Skip to main content

Cyanobacteria in Freshwater Benthic Environments

  • Chapter
  • First Online:
Ecology of Cyanobacteria II

Summary

Cyanobacteria are widespread in freshwater benthic environments, which include wetlands, lake littoral zones, streams and rivers. This chapter outlines the major constraints on cyanobacteria in these environments. Environmental and ecological factors that determine the diversity and biomass of cyanobacteria in the freshwater benthos include physical disturbance in the form of turbulent energy and wetting/drying cycles, temperature, light, nutrients and grazing. Nutrients are particularly important, because their concentrations can control cyanobacteria within and among benthic habitats, and cyanobacteria can reciprocally influence nutrient availability via nitrogen fixation and phosphorus co-precipitation by calcareous species. Top-down control via grazing may also help to explain diverse patterns of cyanobacterial abundance, because of the interactions which occur between the cyanobacteria and their predators. Anthropogenic activities sometimes have a pronounced effect on the environmental conditions that control cyanobacterial diversity and abundance in these habitats and the resulting functional changes in the communities can result in a loss of important ecosystem services provided by these organisms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abe SI, Kiso K, Katano O, Yamamoto S, Nagumo T, Tanaka J (2006) Impacts of differential consumption by the grazing fish, Plecoglossus altivelis, on the benthic algal composition in the Chikuma River, Japan. Phycol Res 54:94–98

    Article  Google Scholar 

  • Aboal M, Puig MA, Mateo P, Perona E (2002) Implications of cyanophyte toxicity on biological monitoring of calcareous streams in north-east Spain. J Appl Phycol 14:49–56

    Article  Google Scholar 

  • Anderson DM, Gilbert PM, Burkholder JM (2002) Harmful algal blooms and eutrophication: nutrient sources, composition, and consequences. Estuaries 25:704–726

    Article  Google Scholar 

  • Arango CP, Riley LA, Tank JL, Hall RO (2009) Herbivory by an invasive snail increases nitrogen fixation in a nitrogen-limited stream. Can J Fish Aquat Sci 66:1309–1317

    Article  CAS  Google Scholar 

  • Arp CD, Baker MA (2007) Discontinuities in stream nutrient uptake below lakes in mountain drainage networks. Limnol Oceanogr 52:1978–1990

    Article  CAS  Google Scholar 

  • Arp CD, Gooseff MN, Baker MA, Wurtsbaugh WA (2006) Surface-water hydrodynamics and regimes of a small mountain stream-lake ecosystem. J Hydrol 329:500–513

    Article  Google Scholar 

  • Arp CD, Schmidt JC, Baker MA, Myers AK (2007) Stream geomorphology in a mountain lake district: hydraulic geometry, sediment sources and sinks, and downstream lake effects. Earth Surf Proces Land 32:525–543

    Article  Google Scholar 

  • Baker MA, de Guzman G, Ostermiller JD (2009) Differences in nitrate uptake among benthic algal assemblages in a mountain stream. J N Am Benthol Soc 28:24–33

    Article  Google Scholar 

  • Bebout BM, Garcia-Pichel F (1995) UV B-induced vertical migrations of cyanobacteria in a microbial mat. Appl Environ Microbiol 61:4215–4222

    PubMed  CAS  Google Scholar 

  • Benenati PL, Shannon JP, Blinn DW (1998) Dessication and recolonization of phytobenthos in a regulated desert river: Colorodo River at Lees Ferry, Arizona, USA. Regul River 14:519–532

    Google Scholar 

  • Biggs BJF, Goring DG, Nikora VI (1998) Subsidy and stress responses of stream periphyton to gradients in water velocity as a function of community growth form. J Phycol 34:598–607

    Article  Google Scholar 

  • Blenkinsopp SA, Lock MA (1994) The impact of storm-flow on river biofilm architecture. J Phycol 30:807–818

    Article  Google Scholar 

  • Bootsma HA, Hecky RE (1993) Conservation of the African Great Lakes: a limnological perspective. Conserv Biol 7:644–656

    Article  Google Scholar 

  • Borchardt MA (1996) Nutrients. In: Stevenson RJ, Bothwell ML, Lowe RL (eds) Algal ecology: freshwater benthic ecosystems. Academic, San Diego, pp 183–227, 753 pp

    Google Scholar 

  • Bourassa N, Cattaneo A (2000) Responses of a lake outlet community to light and nutrient manipulation: effects on periphyton and invertebrate biomass and composition. Freshw Biol 44:629–639

    Article  Google Scholar 

  • Bowden WB (1987) The biogeochemistry of nitrogen in freshwater wetlands. Biogeochemistry 4:313–348

    Article  CAS  Google Scholar 

  • Bowling LC, Steane MS, Tyler PA (1986) The spectral distribution and attenuation of underwater irradiance in Tasmanian inland waters. Freshw Biol 16:313–335

    Article  Google Scholar 

  • Brock EM (1960) Mutualism between the midge Cricotopus and the alga Nostoc. Ecology 41:474–483

    Article  Google Scholar 

  • Brock TD (1967) Relationship between standing crop and primary productivity along a hot spring thermal gradient. Ecology 48:566–571

    Article  Google Scholar 

  • Brown PD, Wurtsbaugh WA, Nydick KR (2008) Lakes and forests as determinants of downstream nutrient concentrations in small mountain watersheds. Arct Antarct Alp Res 40:462–469

    Article  Google Scholar 

  • Cairns J Jr (1956) Effects of increased temperatures on aquatic organisms. Ind Waste 1:150–152

    Google Scholar 

  • Carpenter SR, Lodge DM (1986) Effects of submersed macrophytes on ecosystem processes. Aquat Bot 26:341–370

    Article  Google Scholar 

  • Carrick HJ, Steinman AD (2001) Variation in periphyton biomass and species composition in Lake Okeechobee, Florida (USA): distribution of algal guilds along environmental gradients. Arch Hydrobiol 152:411–438

    Google Scholar 

  • Castenholz RW (1969) Thermophilic blue-green algae and the thermal environment. Bacteriol Rev 33:476–504

    PubMed  CAS  Google Scholar 

  • Castenholz RW (1973) Ecology of blue-green algae in hot springs. In: Carr NG, Whitton BA (eds) The biology of blue-green algae. Blackwell, Oxford, pp 379–414, 688 pp

    Google Scholar 

  • Choudhury ATMA, Kennedy IR (2004) Prospects and potentials for systems of biological nitrogen fixation in sustainable rice production. Biol Fertil Soil 39:219–227

    Article  Google Scholar 

  • Colón-Gaud C, Whiles MR, Kilham SS, Lips KR, Pringle CM, Connelly S, Peterson SD (2009) Assessing ecological responses to catastrophic amphibian declines: patterns of macroinvertebrate production and food web structure in upland Panamanian streams. Limnol Oceanogr 54:331–343

    Article  Google Scholar 

  • Connelly S, Pringle CM, Bixby RJ, Brenes R, Whiles MR, Lips KR, Kilham S, Huryn AD (2008) Changes in stream primary producer communities resulting from large-scale catastrophic amphibian declines: can small-scale experiments predict effects of tadpole loss? Ecosystems 11:1262–1276

