Skip to main content

On the Vesicular Origin of the Cell Cycle

  • Chapter
  • First Online:
Genesis - In The Beginning

Part of the book series: Cellular Origin, Life in Extreme Habitats and Astrobiology ((COLE,volume 22))

Abstract

The relation between the phenomena of cell cycle and vesicle self-reproduction has been investigated. It is proposed that vesicle self-reproduction is a process whose mechanism, based on commonly accepted physicochemical principles, could be an essential factor in the transition from the nonliving to the living world. This proposal is supported by first demonstrating the vesicle properties that are relevant to this process. A prototype model of vesicle self-reproduction and its possible generalization are then described. Parallels are drawn between the behavior of the cell cycle and the process of vesicle self-reproduction. The suggestion that the cell cycle is an upgraded version of vesicle self-reproduction is substantiated by ascribing to the latter process the ability to evolve on the basis of selection between vesicle populations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bangham AD, Horne RW (1964) Negative staining of phospholipids and their structured modifications by surface active agents as observed in the electron microscope. J Mol Biol 8:660–668

    Article  PubMed  CAS  Google Scholar 

  • Berclaz N, Müller M, Walde P, Luisi PL (2001) Growth and transformation of vesicles studied by ferritin labeling and cryotransmission electron microscopy. J Phys Chem B 105:1056–1064

    Article  CAS  Google Scholar 

  • Božič B, Svetina S (2004) A relationship between membrane properties forms the basis of a selectivity mechanism for vesicle self-reproduction. Eur Biophys J 33:565–571

    Article  PubMed  Google Scholar 

  • Božič B, Svetina S (2007) Vesicle self-reproduction: the involvement of membrane hydraulic and solute permeabilities. Eur Phys J E 24:79–90

    Article  PubMed  Google Scholar 

  • Božič B, Svetina S (2009) Comment on “Thermodynamics of vesicle growth and instability”. Phys Rev E 80:013401(2)

    Google Scholar 

  • Božič B, Svetina S, Žekš B, Waugh RE (1992) Role of lamellar membrane structure in tether formation from bilayer vesicles. Biophys J 61:963–973

    Article  PubMed  Google Scholar 

  • Chen IA, Szostak JW (2004) A kinetic study of the growth of fatty acid vesicles. Biophys J 87:988–998

    Article  PubMed  CAS  Google Scholar 

  • Chungcharoenwattana S, Ueno M (2005) New vesicle formation upon oleate addition to preformed vesicles. Chem Pharm Bull 53:260–262

    Article  PubMed  CAS  Google Scholar 

  • Deamer D (2009) On the origin of systems. EMBO Rep 10:51–54

    Article  Google Scholar 

  • Deuling HJ, Helfrich W (1976) The curvature elasticity of fluid membranes: a catalogue of vesicle shapes. J Phys Fr 37:1334–1345

    Google Scholar 

  • Di Talia S, Skotheim JM, Bean JM, Siggia ED, Cross FR (2007) The effect of molecular noise and size control on variability in the budding yeast cell cycle. Nature 448:947–951

    Article  PubMed  Google Scholar 

  • Discher DE, Eisenberg A (2002) Polymer vesicles. Science 297:967–973

    Article  PubMed  CAS  Google Scholar 

  • Edgar BA, Kim KJ (2009) Sizing up cells. Science 325:158–159

    Article  PubMed  CAS  Google Scholar 

  • Fry I (2010) The role of natural selection in the origin of life. Orig Life Evol Biosph 41:3–16

    Article  PubMed  Google Scholar 

  • Hedges SB, Blair IE, Venturi MI, Shoe JI (2004) A molecular timescale of eukaryote evolution and the rise of complex multicellular life. BMC Evol Biol 4:2

    Article  PubMed  Google Scholar 

  • Helfrich W (1973) Elastic properties of lipid bilayers: theory and possible experiments. Z Naturforsch 28c:693–703

    Google Scholar 

  • Inaoka Y, Yamazaki M (2007) Vesicle fission of giant unilamellar vesicles of liquid-ordered-phase membranes induced by amphiphiles with a single long hydrocarbon chain. Langmuir 23:720–728

    Article  PubMed  CAS  Google Scholar 

  • Jenkins JT (1977) Static equilibrium configuration of a model red blood cell. J Math Biol 4:149–169

    Article  PubMed  CAS  Google Scholar 

  • Jorgensen P, Tyers M (2004) How cells coordinate growth and division. Curr Biol 14:R1014–R1027

    Article  PubMed  CAS  Google Scholar 

  • Jung HT, Coldren B, Zasadzinski JA, Iampietro DJ, Kaler EW (2001) The origins of stability of spontaneous vesicles. Proc Natl Acad Sci USA 98:1353–1357

