Evaluating the use of a nonlinear two-dimensional model in downslope windstorm forecasts. Wea. Forecasting, 15, 715–729.

    Google Scholar 

  • Nappo, C. J. 2002: An introduction to atmospheric gravity waves. Academic Press, 279 pp.

    Google Scholar 

  • Neiman, P.J., R.M. Hardesty, M.A. Shapiro and R.E. Cupp, 1988: Doppler lidar observations of a downslope windstorm. Mon. Wea. Rev., 116, 2265–2275.

    Google Scholar 

  • Neiman, P.J., F.M. Ralph, A.B. White, D.D. Parrish, J.S. Holloway, and D.L. Bartels, 2006: A multiwinter analysis of channeled flow through a prominent gap along the northern California coast during CALJET and PACJET. Mon. Wea. Rev., 134, 1815–1841.

    Google Scholar 

  • Nuss, W.A., J. Bane, W. Thompson, C. Dorman, M. Ralph, R. Rotunno, J. Klemp, W. Skamarock, R. Samelson, A.Rogerson, C.J.C. Reason, P.L. Jackson, 2000: Coastally trapped wind reversals: A new level of understanding from the experiment on coastally trapped disturbances, Bull. Amer. Meteor. Soc., 81, 719–743.

    Google Scholar 

  • Ogura, Y., and N. Phillips, 1962: Scale analysis for deep and shallow convection in the atmosphere. J. Atmos. Sci., 19, 173–179.

    Google Scholar 

  • Økland, H., 1990: The dynamics of coastal troughs and coastal fronts. Tellus, 42A, 444–462.

    Google Scholar 

  • Ólafsson, H., and P. Bougeault, 1996: Nonlinear flow past an elliptic mountain ridge. J. Atmos. Sci., 53, 24652489.

    Google Scholar 

  • Ólafsson, H., and P. Bougeault, 1997: The effect of rotation and surface friction on orographic drag. J. Atmos. Sci., 54, 193210.

    Google Scholar 

  • Olson, J.B., B. Colle, N. Bond, and N. Winstead, 2007: A comparison of two coastal battier jet events along the southeast Alaskan Coast during the SARJET field experiment. Mon. Wea. Rev., 135, 3642–3663.

    Google Scholar 

  • Olson, J.B., and B. A. Colle, 2009: Three-dimensional idealized simulations of barrier jets along the southeast coast of Alaska, Mon. Wea. Rev., 137, 391–413.

    Google Scholar 

  • Orlić, M., M. Kuzmić, and Z. Pasarić, 1994: Response of the Adriatic Sea to the bora and sirocco forcing. Continent. Shelf Res., 14, 91–116.

    Google Scholar 

  • Orlić, M., V. Dadić, B. Grbec, N. Leder, A. Marki, F. Matić, H. Mihanović, G. Beg Paklar, M. Pasarić, Z. Pasarić, and I. Vilibić, 2006: Wintertime buoyancy forcing, circulation systems produced in the Adriatic. J. Geophys. Res. Oceans, 111, C03S07.

    Google Scholar 

  • Overland, J.E., 1984: Scale analysis of marine winds in straits and along mountainous coasts. Mon. Wea. Rev., 112, 2530–2534.

    Google Scholar 

  • Overland, J.E., and N.A. Bond, 1993: The influence of coastal orography: The Yakutat storm. Mon. Wea. Rev., 121, 1388–1397.

    Google Scholar 

  • Overland, J.E., N.A. Bond, 1995: Observations and scale analysis of coastal wind jets. Mon. Wea. Rev., 123, 2934–2941.

    Google Scholar 

  • Pan, F., and R.B. Smith, 1999: Gap winds and wakes: SAR Observations and numerical simulations. J. Atmos. Sci., 56, 905–923.

    Google Scholar 

  • Parish, T.R., 1982: Barrier winds along the Sierra Nevada Mountains. J. Appl. Meteor., 21, 925–930.

    Google Scholar 

  • Parish, T.R., 1983: The influence of the Antarctic peninsula on the wind-field over the western Weddell Sea. J. Geophys. Res., 88, 2684–2692.

    Google Scholar 

  • Peltier, W.R., and T.L. Clark, 1979: the evolution and stability of finite-amplitude mountain waves. Part II: Surface wave drag and severe downslope windstorms. J. Atmos. Sci., 36, 1498–1529.