    Article  Google Scholar 

  • Corkran JL, Wickstrom CE (1987) Diel patterns of nitrogenase activity associated with macrophytes in a eutrophic lake. Aquat Bot 28:341–352

    Article  CAS  Google Scholar 

  • Cotner JB, Kenning J, Scott JT (2009) The microbial role in littoral zone biogeochemical processes: why Wetzel was right. Verh Int Ver Limnol 30:981–984

    CAS  Google Scholar 

  • Davies-Colley RJ, Hickey CW, Quinn JM, Ryan PA (1992) Effects of clay discharges on streams. 1. Optical properties and epilithon. Hydrobiologia 248:215–234

    Article  Google Scholar 

  • De-Lamonica-Freire EM, Heckman CW (1996) The seasonal succession of biotic communities in wetlands of the tropical wet and dry climate zone: III. The algal communities in the Pantanal of Matto Grasso, Brazil, with a comprehensive list of the known species and revision of two desmid taxa. Int Rev Ges Hydrobiol 81:253–280

    Article  Google Scholar 

  • DeNicola DM (1996) Periphyton responses to temperature at different ecological levels. In: Stevenson RJ, Bothwell ML, Lowe RL (eds) Algal ecology: freshwater benthic ecosystems. Academic, San Diego, pp 149–181, 753 pp

    Google Scholar 

  • Dobermann A, White PF (1999) Strategies for nutrient management in irrigated and rainfed lowland rice systems. Nutr Cycl Agroecosyst 53:1–18

    Article  Google Scholar 

  • Dodds WK (1989) Photosynthesis of two morphologies of Nostoc parmelioides (Cyanobacteria) as related to current velocities and diffusion patterns. J Phycol 25:258–262

    Article  Google Scholar 

  • Dodds WK (1997) Distribution of runoff and rivers related to vegetative characteristics, latitude, and slope: a global perspective. J N Am Benthol Soc 16:162–168

    Article  Google Scholar 

  • Dodds WK, Castenholz RW (1987) Effects of grazing and light on the growth of Nostoc pruniforme (Cyanobacteria). Br Phycol J 23:219–227

    Google Scholar 

  • Dodds WK, Castenholz RW (1988a) The biological effects of nitrate fertilization and water replacement in an oligotrophic cold water pond. Hydrobiologia 162:141–146

    Article  CAS  Google Scholar 

  • Dodds WK, Castenholz RW (1988b) The nitrogen budget of an oligotro­phic cold water pond. Arch Hydrobiol Suppl 79:343–362

    CAS  Google Scholar 

  • Dodds WK, Marra JL (1989) Behaviors of the midge, Cricotopus (Diptera: Chironomidae) related to mutualism with Nostoc par­melioides (Cyanobacteria). Aquat Insect 11:201–208

    Article  Google Scholar 

  • Dodds WK, Gudder DA, Mollenhauer D (1995) The ecology of Nostoc. J Phycol 31:2–18

    Article  CAS  Google Scholar 

  • Dodds WK, Biggs BJF, Lowe RL (1999) Photosynthesis-irradiance patterns in benthic microalgae: variations as a function of assemblage thickness and community structure. J Phycol 35:42–53

    Article  Google Scholar 

  • Douglas B (1958) The ecology of the attached diatoms and other algae in a small stony stream. J Ecol 46:295–322

    Article  Google Scholar 

  • Douterelo I, Perona E, Mateo P (2004) Use of cyanobacteria to assess water quality in running waters. Environ Pollut 127:377–384

    Article  PubMed  CAS  Google Scholar 

  • Downing JA, Prairie YT, Cole JJ, Duarte CM, Tranvik LJ, Striegel RG, McDowell WH, Kortelainen P, Caraco NF, Melack JM, Middelburg JJ (2006) Global abundance and size distribution of lakes, ponds, and impoundments. Limnol Oceanogr 51:2388–2397

    Article  Google Scholar 

  • Doyle RD, Fisher TR (1994) Nitrogen fixation by periphyton and plankton on the Amazon floodplain at Lake Calado. Biogeochemistry 26:41–66

    Article  Google Scholar 

  • Dudley TL, D’Antonio CM (1991) The effects of substrate texture, grazing, and disturbance on macroalgal establishment in streams. Ecology 72:297–309

    Article  Google Scholar 

  • Duncan SW, Blinn DW (1989) Importance of physical variables on the seasonal dynamics of epilithic algae in a highly shaded canyon stream. J Phycol 25:455–461

    Article  Google Scholar 

  • Durako MJ, Medlyn RA, Moffler MD (1982) Particulate matter resuspension via metabolically produced gas bubbles from benthic estuarine microalgal communities. Limnol Oceanogr 27:752–756

    Article  Google Scholar 

  • Elser JJ, Bracken MES, Cleland EA, Gruner DS, Harpole WS, Hillebrand H, Ngai JT, Seabloom EW, Shurin JB, Smith JE (2007) Global analysis of nitrogen and phosphorus limitation of primary producers in freshwater, marine, and terrestrial ecosystems. Ecol Lett 10:1135–1142

    Article  PubMed  Google Scholar 

  • Elwood JW, Nelson DL (1972) Periphyton production and grazing rates in a stream measured with a 32P material balance method. Oikos 23:295–303

    Article  Google Scholar 

  • Elwood JW, Newbold JD, Trimble AF, Stark RW (1981) The limiting role of phosphorus in a woodland stream ecosystem: effects of P enrichment on leaf decomposition and primary producers. Ecology 62:146–158

    Article  CAS  Google Scholar 

  • Engle DL, Melack JM (1990) Floating meadow epiphyton: biological and chemical features of epiphytic material in an Amazon floodplain lake. Freshw Biol 22:479–494

    Article  Google Scholar 

  • Engle DL, Melack JM (1993) Consequences of riverine flooding for seston and the periphyton of floating meadows in an Amazon floodplain lake. Limnol Oceanogr 38:1500–1520

    Article  CAS  Google Scholar 

  • Enrich-Prast A, Esteves FA (1998) Diurnal variation of rates of denitrifica­tion and nitrogen fixation of periphyton associated with Oryza glumaepatula (Steud) in an Amazonian Lake. Hydrobiologia 368:189–192

    Article  CAS  Google Scholar 

  • Fee EJ (1979) A relation between lake morphometry and primary productivity and its use in interpreting whole-lake eutrophication experiments. Limnol Oceanogr 24:401–416

    Article  CAS  Google Scholar 

  • Feminella JW, Hawkins CP (1995) Interactions between stream herbivores and periphyton: a quantitative analysis of past experiments. J N Am Benthol Soc 14:465–509

    Article  Google Scholar 

  • Fenchel T (1998a) Formation of laminated cyanobacterial mats in the absence of benthic fauna. Aquat Microb Ecol 14:235–240

    Article  Google Scholar 

  • Fenchel T (1998b) Artificial cyanobacterial mats: structure and composition of the biota. Aquat Microb Ecol 14:241–251

    Article  Google Scholar 

  • Fenchel T (1998c) Artificial cyanobacterial mats: cycling of C, O, and S. Aquat Microb Ecol 14:253–259

    Article  Google Scholar 

  • Finlay JC, Hood JM, Limm MP, Power ME, Schade JD, Welter JR (2011) Light-mediate thresholds in stream-water nutrient composition in a river network. Ecology 92:140–150