    Article  PubMed  CAS  Google Scholar 

  • Käs J, Sackmann E, Podgornik R, Svetina S, Žekš B (1993) Thermally induced budding of phospholipid vesicles – a discontinuous process. J Phys II Fr 3:631–645

    Article  Google Scholar 

  • Lancet D, Shenhav B (2009) Compositional lipid protocells: reproduction without polynucleotides. In: Rasmussen S, Bedau MA, Chen L, Deamer D, Krakauer DC, Packard NH, Stadler PF (eds) Protocells: bridging nonliving and living matter. MIT, Cambridge, pp 233–252

    Google Scholar 

  • Lasic DD (1993) Liposomes: from physics to application. Elsevier, Amsterdam

    Google Scholar 

  • Lazcano A (2008) Towards a definition of life: the impossible quest? Space Sci Rev 135:5–10

    Article  Google Scholar 

  • Lipowsky R, Sackmann E (eds) (1995) Structure and dynamics of membranes, vols 1, 2. Elsevier Science B.V., Amsterdam

    Google Scholar 

  • Luisi PL, Walde P, Oberholzer T (1999) Lipid vesicles as possible intermediates in the origin of life. Curr Opin Colloid Interface Sci 4:33–39

    Article  CAS  Google Scholar 

  • Marques EF (2000) Size and stability of catanionic vesicles: effects of formation path, sonication, and aging. Langmuir 16:4798–4807

    Article  CAS  Google Scholar 

  • Miao L, Fourcade B, Rao M, Wortis M (1991) Equilibrium budding and vesiculation in the curvature model of fluid lipid vesicles. Phys Rev A 43:6843–6856

    Article  PubMed  CAS  Google Scholar 

  • Miao L, Seifert U, Döbereiner HG, Wortis M (1994) Budding transitions of fluid-bilayer vesicles: the effect of the area difference elasticity. Phys Rev E 49:5389–5407

    Article  CAS  Google Scholar 

  • Morigaki K, Walde P (2007) Fatty acid vesicles. Curr Opin Colloid Interface Sci 12:75–80

    Article  CAS  Google Scholar 

  • Murray A, Hunt T (1993) The cell cycle: an introduction. Oxford University Press, New York/Oxford

    Google Scholar 

  • Nurse P (1994) Ordering S phase and M phase in the cell cycle. Cell 79:547–550

    Article  PubMed  CAS  Google Scholar 

  • Ou Yang Z-C, Helfrich W (1989) Bending energy of vesicle membranes: general expressions for the first, second, and third variation of the shape energy and applications to spheres and cylinders. Phys Rev A 39:5280–5288

    Article  CAS  Google Scholar 

  • Peretó J (2005) Controversies on the origin of life. Int Microbiol 8:23–31

    PubMed  Google Scholar 

  • Peterlin P, Arrigler V, Kogej K, Svetina S, Walde P (2009) Growth and shape transformations of giant phospholipid vesicles upon interaction with an aqueous oleic acid suspension. Chem Phys Lipids 159:67–76

    Article  PubMed  CAS  Google Scholar 

  • Pross A (2009) Seeking the chemical roots of Darwinism: bridging between chemistry and biology. Chem Eur J 15:8374–8381

    Article  PubMed  CAS  Google Scholar 

  • Raphael RM, Waugh RE, Svetina S, Žekš B (2001) Fractional occurrence of defects in membranes and mechanically driven interleaflet phospholipid transport. Phys Rev E 64:051913(10)

    Article  Google Scholar 

  • Reeves JP, Dowben RM (1969) Formation and properties of thin-walled vesicles. J Gen Physiol 73:49–60

    CAS  Google Scholar 

  • Sawin KE (2009) Cell division brought down to size. Nature 459:782–783

    Article  PubMed  CAS  Google Scholar 

  • Segré D, Ben-Eli D, Deamer DW, Lancet D (2001) The lipid world. Orig Life Evol Biosph 31:119–145

    Article  PubMed  Google Scholar 

  • Seifert U (1997) Configurations of fluid membranes and vesicles. Adv Phys 46:13–137

    Article  CAS  Google Scholar 

  • Seifert U, Berndl K, Lipowsky R (1991) Shape transformations of vesicles: phase diagram for spontaneous-curvature and bilayer-coupling models. Phys Rev A 44:1182–1202

    Article  PubMed  CAS  Google Scholar 

  • Sole RV (2009) Evolution and self-assembly of protocells. Int J Biochem Cell Biol 41:274–284