    Google Scholar 

  • Peltier, W.R., and T.L. Clark, 1983: Nonlinear mountain waves in two and three spatial dimensions. Quart. J. Roy. Meteor. Soc., 109, 527–548.

    Google Scholar 

  • Peltier, W.R., and J.F. Scinocca, 1990: The origin of severe downslope windstorm pulsations. J. Atmos. Sci., 47, 2853–2870.

    Google Scholar 

  • Peng, M.S., and W.T. Thompson, 2003: Some aspects of the effect of surface friction on flows over mountains. Quart. J. Roy. Meteorol. Soc., 129, 2527–2557.

    Google Scholar 

  • Petersen, G.N., J.E. Kristjánsson, and H. Ólafsson, 2003: The effect of upstream wind direction on atmospheric flow in the vicinity of a large mountain. Quart. J. Roy. Meteorol. Soc., 131, 11131128.

    Google Scholar 

  • Pettre, P., 1982: On the problem of violent valley winds. J. Atmos. Sci., 39: 542–554.

    Google Scholar 

  • Pierrehumbert, R.T., and B. Wyman, 1985: Upstream effects of mesoscale mountains. J. Atmos. Sci., 42, 977–1003.

    Google Scholar 

  • Prandtl, L. 1942: Führer durch die Strömungslehre. Friedr. Vieweg & Sohn, Braunschweig, 3rd edn.

    Google Scholar 

  • Queney, P. 1948: The problem of airflow over mountains: A summary of theoretical studies. Bull. Amer. Meteor. Soc., 29, 16–26.

    Google Scholar 

  • Raphael, M.N., 2003: The Santa Ana winds of California. Earth Interactions, 7(8), 13 pp.

    Google Scholar 

  • Reason, C.J.C., D.G. Steyn, 1992: The dynamics of coastally trapped mesoscale ridges in the lower atmosphere, J. Atmos. Sci., 49, 1677–1692.

    Google Scholar 

  • Reason, C.J.C., K. Tory, P.L. Jackson, 2001: A model investigation of the dynamics of a Coastally Trapped Disturbance. J. Atmos. Sci., 58(14), 1892–1906.

    Google Scholar 

  • Reed, R.J., 1981: A case of a bora-like windstorm in western Washington. Mon. Wea. Rev., 109, 2383–2393.

    Google Scholar 

  • Reinecke, P. A., and D. R. Durran, 2009a: Initial-condition sensitivities and the predictability of downslope winds. J. Atmos. Sci., 66, 3401–3418.

    Google Scholar 

  • Reinecke, P. A., Durran, D., 2009b: The Overamplification of Gravity Waves in Numerical Solutions to Flow over Topography. Mon. Wea. Rev., 137, 1533–1549.

    Google Scholar 

  • Reid, J.J., L.M. Leslie, 1999: Modeling coastally trapped wind surges over southeastern Australia. Part I: Timing and speed of propagation. Wea. Forecasting, 14, 53–66.

    Google Scholar 

  • Richard, E., P. Mascart, and E.C. Nickerson, 1989: On the role of surface friction in downslope windstorms. J Appl. Meteor., 28, 241–251.

    Google Scholar 

  • Rogers, D.P., C.E. Dorman, K. A. Edwards, I.M. Brooks, W.K Melville, S.D. Burk, W.T. Thompson, T. Holt, L. M Ström, M. Tjernström, B. Grisogono, J.M. Bane, W.A. Nuss, B. M. Morley and A.J. Schanot, 1998: Highlights of Coastal Waves, 1996, Bull. Amer. Meteor. Soc., 79, 1307–1326.

    Google Scholar 

  • Ross, A.N., and S.B. Vosper, 2003: Numerical simulations of stably stratified flow through a mountain pass. Quart. J. Roy. Meteor. Soc., 129, 97–115.

    Google Scholar 

  • Sawyer, J.S., 1960: Numerical calculation of the displacements of a stratified airstream crossing a ridge of small height. Quart. J. Roy. Meteor. Soc., 86, 326–345.

    Google Scholar 

  • Sawyer, J.S., 1962: Gravity waves in the atmosphere as a three-dimensional problem. Quart. J. Roy. Meteor. Soc., 88, 412–425.