    Google Scholar 

  • Findlay DL, Hecky RE, Hendzel LL, Stainton MP, Regehr GW (1994) Relationship between N2 fixation and heterocyst abundance and its relevance to the nitrogen budget in Lake 227. Can J Fish Aquat Sci 51:2254–2266

    Article  CAS  Google Scholar 

  • Finke LR, Seeley HW (1978) Nitrogen fixation (acetylene reduction) by epiphytes of freshwater macrophytes. Appl Environ Microbiol 36:129–138

    PubMed  CAS  Google Scholar 

  • Fisher SG (1986) Structure and dynamics of desert streams. In: Whitford WG (ed) Pattern and process in desert ecosystems. University of New Mexico Press, Albuquerque, pp 119–139, 139 pp

    Google Scholar 

  • Fisher SG (2006) Stream ecosystems of the western United States. In: Cushing CE, Cummins KW, Minshall GW (eds) River and stream ecosystems of the world. University of California Press, Berkeley, pp 61–87, 817 pp

    Google Scholar 

  • Fisher SG, Gray LJ, Grimm DB, Busch DE (1982) Temporal succession in a desert stream ecosystem following flash flooding. Ecol Monogr 52:93–110

    Article  CAS  Google Scholar 

  • Fisher SG, Grimm NB, Martí E, Holmes RM, Jones JB (1998) Material spiraling in stream corridors: a telescoping ecosystem model. Ecosystems 1:19–34

    Article  CAS  Google Scholar 

  • Flecker AS (1992) Fish trophic guilds and the structure of a tropical stream: weak direct vs. strong indirect effects. Ecology 73:927–940

    Article  Google Scholar 

  • Flecker AS (1996) Ecosystem engineering by a dominant detritivore in a diverse tropical stream. Ecology 77:1845–1854

    Article  Google Scholar 

  • Flecker AS, Taylor BW (2004) Tropical fishes as biological bulldozers: density effects on resource heterogeneity and species diversity. Ecology 85:2267–2278

    Article  Google Scholar 

  • Flecker AS, Feifarek BP, Taylor BW (1999) Ecosystem engineering by a tropical tadpole: density-dependent effects on habitat structure and larval growth rates. Copeia 1999:495–500

    Article  Google Scholar 

  • Flecker AS, Taylor BW, Bernhardt ES, Hood JM, Cornwell WK, Cassatt SR, Vanni MJ, Altman NS (2002) Interactions between herbivorous fishes and limiting nutrients in a tropical stream ecosystem. Ecology 83:1831–1844

    Google Scholar 

  • Fleming-Singer MS, Horne AJ (2006) Balancing wildlife needs and nitrate removal in constructed wetlands: the case of the Irvin Ranch Water District’s San Joaquin Wildlife Sanctuary. Ecol Eng 26:147–166

    Article  Google Scholar 

  • Francoeur SN, Biggs BJF (2006) Short-term effects of elevated velocity and sediment abrasion on benthic algal communities. Hydrobiologia 561:59–69

    Article  Google Scholar 

  • Gaiser EE, Scinto LJ, Richards JH, Jayachandran K, Childers DL, Trexler JC, Jones RD (2004) Phosphorus in periphyton mats provides the best metric for detecting low-level P enrichment in an oligotrophic wetland. Water Res 38:507–516

    Article  PubMed  CAS  Google Scholar 

  • Gaiser EE, Childers DL, Jones RD, Richards JH, Scinto LJ, Trexler JC (2006) Periphyton response to eutrophication in the Florida Everglades: cross-systems patterns of structural and compositional change. Limnol Oceanogr 51:617–630

    Article  CAS  Google Scholar 

  • Gelwick FP, Matthews WJ (1992) Effects of an algivorous minnow on temperate stream ecosystem properties. Ecology 73:1630–1645

    Article  Google Scholar 

  • Gettel GM, Giblin AE, Howarth RM (2007) The effects of grazing by the snail, Limnaea elodes, on benthic N2 fixation and primary production in oligotrophic, arctic lakes. Limnol Oceanogr 52:2398–2409

    Article  CAS  Google Scholar 

  • Ghosh TK, Saha KC (1993) Effects of inoculation with N2-fixing cyanobacteria on the nitrogenase activity of soil and rhizosphere of wetland rice. Biol Fertil Soil 16:16–20

    Article  CAS  Google Scholar 

  • Gleason PJ, Spackman W (1974) Calcareous periphyton and water chemistry in the Everglades. In: Gleason PJ (ed) Environments of South Florida: present and past. Miami Geological Society, Miami, pp 146–181

    Google Scholar 

  • Gottlieb A, Richards J, Gaiser E (2005) Effects of desiccation duration on the community structure and nutrient retention of short and long-hydroperiod Everglades periphyton mats. Aquat Bot 82:99–112

    Article  Google Scholar 

  • Gottlieb A, Richards JH, Gaiser EE (2006) Comparative study of periphyton community structure in long and short-hydroperiod Everglades marshes. Hydrobiologia 569:195–207

    Article  CAS  Google Scholar 

  • Grimm NB (1994) Disturbance, succession and ecosystem processes in streams: a case study from the desert. In: Giller PS, Hildrew AG, Rafaelli DG (eds) Aquatic ecology: scale, pattern and process. Blackwell Scientific, Oxford, pp 93–112, 649 pp

    Google Scholar 

  • Grimm NB, Fisher SC (1986) Nitrogen limitation in a Sonoran Desert stream. J N Am Benthol Soc 5:2–15

    Article  Google Scholar 

  • Grimm NB, Fisher SC (1989) Stability of periphyton and macroinvertebrates to disturbance by flash floods in a desert stream. J N Am Benthol Soc 8:293–307

    Article  Google Scholar 

  • Grimm NB, Fisher SC (1992) Responses of arid-land streams to changing climate. In: Firth P, Fisher SG (eds) Global climate change and freshwater ecosystems. Springer, New York, pp 211–233, 321 pp

    Chapter  Google Scholar 

  • Grimm NB, Petrone KC (1997) Nitrogen fixation in a desert stream ecosystem. Biogeochemistry 37:33–61

    Article  CAS  Google Scholar 

  • Grimshaw HJ, Rosen M, Swift DR, Rodberg K, Noel JM (1993) Marsh phosphorus concentrations, phosphorus content and species composition of Everglades periphyton communities. Arch Hydrobiol 128:257–276

    CAS  Google Scholar 

  • Hagerthey SE, Kerfoot WC (1998) Groundwater flow influences the biomass and nutrient ratios of epibenthic algae in a north temperate seepage lake. Limnol Oceanogr 43:1227–1242

    Article  CAS  Google Scholar 

  • Hagerthey SE, Kerfoot WC (2005) Spatial variation in groundwater-related resource supply influences freshwater benthic algal assemblage composition. J N Am Benthol Soc 24:807–819

    Article  Google Scholar 

  • Hagerthey SE, Newman S, Rutchey K, Smith EP, Godin J (2008) Multiple regime shifts in a subtropical peatland: community-specific thresholds to eutrophication. Ecol Monogr 78:547–565