    Article  PubMed  CAS  Google Scholar 

  • Stano P, Luisi PL (2010) Achievements and open questions in the self-reproduction of vesicles and synthetic minimal cells. Chem Commun 46:3639–3653

    Article  CAS  Google Scholar 

  • Stano P, Wehrli E, Luisi PL (2006) Insights into the self-reproduction of oleate vesicles. J Phys Condens Matter 18:S2231–S2238

    Article  CAS  Google Scholar 

  • Surovtsev IV, Zhang Z, Lindahl PA, Morgan JJ (2009) Mathematical modeling of a minimal protocell with coordinated growth and division. J Theor Biol 260:422–429

    Article  PubMed  Google Scholar 

  • Svetina S (2007) The vesicle world: the emergence of cellular life can be related to properties specific to vesicles. Orig Life Evol Biosph 37:445–448

    Article  PubMed  Google Scholar 

  • Svetina S (2009) Vesicle budding and the origin of cellular life. ChemPhysChem 10:2769–2776

    Article  PubMed  CAS  Google Scholar 

  • Svetina S, Žekš B (1989) Membrane bending energy and shape determination of phospholipid vesicles and red blood cells. Eur Biophys J 17:101–111

    Article  PubMed  CAS  Google Scholar 

  • Svetina S, Žekš B (1996) Elastic properties of closed bilayer membranes and the shapes of giant phospholipid vesicles. In: Lasic DD, Berenholz Y (eds) Handbook of nonmedical applications of liposomes. Theory and basic sciences, vol 1. CRC Press, Boca Raton/New York, pp 13–42

    Google Scholar 

  • Svetina S, Žekš B (2002) Shape behavior of lipid vesicles as the basis of some cellular processes. Anat Rec 268:215–225

    Article  PubMed  CAS  Google Scholar 

  • Svetina S, Brumen M, Žekš B (1985) Lipid bilayer elasticity and the bilayer couple interpretation of red cell shape transformations and lysis. Stud Biophys 110:177–184

    CAS  Google Scholar 

  • Takakura K, Toyota T, Sugawara T (2003) A novel system of self-reproducing giant vesicles. J Am Chem Soc 125:8134–8140

    Article  PubMed  CAS  Google Scholar 

  • Tessera M (2009) Life began when evolution began: a lipidic vesicle-based scenario. Orig Life Evol Biosph 39:559–564

    Article  PubMed  CAS  Google Scholar 

  • Thomas JA, Rana FR (2007) The influence of environmental conditions, lipid composition, and phase behavior on the origin of cell membranes. Orig Life Evol Biosph 37:267–285

    Article  PubMed  CAS  Google Scholar 

  • Tzur A, Kafri R, LeBleu VS, Lahav G, Kirschner MW (2009) Cell growth and size homeostasis in proliferating animal cells. Science 325:167–171

    Article  PubMed  CAS  Google Scholar 

  • Umen JG (2005) The elusive sizer. Curr Opin Cell Biol 17:435–441

    Article  PubMed  CAS  Google Scholar 

  • Vitkova V, Genova J, Bivas I (2004) Permeability and the hidden area of lipid bilayers. Eur Biophys J 33:706–714

    Article  PubMed  CAS  Google Scholar 

  • Walde P (2006) Surfactant assemblies and their various possible roles for the origin(s) of life. Orig Life Evol Biosph 36:109–150

    Article  PubMed  CAS  Google Scholar 

  • Walde P (2010) Building artificial cells and protocell models: experimental approaches with lipid vesicles. Bioessays 32:296–303

    Article  PubMed  CAS  Google Scholar 

  • Walde P, Cosentino K, Engel H, Stano P (2010) Giant vesicles: preparations and applications. ChemBioChem 11:848–865

    Article  PubMed  CAS  Google Scholar 

  • Waugh RE, Song J, Svetina S, Žekš B (1992) Local and nonlocal curvature elasticity in bilayer membranes by tether formation from lecithin vesicles. Biophys J 61:974–982

    Article  PubMed  CAS  Google Scholar 

  • Wu M, Higgs PG (2008) Compositional inheritance: comparison of self-assembly and catalysis. Orig Life Evol Biosph 38:399–418

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the Slovenian Research Agency through grants P1-0055 and J3-2268. The author thanks Roger Pain and Peter Walde for the critical reading of the manuscript. Mojca Mally allowed the use of her results before publication, and Bojan Božič helped with the adaptation of Fig. 2.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saša Svetina .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Svetina, S. (2012). On the Vesicular Origin of the Cell Cycle. In: Seckbach, J. (eds) Genesis - In The Beginning. Cellular Origin, Life in Extreme Habitats and Astrobiology, vol 22. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-2941-4_38

Download citation

Publish with us

Policies and ethics