    Google Scholar 

  • Schär, C., and R.B. Smith, 1993: Shallow-water flow past isolated topography. Part I: Vorticity production and wake formation. J. Atmos. Sci., 50, 1373–1400.

    Google Scholar 

  • Schär, C., and D.R. Durran, 1997: Vortex formation and vortex shedding in continuously stratified flows past isolated topography. J. Atmos. Sci., 54, 534554.

    Google Scholar 

  • Schär, C., D. Leuenberger, O. Fuhrer, D. Lüthi, and C. Girard, 2002: A new terrain-following vical coordinate formulation for atmospheric prediction models. Mon. Wea. Rev., 130, 2459–2480.

    Google Scholar 

  • Schultz, D.M., W.E. Bracken, L.F. Bosart, G.J. Hakim, M.A. Bedrick, M.J. Dickinson, K.R. Tyle, 1997: The 1993 superstorm cold surge: Frontal structure, gap flow, and tropical impact. Mon. Wea. Rev., 125, 5–39.

    Google Scholar 

  • Schwerdtfeger, W., 1974: Mountain barrier effect on the flow of stable air north of the Brooks Range. Proc. 24 th Alaskan Science Conf., Fairbanks, AL, Geophysical Institute, University of Alaska Fairbanks, 204–208.

    Google Scholar 

  • Schwerdtfeger, W., 1975: The effect of the Antarctic Peninsula on the temperature regime of the Weddell Sea. Mon. Wea. Rev., 103, 45–51.

    Google Scholar 

  • Schwerdtfeger, W., 1979: Meteorological aspects of the drift of ice from the Weddell Sea towards the mid-latitude westerlies. J. Geophys. Res., 84, 6321–6327.

    Google Scholar 

  • Scinocca, J.F., and W.R. Peltier, 1989: Pulsating downslope windstorms. J. Atmos. Sci., 46, 2885–2914.

    Google Scholar 

  • Scorer, R., 1952: Mountain-gap winds: A study of surface wind at Gibraltar. Quart. J. Roy. Meteor. Soc., 78, 53–61.

    Google Scholar 

  • Seibert, P., 1990: South foehn studies since the ALPEX experiment. Meteor. Atmos. Phys., 43, 91–103.

    Google Scholar 

  • Sharp, J., C.F. Mass, 2002: Columbia Gorge gap flow. Bull. Amer. Meteor. Soc., 83, 1757–1762.

    Google Scholar 

  • Sharp, J., C.F. Mass, 2004: Columbia Gorge Gap Winds: Their Climatological Influence and Synoptic Evolution. Wea. Forecasting, 19, 970–992.

    Google Scholar 

  • Sheridan, P.F., V. Horlacher, G.G. Rooney, P. Hignett, S.D. Mobbs, and S.B. Vosper, 2007: Lee waves and flow separation downwind of the Pennines. Quart. J. Roy. Meteor. Soc., 133, 1353–1369.

    Google Scholar 

  • Shutts, G.J., 1997: Operational lee wave forecasting. Meteorol. Appl. 4, 23–35.

    Google Scholar 

  • Smith, C.M. and E.D. Skyllingstad 2009: Investigation of upstream boundary layer influence on mountain wave breaking and lee wave rotors using a large-eddy simulation. J. Atmos. Sci., 66, 31473164.

    Google Scholar 

  • Smith, R.B., 1976: The generation of lee waves by the Blue Ridge. J. Atmos. Sci., 33, 507–519.

    Google Scholar 

  • Smith, R.B., 1977: The steepening of hydrostatic mountain waves. J. Atmos. Sci., 34, 1634–1654.

    Google Scholar 

  • Smith, R.B., 1979: The influence of mountains on the atmosphere. Adv. Geophys., Vol. 21, Academic Press, 87–230.

    Google Scholar 

  • Smith, R.B., 1980: Linear theory of stratified hydrostatic flow past an isolated mountain. Tellus, 32A, 348–364.

    Google Scholar 

  • Smith, R.B., 1985: On severe downslope winds. J. Atmos. Sci., 42, 2597–2603.

    Google Scholar 

  • Smith, R.B., 1987: Aerial observations of the Yugoslavian bora. J. Atmos. Sci., 44, 269–297.

    Google Scholar 

  • Smith, R.B., 1989: Hydrostatic airflow over mountains. Adv. Geophys., 31, 141.