    Article  Google Scholar 

  • Hansson LA (1988) Effects of competitive interactions on the biomass development of planktonic and periphytic algae in lakes. Limnol Oceanogr 33:121–128

    Article  CAS  Google Scholar 

  • Hashem MA (2001) Problems and prospects of cyanobacterial biofertilizer for rice cultivation. Aust J Plant Physiol 28:881–888

    Google Scholar 

  • Havens KE, East TL, Meeker RH, Davis WP, Steinman AB (1996) Phytoplakton and periphyton responses to in-situ experimental nutrient enrichment in a shallow subtropical lake. J Plankton Res 18:551–566

    Article  Google Scholar 

  • Havens KE, East TL, Rodusky AJ, Sharfstein B (1999a) Littoral peri­phyton responses to nitrogen and phosphorus: and experimental study in a subtropical lake. Aquat Bot 63:267–290

    Article  Google Scholar 

  • Havens KE, East TL, Hwang SJ, Rodusky AJ, Sharfstein B, Steinman AB (1999b) Algal responses to experimental nutrient addition in the littoral community of a subtropical lake. Freshw Biol 42:329–344

    Article  CAS  Google Scholar 

  • Henry JC, Fisher SG (2003) Spatial segregation of periphyton communities in a desert stream: causes and consequences for N cycling. J N Am Benthol Soc 22:511–527

    Article  Google Scholar 

  • Hickman M (1974) Effects of the discharge of thermal effluent from a power station on Lake Wabamun, Alberta, Canada – the epipelic and episamic algal communities. Hydrobologia 45:199–215

    Article  Google Scholar 

  • Hieber M, Robinson CT, Rushforth SR, Uehlinger U (2001) Algal communities associated with different alpine stream types. Arct Antarct Alp Res 33:447–456

    Article  Google Scholar 

  • Hieber M, Robinson CT, Uehlinger U, Ward JV (2002) Are Alpine lake outlets less harsh than other alpine streams. Arch Hydrobiol 154:199–223

    CAS  Google Scholar 

  • Higgins SN, Hecky RE, Taylor WD (2001) Epilithic nitrogen fixation in the rocky littoral zones of Lake Malawi, Africa. Limnol Oceanogr 46:976–982

    Article  CAS  Google Scholar 

  • Higgins SN, Kling HJ, Hecky RE, Taylor WD, Bootsma HA (2003) The community composition, distribution, and nutrient status of epilithic periphyton at five rocky littoral zones sites in Lake Malawi, Africa. J Gt Lakes Res 29:181–189

    Article  CAS  Google Scholar 

  • Hildebrand SF, Towers IL (1927) Food of trout in Fish Lake, Utah. Ecology 8:389–397

    Article  Google Scholar 

  • Hill WR, Boston HL (1991) Community development alters photosynthesis-irradiance relations in stream periphyton. Limnol Oceanogr 36:1375–1389

    Article  CAS  Google Scholar 

  • Hill WR, Knight AW (1987) Experimental analysis of the grazing interaction between and mayfly and stream algae. Ecology 68:1955–1965

    Article  Google Scholar 

  • Hill WR, Ryon MG, Schilling EM (1995) Light limitation in a stream ecosystem: responses by primary producers and consumers. Ecology 76:1297–1309

    Article  Google Scholar 

  • Hill WR, Mulholland PJ, Marzolf ER (2001) Stream ecosystem responses to forest leaf emergence in spring. Ecology 82:2306–2319

    Article  Google Scholar 

  • Holomuzki JR, Biggs BJF (2006) Food limitation affects algivory and grazer performance for New Zealand stream macroinvertebrates. Hydrobiologia 561:83–94

    Article  Google Scholar 

  • Horne AJ (1975) Algal nitrogen fixation in California streams: diel cycles and nocturnal fixation. Freshw Biol 5:471–477

    Article  Google Scholar 

  • Horne AJ, Carmiggelt CJW (1975) Algal nitrogen fixation in Californian streams: seasonal cycles. Freshw Biol 5:461–470

    Article  Google Scholar 

  • Howarth RW, Marino R, Lane J, Cole JJ (1988) Nitrogen fixation in freshwater, estuarine, and marine ecosystems. 1. Rates and importance. Limnol Oceanogr 33:669–687

    Article  CAS  Google Scholar 

  • Inglett PW, Reddy KR, McCormick PV (2004) Periphyton chemistry and nitrogenase activity in a northern Everglades ecosystem. Biogeochemistry 67:213–233

    Article  CAS  Google Scholar 

  • Inglett PW, D’Angelo EM, Reddy KR, McCormick PV, Hagerthy SE (2009) Periphyton nitrogenase activity as an indicator of wetland eutrophication: spatial patterns and responses to phosphorus dosing in a northern Everglades ecosystem. Wetl Ecol Manage 17:131–144

    Article  CAS  Google Scholar 

  • Irisarri P, Gonnet S, Monza J (2001) Cyanobacteria in Uruguayan rice fields: diversity, nitrogen fixing ability, and tolerance to herbicide and combined nitrogen. J Biotechnol 91:95–103

    Article  PubMed  CAS  Google Scholar 

  • Irisarri P, Gonnet S, Deambrosi E, Monza J (2007) Cyanobacterial inoculation and nitrogen fertilization in rice. World J Microbiol Technol 23:237–242

    Article  Google Scholar 

  • Jasrotia P, Ogram A (2008) Diversity of nifH genotypes in floating periphyton mats along a nutrient gradient in the Florida Everglades. Curr Microbiol 56:563–568

    Article  PubMed  CAS  Google Scholar 

  • Jones JB, Fisher SG, Grimm NB (1995) Nitrification in the hyporheic zone of a desert stream ecosystem. J N Am Benthol Soc 14:249–258

    Article  Google Scholar 

  • Jørgensen BB, Cohen Y, Des Marais DJ (1987) Photosynthetic action spectra and adaptation to spectral light distribution in a benthic cyanobacterial mat. Appl Environ Microbiol 53:879–886

    PubMed  Google Scholar 

  • Kadlec RH, Wallace SD (2009) Treatment wetlands, 2nd edn. CRC Press, Boca Raton, 1025 pp

    Google Scholar 

  • Kannaiyan S, Aruna SJ, Kumari S, Hall DO (1997) Immobilized cyano­bacteria as a biofertilizer for rice crops. J Appl Phycol 9:167–174

    Article  Google Scholar 

  • Kehde PM, Wilhm JL (1972) The effects of grazing by snails on community structure of periphyton in laboratory streams. Am Midl Nat 87:8–24

    Article  Google Scholar 

  • Kennedy IR, Islam N (2001) The current and potential contribution of asymbiotic nitrogen fixation to nitrogen requirements on farms: a review. Aust J Exp Agric 41:447–457

    Article  CAS  Google Scholar 

  • Kern J, Darwich A (2003) The role of periphytic N2 fixation for stands of macrophytes in the whitewater floodplain (varzea). Amazoniana 17:361–375

    Google Scholar 

  • Komárek J, Komárková-Legnerová J (2007) Taxonomic evaluation of the cyanobacterial microflora from alkaline marshes of Northern Belize. 1. Phenotypic diversity of coccoid morphotypes. Nova Hedwig 84:65–111

    Article  Google Scholar 

  • Kratz TK, Webster KE, Bowser CJ, Macnuson JJ, Benson BJ (1997) The influence of landscape position on lakes in northern Wisconsin. Freshw Biol 37:209–217

    Article  Google Scholar 

  • Kullberg RG (1971) Algal distribution in six thermal spring effluents. Trans Am Microsc Soc 90:412–434

    Article  Google Scholar 

  • Kundu DK, Ladha JK (1995) Enhancing soil nitrogen use and biological nitrogen fixation in wetland rice. Exp Agric 31:261–277

    Article  CAS  Google Scholar 

  • Ladha JK, Reddy PM (2003) Nitrogen fixation in rice systems: state of knowledge and future prospects. Plant Soil 19:151–167

    Article  Google Scholar 

  • Lamberti GA, Resh VH (1985) Distribution of benthic algae and macroinvertebrates along a thermal stream gradient. Hydrobiologia 128:13–21

    Article  Google Scholar 

  • Lehner B, Döll P (2004) Development and validation of a global database of lakes, reservoirs and wetlands. J Hydrol 296:1–22

    Article  Google Scholar 

  • Levine SN, Schindler DW (1999) Influence of nitrogen to phosphorus supply ratios and physicochemical conditions on cyanobacteria and phytoplankton species composition in the Experimental Lakes Area, Canada. Can J Fish Aquat Sci 56:451–466

    Article  Google Scholar 

  • Liston SE, Trexler JC (2005) Spatiotemporal patterns in community structure of macroinvertebrates inhabiting calcareous periphyton mats. J N Am Benthol Soc 24:832–844

    Article  Google Scholar 

  • Livingstone D, Pentecost A, Whitton BA (1984) Diel variations in nitrogen and carbon dioxide fixation by the blue-green alga Rivularia in an upland stream. Phycologia 23:125–133

    Article  CAS  Google Scholar 

  • Loeb SL, Reuter JE (1981) The epilithic periphyton community: a five-lake comparative study of community productivity, nitrogen metabolism and depth-distribution of standing crop. Verh Int Ver Limnol 21:346–352

    CAS  Google Scholar 

  • Luttenton MR, Rada RG (1986) Effects of disturbance on epiphytic community architecture. J Phycol 22:320–326

    Article  Google Scholar 

  • Malmqvist B, Rundle S (2002) Threats to the running water ecosystems of the world. Environ Conserv 29:134–153

    Article  Google Scholar 

  • Mandal B, Vlek BLG, Mandal LN (1999) Beneficial effects of blue-green algae and Azolla, excluding supplying nitrogen, on wetland rice fields: a review. Biol Fertil Soil 28:329–342

    Article  CAS  Google Scholar 

  • Marcarelli AM, Wurtsbaugh WA (2006) Temperature and nutrient supply interact to control nitrogen fixation in oligotrophic streams: an experimental examination. Limnol Oceanogr 51:2278–2289

    Article  CAS  Google Scholar 

  • Marcarelli AM, Wurtsbaugh WA (2007) Effects of upstream lakes on nutrient limitation on periphytic biomass and nitrogen fixation in oligotrophic, subalpine streams. Freshw Biol 52:2211–2225

    Article  CAS  Google Scholar 

  • Marcarelli AM, Wurtsbaugh WA (2009) Nitrogen fixation varies spatially and seasonally in linked stream-lake ecosystems. Biogeochemistry 94:95–110

    Article  CAS  Google Scholar 

  • Marcarelli AM, Baker MA, Wurtsbaugh WA (2008) Is in-stream N2 fixation an important N source for benthic communities and stream ecosystems? J N Am Benthol Soc 27:186–211

    Article  Google Scholar 

  • Mayer PM, Galatowitsch SM (2001) Assessing integrity of restored prairie wetlands from species production-diversity relationships. Hydrobiologia 443:177–185

    Article  Google Scholar 

  • McCormick PV, O’Dell MB (1996) Quantifying periphyton responses to phosphorus in the Florida Everglades: a synoptic experimental approach. J N Am Benthol Soc 15:450–468

    Article  Google Scholar 

  • McCormick PV, Rawlick PS, Lurding K, Smith EP, Sklar FH (1996) Periphtyon-water quality relationships along a nutrient-gradient in the northern Florida Everglades. J N Am Benthol Soc 15:433–449

    Article  Google Scholar 

  • McCormick PV, Shuford RBE, Backus JG, Kennedy WC (1998) Spatial and seasonal patterns of periphyton biomass and productivity in the northern Everglades, Florida, USA. Hydrobiologia 362:185–208

    Article  Google Scholar 

  • McCormick PV, O’Dell MB, Shuford RBE, Backus JG, Kennedy WC (2001) Periphyton responses to experimental phosphorus enrichment in a subtropical wetland. Aquat Bot 71:119–131

    Article  CAS  Google Scholar 

  • McCormick PV, Newman S, Vilchek LW (2009) Landscape responses to wetland eutrophication: loss of slough habitat in the Florida Everglades, USA. Hydrobiologia 621:105–114

    Article  CAS  Google Scholar 

  • McDougal RL, Goldsborough LG, Hann BJ (1997) Responses of a prairie wetland to press and pulse additions of inorganic nitrogen and phosphorus: production by planktonic and benthic algae. Arch Hydrobiol 140:145–167

    CAS  Google Scholar 

  • McIntire CD (1966) Some effects of current velocity on periphyton communities in laboratory streams. Hydrobiologia 27:559–570

    Article  Google Scholar 

  • McIntyre PB, Michel E, Olsgard M (2006) Top-down and bottom-up controls on periphyton biomass and productivity in Lake Tanganyika. Limnol Oceanogr 51:1514–1523

    Article  CAS  Google Scholar 

  • Mitsch WJ, Gosselink JG (2000) Wetlands, 3rd edn. Wiley, New York, 920 pp

    Google Scholar 

  • Moeller RE, Roskoski JP (1978) Nitrogen-fixation in the littoral benthos of an oligotrophic lake. Hydrobiologia 60:13–16

    Article  CAS  Google Scholar 

  • Mosser JL, Brock TD (1976) Temperature optima for algae inhabiting cold mountain stream. Arct Antarct Alp Res 8:111–114

    Google Scholar 

  • Mulholland PJ (1992) Regulation of nutrient concentrations in a temperate forest stream: roles of upland, riparian, and instream processes. Limnol Oceanogr 37:1512–1526

    Article  CAS  Google Scholar 

  • Mulholland PJ (2004) The importance of in-stream uptake for regulating stream concentrations and outputs of N and P from a forested watershed: evidence from long-term chemistry records for Walker Branch Watershed. Biogeochemistry 70:403–426

    Article  CAS  Google Scholar 

  • Mulholland PJ, Rosemond AD (1992) Periphyton response to longi­tudinal nutrient depletion in a woodland stream: evidence of upstream-downstream linkage. J N Am Benthol Soc 11:405–419

    Article  Google Scholar 

  • Mulholland MR, Bronk DA, Capone DG (2004) Dinitrogen fixation and release of ammonium and dissolved organic nitrogen by Trichodesmium IMS101. Aquat Microb Ecol 37:85–94