    Google Scholar 

  • Smith, S.A., 2004: Observations and simulations of the 8 November 1999 MAP mountain wave case. Quart. J. Roy. Meteor. Soc., 130, 1305–1326.

    Google Scholar 

  • Smith, S.A., and A.S. Broad, 2003: Horizontal and temporal variability of mountain waves over Mont Blanc. Quart. J. Roy. Meteor. Soc., 129, 2195–2216.

    Google Scholar 

  • Smith, R.B., A.C. Gleason, and P.A. Gluhosky, 1997: The wake of St Vincent. J. Atmos. Sci., 54, 606–623.

    Google Scholar 

  • Smith, R.B., and S. Grønås, 1993: Stagnation points and bifurcation in 3-D mountain air-flow. Tellus, 45A, 28–43.

    Google Scholar 

  • Smith, R.B., S. Skubis, J.D. Doyle, A.S. Broad, C. Kiemle, and H. Volkert, 2002: Mountain waves over Mont Blanc: Influence of a stagnant boundary layer, J. Atmos. Sci., 59, 2073–2092.

    Google Scholar 

  • Smith, R.B., and J. Sun, 1987: Generalized hydraulic solutions pertaining to severe downslope winds. J. Atmos. Sci., 44, 2934–2939.

    Google Scholar 

  • Smith, R.B., Jiang, Q. and Doyle, J.D. 2006. A theory of gravity wave absorption by boundary layers, J. Atmos. Sci., 63, 774–781.

    Google Scholar 

  • Smith, R.B., 2007: Interacting mountain waves and boundary layers. J. Atmos. Sci., 64, 594–607.

    Google Scholar 

  • Smith, R.B., J.D. Doyle, Q. Jiang, and S.A. Smith, 2007: Alpine gravity waves: Lessons from MAP regarding mountain wave generation and breaking. Quart. J. Roy. Meteor. Soc., 133, 917936.

    Google Scholar 

  • Smolarkiewicz, P.K. and R. Rotunno, 1989: Low Froude number flow past three-dimensional obstacles. Part I: Baroclinically generated lee vortices. J. Atmos. Sci., 46, 1154–1164.

    Google Scholar 

  • Sprenger, M., and C. Schär, 2001: Rotational aspects of stratified gap flows and shallow foehn. Q. J. R. Meteorol. Soc., 127, 161–187.

    Google Scholar 

  • Steenburgh, W.J., D.M. Schultz, and B.A. Colle, 1998: The structure and evolution of gap outflow over the gulf of Tehuantepec, Mexico. Mon. Wea. Rev., 126, 2673–2691.

    Google Scholar 

  • Tutiš,V. and B. Ivančan-Picek, 1991: Pressure drag on the Dinaric Alps during the ALPEX SOP, Meteor. Atmos. Phys, 47, 73–81.

    Google Scholar 

  • Vergeiner, I., 1971: An operational linear lee wave model for arbitrary basic flow and two-dimensional topography. Quart. J. Roy. Meteor. Soc., 97, 30–60.

    Google Scholar 

  • Volkert, H., C. Keil, C. Kiemle, G. Poberaj, J-P. Chaboureau, and E. Richard, 2003: Gravity waves over the eastern Alps: A synopsis of the 25 October 1999 event (IOP10) combining in situ and remote-sensing measurements with a high-resolution simulation. Quart. J. Roy. Meteor. Soc., 129, 777–797.

    Google Scholar 

  • Vosper, S.B., 2003: Development and testing of a high resolution mountain-wave forecasting system. Meteor. Appl., 10, 75–86.

    Google Scholar 

  • Vosper, S.B., 2004: Inversion effects on mountain lee waves. Quart. J. Roy. Meteor. Soc., 130, 1723–1748.

    Google Scholar 

  • Vosper, S.B., and A.R. Brown, 2007: The effect of small-scale hills on orographic drag. Quart. J. Roy. Meteor. Soc., 133, 1345–1352.

    Google Scholar 

  • Vosper, S.B. and S.D. Mobbs, 1996: Lee waves over the English Lake District, Quart. J. Roy. Meteor. Soc., 122, 1283–1305.

    Google Scholar 

  • Vosper, S.B., P.F. Sheridan, and A.R. Brown, 2006: Flow separation and rotor formation beneath two-dimensional trapped lee waves. Quart. J. Roy. Meteor. Soc., 132, 2415–2438.