    Article  Google Scholar 

  • Mulholland MR, Bernhardt PW, Heil CA, Bronk DA, O’Neil JM (2006) Nitrogen fixation and the release of fixed nitrogen by Trichodesmium spp. in the Gulf of Mexico. Limnol Oceanogr 51:1762–1776

    Article  CAS  Google Scholar 

  • Myers AK, Marcarelli AM, Arp CD, Baker MA, Wurtsbaugh WA (2007) Disruptions of stream sediment size and stability by lakes in mountain watersheds: potential effects on periphyton biomass. J N Am Benthol Soc 26:390–400

    Article  Google Scholar 

  • Neumann AC, Gebelein CD, Scoffin TP (1970) The composition, structure and erodability of subtidal mats, Abaco, Bahamas. J Sediment Petrol 40:274–297

    Google Scholar 

  • Newman S, McCormick PV, Backus JG (2003) Phosphatase activity as an early warning indicator of wetland eutrophication: problems and prospects. J Appl Phycol 15:45–59

    Article  CAS  Google Scholar 

  • Nolen SL, Wilhm J, Howick G (1985) Factors influencing inorganic turbidity in a Great Plains reservoir. Hydrobiologia 123:109–117

    Article  Google Scholar 

  • Norman RJ, Wilson CE, Slaton NA (2003) Soil fertilization and rice nutrition in US mechanized rice culture. In: Smith CW, Dilday RH (eds) Rice: origin, history, technology, and production. Wiley Sciences, Hoboken, pp 331–411

    Google Scholar 

  • O’Reilly C (2006) Seasonal dynamics of periphyton in a large tropical lake. Hydrobiologia 553:293–301

    Article  Google Scholar 

  • Patrick R (1974) Effects of abnormal temperatures on algal communities. In: Gibbons JW, Sharitz RR (eds) Thermal ecology: proceedings of a symposium held at Augusta, Georgia, 3–5 May 1973. US Atomic Energy Commission, Oak Ridge, pp 335–349, 670 pp

    Google Scholar 

  • Patrick R, Crum B, Coles J (1969) Temperature and manganese as determining factors in the presence of diatom or blue-green algal floras in streams. Proc Natl Acad Sci USA 64:472–478

    Article  PubMed  CAS  Google Scholar 

  • Perona E, Bonilla I, Mateo P (1998) Epilithic cyanobacteria communities and water quality: an alternative tool for monitoring eutrophication in the Alberche River (Spain). J Appl Phycol 10:183–191

    Article  Google Scholar 

  • Peterson CG (1996) Responses of benthic algal communities to natural physical disturbance. In: Stevenson RJ, Bothwell ML, Lowe RL (eds) Algal ecology: freshwater benthic ecosystems. Academic, San Diego, pp 375–402, 753 pp

    Google Scholar 

  • Peterson CG, Grimm NB (1992) Temporal variation in enrichment effects during periphyton succession in a nitrogen-limited desert stream ecosystem. J N Am Benthol Soc 11:20–36

    Article  Google Scholar 

  • Peterson CG, Hoagland KD, Stevenson RJ (1990) Timing of wave disturbance and the resistance and recovery of a freshwater epilithic microalgal community. J N Am Benthol Soc 9:54–67

    Article  Google Scholar 

  • Peterson CG, Weibel AC, Grimm NB, Fisher SG (1994) Mechanisms of benthic algal recovery following spates: comparison of simulated and natural events. Oecologia 98:280–290

    Article  Google Scholar 

  • Poff NL, Voelz NJ, Ward JV, Lee RE (1990) Algal colonization under four experimentally-controlled current regimes in a high mountain stream. J N Am Benthol Soc 9:303–318

    Article  Google Scholar 

  • Power ME (1984) The importance of sediment in the grazing ecology and size class interactions of an armored catfish, Ancistrus spinosus. Environ Biol Fish 10:173–181

    Article  Google Scholar 

  • Power ME (1990) Resource enhancement by indirect effects of grazers: armored catfish, algae, and sediment. Ecology 71:897–904

    Article  Google Scholar 

  • Power ME, Stewart AJ, Matthews WJ (1988) Grazer control of algae in an Ozark mountain stream: effects of short-term exclusion. Ecology 69:1894–1898

    Article  Google Scholar 

  • Power M, Lowe R, Furey P, Welter J, Limm M, Finlay J, Bode C, Chang S, Goodrich M, Sculley J (2009) Algal mats and insect emergence in rivers under Mediterranean climates: toward photogrammetric surveillance. Freshw Biol 54:2101–2115

    Article  CAS  Google Scholar 

  • Pringle C (1996) Atyid shrimps (Decapoda: Atyidae) influence the spatial heterogeneity of algal communities over different scales in tropical montane streams, Puerto Rico. Freshw Biol 35:125–140

    Article  Google Scholar 

  • Pringle CM, Hamazaki T (1997) Effects of fishes on algal response to storms in a tropical stream. Ecology 78:2432–2442

    Google Scholar 

  • Pringle CM, Hamazaki T (1998) The role of omnivory in a neotropical stream: separating diurnal and nocturnal effects. Ecology 79:269–280

    Article  Google Scholar 

  • Putz R (1997) Periphyton communities in Amazonian black- and whitewater habitats: community structure, biomass, and productivity. Aquat Sci 59:74–93

    Article  Google Scholar 

  • Ranvestel AW, Lips KR, Pringle CM, Whiles MR, Bixby RJ (2004) Neotropical tadpoles influence stream benthos: evidence for the ecological consequences of decline in amphibian populations. Freshw Biol 49:274–285

    Article  Google Scholar 

  • Reddy KR, DeLaune RD (2008) Biogeochemistry of wetlands: science and applications. CRC Press, Boca Raton, 774 pp

    Book  Google Scholar 

  • Rejmánková E (2001) Effect of experimental phosphorus enrichment on oligotrophic tropical marshes in Belize, Central America. Plant Soil 236:33–53

    Article  Google Scholar 

  • Rejmánková E, Komárková J (2000) A function of cyanobacterial mats in phosphorus-limited tropical wetlands. Hydrobiologia 431:135–153

    Article  Google Scholar 

  • Rejmánková E, Komárková J (2005) Response of cyanobacterial mats to nutrient and salinity changes. Aquat Bot 83:87–107

    Article  CAS  Google Scholar 

  • Rejmánková E, Pope KO, Post R, Maltby E (1996) Herbaceous wetlands of the Yucatan Peninsula: communities at extreme ends of environmental gradients. Int Rev Ges Hydrobiol 81:223–252

    Article  Google Scholar 

  • Rejmánková E, Komárek J, Komárková J (2004a) Cyanobacteria – a neglected component of biodiversity: patterns of species diversity of inland marshes of northern Belize (Central America). Divers Distrib 10:189–199

    Article  Google Scholar 

  • Rejmánková E, Komárková J, Rejmánek M (2004b) δ15N as an indicator of N2-fixation by cyanobacterial mats in tropical marshes. Biogeochemistry 67:353–368

    Article  Google Scholar 

  • Reuter JE, Axler RP (1992) Physiological characteristics of inorganic nitrogen uptake by spatially separate algal communities in a nitrogen-deficient lake. Freshw Biol 27:227–236

    Article  Google Scholar 

  • Reuter JE, Loeb SL, Goldman CR (1983) Nitrogen fixation in periphyton of oligotrophic Lake Tahoe. In: Wetzel RG (ed) Periphyton of freshwater ecosystems. Dr W. Junk Publishers, The Hague, pp 101–109, 359 pp

    Chapter  Google Scholar 

  • Reuter JE, Loeb SL, Axler RP, Carlton RG, Goldman CR (1985) Transformations of nitrogen following an epilimnetic nitrogen fertilization in Castle Lake, CA: 1. Epilithic periphyton responses. Arch Hydrobiol 102:425–433

    CAS  Google Scholar 

  • Reuter JE, Loeb SL, Goldman CR (1986) Inorganic nitrogen uptake by epilithic periphyton in a N-deficient lake. Limnol Oceanogr 31:149–160

    Article  CAS  Google Scholar 

  • Riber HH, Wetzel RG (1987) Boundary-layer and internal diffusion effects on phosphorus fluxes in lake periphyton. Limnol Oceanogr 32:1181–1194

    Article  CAS  Google Scholar 

  • Robarts RD, Zohary T (1984) Microcystic aeruginosa and underwater light attenuation in a hypereutrophic lake (Hartbeespoort Dam, South Africa). J Ecol 72:1001–1017

    Article  Google Scholar 

  • Roberts BJ, Mulholland PJ, Hill WR (2007) Multiple scales of temporal variability in ecosystem metabolism rates: results from 2 years of continuous monitoring in a forested headwater stream. Ecosystems 10:588–606

    Article  CAS  Google Scholar 

  • Robson BJ (2000) Role of residual biofilm in the recolonization of rocky intermittent streams by benthic algae. Mar Freshw Res 51:725–732

    Article  Google Scholar 

  • Robson BJ, Matthews TG, Lind PR, Thomas NA (2008) Pathways for algal recolonization in seasonally-flowing streams. Freshw Biol 53:2385–2401

    Article  Google Scholar 

  • Rodusky AJ, Steinman AD, East TL, Sharfstein B, Meeker RH (2001) Periphyton nutrient limitation and other growth-controlling factors in Lake Okeechobee, USA. Hydrobiologia 448:27–39

    Article  CAS  Google Scholar 

  • Roger PA (1995) Biological N2-fixation and its management in wetland rice cultivation. Fertil Res 42:261–276

    Article  CAS  Google Scholar 

  • Roger PA, Ladha JK (1992) Biological N2 fixation in wetland rice fields: estimation and contribution to nitrogen balance. Plant Soil 141:41–55

    Article  CAS  Google Scholar 

  • Romani AM, Sabater S (1997) Metabolism recovery of a stromatolitic biofilm after drought in a Mediterranean stream. Arch Hydrobiol 140:261–271

    CAS  Google Scholar 

  • Rosemond AD (1993) Interactions among irradiance, nutrients, and herbi­vores constrain a stream algal community. Oecologia 94:585–594

    Article  Google Scholar 

  • Rosemond AD (1994) Multiple factors limit seasonal variation in periphyton in a forest stream. J N Am Benthol Soc 13:333–344

    Article  Google Scholar 

  • Rosemond AD, Mulholland PJ, Elwood JW (1993) Top-down and bottom-up control of stream periphyton: effects of nutrients and herbivores. Ecology 74:1264–1280

    Article  Google Scholar 

  • Rosemond AD, Mulholland PJ, Brawley SH (2000) Seasonally shifting limitation of stream periphyton: response of algal populations and assemblage biomass and productivity to variation in light, nutrients and herbivores. Can J Fish Aquat Sci 57:66–75

    Article  Google Scholar 

  • Rott E, Cantonati M, Fureder L, Pfister P (2006) Benthic algae in high altitude streams of the Alps – a neglected component of the aquatic biota. Hydrobiologia 562:195–216

    Article  Google Scholar 

  • Schindler DW, Hesslein RH, Turner MA (1987) Exchange of nutrients between sediments and water after 15 years of experimental eutrophication. Can J Fish Aquat Sci 44:26–33

    Article  CAS  Google Scholar 

  • Scott JT, Doyle RD, Filstrup CT (2005) Periphyton nutrient limitation and nitrogen fixation potential along a wetland nutrient-depleation gradient. Wetlands 25:439–448

    Article  Google Scholar 

  • Scott JT, Doyle RD, Back JA, Dworkin SI (2007) The role of N2 fixation in alleviating N limitation in wetland metaphyton: enzymatic, isotopic, and elemental evidence. Biogeochemistry 84:207–218

    Article  CAS  Google Scholar 

  • Scott JT, McCarthy MJ, Gardner WS, Doyle RD (2008) Denitrification, dissimilatory nitrate reduction to ammonium, and nitrogen fixation along a nitrate concentration gradient in a created freshwater wetland. Biogeochemistry 87:99–111

    Article  CAS  Google Scholar 

  • Scott JT, McCarthy MJ (2010) Nitrogen fixation may not balance the nitrogen pool of lakes over timescales relevant to eutrophication management. Limnology and Oceanography 55:1265–1270

    Google Scholar 

  • Sheath RG, Cole KM (1992) Biogeography of stream macroalgae in North America. J Phycol 28:448–460

    Article  Google Scholar 

  • Simpson IC, Roger PA, Oficial R, Grant IF (1994) Effects of nitrogen fertilizer and pesticide management on floodwater ecology in a wetland ricefield. I. Experimental design and dynamics of photosynthetic aquatic biomass. Biol Fertil Soil 17:129–137

    Article  CAS  Google Scholar 

  • Sirova D, Vrba J, Rejmánková E (2006) Extracellular enzyme activities in benthic cyanobacterial mats: comparison between nutrient-enriched and control sites in marshes of northern Belize. Aquat Microb Ecol 44:11–20

    Article  Google Scholar 

  • Sivonen K (1996) Cyanobacterial toxins and toxin production. Phycologia 35(6 Suppl):12–25

    Article  Google Scholar 

  • Sperling JA, Hale GM (1973) Patterns of radiocarbon uptake by thermophilic blue-green alga under varying conditions of incubation. Limnol Oceanogr 18:658–666

    Article  Google Scholar 

  • Steinman AD (1992) Does an increase in irradiance influence periphyton in a heavily-grazed woodland stream? Oecologia 91:163–170

    Article  Google Scholar 

  • Steinman AD (1996) Effects of grazers on freshwater benthic algae. In: Stevenson RJ, Bothwell ML, Lowe RL (eds) Algal ecology: freshwater benthic ecosystems. Academic, San Diego, pp 341–373, 753 pp

    Google Scholar 

  • Stevenson RJ (1996a) An introduction to algal ecology in freshwater benthic habitats. In: Stevenson RJ, Bothwell ML, Lowe RL (eds) Algal ecology: freshwater benthic ecosystems. Academic, San Diego, pp 3–30, 753 pp

    Google Scholar 

  • Stevenson RJ (1996b) The stimulation and drag of current. In: Stevenson RJ, Bothwell ML, Lowe RL (eds) Algal ecology: freshwater benthic ecosystems. Academic, San Diego, pp 321–340, 753 pp

    Google Scholar 

  • Stevenson RJ, Stoermer EF (1981) Quantitative differences between benthic algal communities along a depth gradient in Lake Michigan. J Phycol 17:29–36