    Google Scholar 

  • Winstead, N.S., B. Colle, N. Bond, G. Young, J. Olson, K. Loescher, F. Monaldo, D. Thompson, and W. Pichel, 2006: Using SAR remote sensing, field observations, and models to better understand coastal flows in the Gulf of Alaska, Bull. Amer. Meteor. Soc., 87, 787–800.

    Google Scholar 

  • Wood I.R., 1968: Selective withdrawal from a stably stratified fluid. J. Fluid Mech. 32: 209–223.

    Google Scholar 

  • Yeh, H.-C., and Y.-L. Chen, 2003: Numerical simulations of the barrier jet over northwestern Taiwan during the mei-yu season. Mon. Wea. Rev., 131, 1396–1407.

    Google Scholar 

  • Yoshino, M.M., 1972: An annotated bibliography on bora. Climatol. Notes, 10, 1–22.

    Google Scholar 

  • Yoshino, M.M., 1976: Bora studies: A historical review and problems today. In Local Wind Bora, M.M. Yoshino Ed., 3–18.

    Google Scholar 

  • Yu, C.-K., and B.F. Smull, 2000: Airborne Doppler observations of a landfalling cold front upstream of a steep coastal orography. Mon. Wea. Rev., 128, 1577–1603.

    Google Scholar 

  • Žagar, M. and J. Rakovec, 1999: Small scale surface wind prediction using dynamical adaptation. Tellus, 51A, 489–504.

    Google Scholar 

  • Zängl, G., 2002a: Idealized numerical simulations of shallow föhn. Quart. J. Roy. Meteor. Soc., 128, 431–450.

    Google Scholar 

  • Zängl, G., 2002b: An Improved Method for Computing Horizontal Diffusion in a Sigma-Coordinate Model and Its Application to Simulations over Mountainous Topography. Mon. Wea. Rev., 130, 1423–1432.

    Google Scholar 

  • Zängl, G., 2002c: Stratified flow over a mountain with a gap: Linear theory and numerical simulations. Q. J. R. Meteor. Soc., 128, 927–949.

    Google Scholar 

  • Zängl, G., 2003: Deep and shallow south foehn in the region of Innsbruck: Typical features and semi-idealized numerical simulations. Meteor. Atmos. Phys., 83, 237–262.

    Google Scholar 

  • Zängl, G., 2004: A reexamination of the valley wind system in the Alpine Inn Valley with numerical simulations. Meteor. Atmos. Phys., 87, 241–256.

    Google Scholar 

  • Zängl, G., 2006: North foehn in the Austrian Inn valley: A case study and idealized numerical simulations. Meteor. Atmos. Phys., 91, 85–105.

    Google Scholar 

  • Zängl, G., A. Gohm, and G. Geier, 2004: South foehn in the Wipp Valley – Innsbruck region: Numerical simulations of the 24 October 1999 case (MAP-IOP 10). Meteor. Atmos. Phys., 86, 213–243.

    Google Scholar 

  • Zängl, G., A. Gohm, and F. Obleitner, 2008: The impact of the PBL scheme and the vertical distribution of model layers on simulations of Alpine foehn. Meteor. Atmos. Phys., 99, 105–128.

    Google Scholar 

  • Zecchetto, S., and C. Cappa, 2001: The spatial structure of the Mediterranean Sea winds as revealed by the ERS-1 scatterometer. Int. J. Remote Sensing, 22, 45–70.

    Google Scholar 

Download references

Acknowledgements

The authors thank the volume editors (Fotini Kapodes Chow, Stephen De Wekker and Bradley J. Snyder) for keeping us on track with their encouragement and organization, and for all of their efforts in bringing this book to completion. We also thank the three anonymous reviewers who provided many helpful comments that improved the chapter. We thank the authors and organizations who allowed us to use many of the figures in this chapter. The first author would like to acknowledge partial funding support of his research program from an NSERC Discovery Grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter L. Jackson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Jackson, P.L., Mayr, G., Vosper, S. (2013). Dynamically-Driven Winds. In: Chow, F., De Wekker, S., Snyder, B. (eds) Mountain Weather Research and Forecasting. Springer Atmospheric Sciences. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-4098-3_3

Download citation

Publish with us

Policies and ethics