    Article  Google Scholar 

  • Stewart WDP (1970) Nitrogen fixation by blue-green algae in Yellowstone thermal areas. Phycologia 9:261–268

    Article  CAS  Google Scholar 

  • Tang EPY, Tremblay R, Vincent WF (1997) Cyanobacterial dominance of polar freshwater ecosystems: are high-latitude mat-formers adapted to low temperature? J Phycol 33:171–181

    Article  Google Scholar 

  • Taylor BW, Flecker AS, Hall RO (2006) Loss of a harvested fish species disrupts carbon flow in a diverse tropical river. Science 313:833–836

    Article  PubMed  CAS  Google Scholar 

  • Tilman D, Kiesling RL (1984) Freshwater algal ecology: taxonomic trade-offs in the temperature dependence of nutrient competitive abilities. In: Klug MJ, Reddy CA (eds) Current perspectives in microbial ecology. American Society for Microbiology, Washington, DC, pp 314–319, 710 pp

    Google Scholar 

  • Turicchia S, Ventura S, Komárková J, Komárek J (2009) Taxonomic evaluation of cyanobacterial microflora in alkaline marshes of northern Belize: diversity of oscillatorialean genera. Nova Hedwig 89:165–200

    Article  Google Scholar 

  • Uehlinger U (1991) Spatial and temporal variability of periphyton biomass in a pre-alpine river (Necker, Switzerland). Arch Hydrobiol 123:219–237

    Google Scholar 

  • Vadeboncoeur Y, Lodge DM, Carpenter SR (2001) Whole-lake fertilization effects on distribution of primary production between benthic and pelagic habitats. Ecology 82:1065–1077

    Article  Google Scholar 

  • Vadeboncoeur Y, Vander Zanden MJ, Lodge DM (2002) Putting the lake back together: reintegrating benthic pathways into lake food web models. Bioscience 52:44–54

    Article  Google Scholar 

  • Vadeboncoeur Y, Kalff J, Christoffersen K, Jeppesen E (2006) Substratum as a driver of variation in periphyton chlorophyll and productivity in lakes. J N Am Benthol Soc 25:379–392

    Article  Google Scholar 

  • Vadeboncoeur Y, Peterson G, Vander Zanden MJ, Kalff J (2008) Benthic algal production across lake size gradients: interactions among morphometry, nutrients and light. Ecology 89:2542–2552

    Article  PubMed  Google Scholar 

  • Valett HM, Fisher SG, Brimm NB, Camill P (1994) Vertical hydrologic exchange and ecological stability of a desert stream ecosystem. Ecology 75:548–560

    Article  Google Scholar 

  • Van Meter NN (1965) Some quantitative and qualitative aspects of periphyton in the Everglades. MS thesis, University of Miami, Coral Gables, FL, USA, 98 pp

    Google Scholar 

  • Vanni MJ (2002) Nutrient cycling by animals in freshwater ecosystem. Annu Rev Ecol Syst 33:341–370

    Article  Google Scholar 

  • Vincent WF (2004) Microbial ecosystems of Antarctica. Cambridge University Press, Cambridge, 304 pp

    Google Scholar 

  • Vincent WF, Howard-Williams C (1986) Antarctic stream ecosystems: physiological ecology of a blue-green algal epilithon. Freshw Biol 16:219–233

    Article  CAS  Google Scholar 

  • Vis S, Cattaneo A, Hudon C (2008) Shift from chlorophytes to cyano­bacteria in benthic macroalgae along a gradient of nitrate depletion. J Phycol 44:38–44

    Article  CAS  Google Scholar 

  • Vymazal J, Richardson CJ (1995) Species composition, biomass, and nutrient content of periphyton in the Florida Everglades. J Phycol 31:343–354

    Article  Google Scholar 

  • Ward AK (1985) Factors affecting distribution of Nostoc in Cascade Mountain streams of Western Oregon, U.S.A. Verh Int Ver Limnol 22:2799–2804

    Google Scholar 

  • Ward DM, Castenholz RW (2000) Cyanobacteria in geothermal habitats. In: Whitton BA, Potts M (eds) The ecology of cyanobacteria: their diversity in time and space. Springer, Dordrecht, pp 37–59, 669 pp

    Google Scholar 

  • Ward AK, Wetzel RG (1980) Interactions of light and nitrogen source on planktonic blue-green algae. Arch Hydrobiol 90:1–25

    CAS  Google Scholar 

  • Ward AK, Dahm CA, Cummins KW (1985) Nostoc (Cyanophyta) productivity in Oregon stream ecosystems: invertebrate influences and differences between morphological types. J Phycol 21:223–227

    Article  Google Scholar 

  • Wellnitz TA, Ward JV (2000) Herbivory and irradiance shape periphytic architecture in a Swiss alpine stream. Limnol Oceanogr 45:64–75

    Article  Google Scholar 

  • Whiles MR, Lips KR, Pringle CM, Kilham SS, Bixby RJ, Brenes R, Connelly S, Colón-Gaud JC, Hunte-Brown M, Huryn AD, Montgomery C, Peterson S (2006) The effects of amphibian population declines on the structure and function of neotropical stream ecosystems. Front Ecol Environ 4:27–34

    Article  Google Scholar 

  • Whitton BA (2000) Soils and rice fields. In: Whitton BA, Potts M (eds) The ecology of cyanobacteria: their diversity in time and space. Kluwer Academic Publishers, Dordrecht, pp 233–249, 669 pp

    Google Scholar 

  • Whitton BA, Gale NL, Wixson BG (1981) Chemistry and plant ecology of zinc-rich wastes dominated by blue-green algae. Hydrobiologia 83:331–341

    Article  CAS  Google Scholar 

  • Wickstrom CE, Corkran JL (1997) Nitrogenase activities associated with macrophytes from a lacustrine and a freshwater estuarine habitat. Aquat Bot 59:157–162

    Article  CAS  Google Scholar 

  • Wilde EW, Tilly LJ (1981) Structural characteristics of algal communities in thermally altered artificial streams. Hydrobiologia 76:57–63

    Article  Google Scholar 

  • Wood EJG, Maynard NG (1974) Ecology of microalgae of the Florida Everglades. In: Gleason PJ (ed) Environments of South Florida: present and past. Miami Geological Society, Miami, pp 123–145

    Google Scholar 

  • Wu X, Mitsch WJ (1998) Spatial and temporal patterns of algae in newly constructed freshwater wetlands. Wetlands 18:9–20

    Article  Google Scholar 

  • Wynn-Williams DD (2000) Cyanobacteria in deserts – life at the limit. In: Whitton BA, Potts M (eds) The ecology of cyanobacteria: their diversity in time and space. Springer, Dordrecht, pp 341–361, 669 pp

    Google Scholar 

  • Yang GY, Tang T, Dudgeon D (2009) Spatial and seasonal variations in benthic algal assemblages in streams in monsoonal Hong Kong. Hydrobiologia 632:189–200

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Thad Scott .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Scott, J.T., Marcarelli, A.M. (2012). Cyanobacteria in Freshwater Benthic Environments. In: Whitton, B. (eds) Ecology of Cyanobacteria II. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-3855-3_9

Download citation

Publish with us

Policies and ethics