Skip to main content

Reverse Genetics in Flowering Plant Plastids

  • Chapter
  • First Online:
Genomics of Chloroplasts and Mitochondria

Part of the book series: Advances in Photosynthesis and Respiration ((AIPH,volume 35))

Summary

Plastid reverse genetics exploits the predominance of homologous DNA recombination in this organelle, which allows targeted mutations to be introduced into plastid genes. Most studies have used tobacco and involve replacement of wild-type plastid genes with mutant alleles. Mutant alleles are either disrupted by the marker gene or lie adjacent to the marker gene. Marker selection with antibiotics is required to remove wild-type plastid genomes and reveal the phenotype of homoplasmic mutant plants. Targeted knock-outs have shown that tobacco plastid genes are either dispensable or essential. Dispensable plastid genes include those encoding photosynthesis-related proteins, subunits of the plastid-encoded RNA polymerase, ribosomal protein rpl33, valyl transfer RNA(GAC), glycyl transfer RNA(GCC) and putative origins of DNA replication. Loss-of-photosynthesis is dispensable if mutant plants are propagated on sucrose-containing medium. Knock-outs were particularly useful for elucidating the roles of conserved but dispensable hypothetical reading frames (ycf genes) in photosynthesis. Site-directed mutations allow structure-function studies on the products of plastid genes. Marker-free plants containing deletions of dispensable plastid genes, e.g. the large subunit of RuBisCO gene, facilitate the rapid isolation of plants containing site-directed mutant alleles. Knock-outs of essential tobacco plastid genes (accD, clpP, ycf1, ycf2, rps2, rps4, rps18, rpl20, trnC-GCA, trnN-GUU, trnG-UCC) persist as heteroplasmic mixtures with the wild-type allele under antibiotic selection; removal of selection results in loss of the knock out allele. Homoplasmic cells containing knock out alleles of essential genes would not be viable and this explains the leaf-lamina-loss phenotype of mutant plants. Strong selection for the wild-type gene may hinder the isolation of partial-function alleles of essential plastid genes containing site-directed mutations. New methods are required to study essential plastid genes involving regulated expression or inducible excision mediated by site-specific recombinases. Progress may require the use of angiosperm species, in which homologues of essential tobacco plastid genes are dispensable.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

LS RuBisCO:

Large subunit of Ribulose Bisphosphate Carboxylase/Oxygenase;

NEP:

Nucleus-encoded plastid RNA polymerase;

ORF:

Open reading frame;

ori :

Origin of DNA replication;

PEP:

Plastid-encoded ­plastid RNA polymerase;

pt DNA:

Plastid DNA;

WT:

Wild-type;

ycf –:

Hypothetical chloroplast open reading frame

References

  • Ahlert D, Ruf S, Bock R (2003) Plastid protein synthesis is required for plant development in tobacco. Proc Natl Acad Sci USA 100:15730–15735

    Article  PubMed  CAS  Google Scholar 

  • Albus C, Ruf S, Schöttler MA, Lein W, Kehr J, Bock R (2010) Y3IP1, a nucleus-encoded thylakoid protein, co-operates with the plastid-encoded Ycf3 protein in photosystem I assembly. Plant Cell 22:2838–2855

    Article  PubMed  CAS  Google Scholar 

  • Allison LA, Simon LD, Maliga P (1996) Deletion of rpoB reveals a second distinct transcription system in plastids of higher plants. EMBO J 15:2802–2809

    PubMed  CAS  Google Scholar 

  • Baena-González E, Gray JC, Tyystjarvi E, Aro EM, Mäenpää P (2001) Abnormal regulation of photosynthetic electron transport in a chloroplast ycf9 inactivation mutant. J Biol Chem 276:20795–20802

    Article  PubMed  Google Scholar 

  • Baena-González E, Allahverdiyeva Y, Svab Z, Maliga P, Josse EM, Kuntz M, Mäenpää P, Aro EM (2003) Deletion of the tobacco plastid psbA gene triggers an upregulation of the thylakoid-associated NAD(P)H dehydrogenase complex and the plastid terminal oxidase (PTOX). Plant J 35:704–716

    Article  PubMed  Google Scholar 

  • Barone P, Zhang XH, Widholm JM (2009) Tobacco plastid transformation using the feedback-insensitive anthranilate synthase [alpha]-subunit of tobacco (ASA2) as a new selectable marker. J Exp Bot 60:3195–3202

    Article  PubMed  CAS  Google Scholar 

  • Birky CW (2001) The inheritance of genes in mitochondria and chloroplasts: laws, mechanisms, and models. Ann Rev Genet 35:125–148

    Article  PubMed  CAS  Google Scholar 

  • Bock R (2007) Structure, function, and inheritance of plastid genomes. Cell and molecular biology of plastids. In: Bock R (ed) Topics in current genetics, vol 19. Springer, Berlin/Heidelberg, pp 29–63

    Google Scholar 

  • Bock R, Timmis JN (2008) Reconstructing evolution: gene transfer from plastids to the nucleus. Bioessays 30:556–566

    Article  PubMed  CAS  Google Scholar 

  • Bock R, Kössel H, Maliga P (1994) Introduction of a heterologous editing site into the tobacco plastid genome: the lack of RNA editing leads to a mutant phenotype. EMBO J 13:4623–4628

    PubMed  CAS  Google Scholar 

  • Burrows PA, Sazanov LA, Svab Z, Maliga P, Nixon PJ (1998) Identification of a functional respiratory complex in chloroplasts through analysis of tobacco mutants containing disrupted plastid ndh genes. EMBO J 17:868–876

    Article  PubMed  CAS  Google Scholar 

  • Cerutti H, Johnson AM, Boynton JE, Gillham NW (1995) Inhibition of chloroplast DNA recombination and repair by dominant negative mutants of Escherichia coli RecA. Mol Cell Biol 15:3003–3011

    PubMed  CAS  Google Scholar 

  • Colbert T, Till BJ, Tompa R, Reynolds S, Steine MN, Yeung AT, McCallum CM, Comai L, Henikoff S (2001) High-throughput screening for induced point mutations. Plant Physiol 126:480–484

    Article  PubMed  CAS  Google Scholar 

  • De Santis-Maciossek G, Kofer W, Bock A, Schoch S, Maier RM, Wanner G, Rüdiger W, Koop HU, Herrmann RG (1999) Targeted disruption of the plastid RNA polymerase genes rpoA, B and C1: molecular biology, biochemistry and ultrastructure. Plant J 18:477–489

    Article  PubMed  Google Scholar 

  • Drescher A, Ruf S, Calsa T, Carrer H, Bock R (2000) The two largest chloroplast genome-encoded open reading frames of higher plants are essential genes. Plant J 22:97–104

    Article  PubMed  CAS  Google Scholar 

  • Fey H, Piano D, Horn R, Fischer D, Schmidt M, Ruf S, Schröder WP, Bock R, Büchel C (2008) Isolation of highly active photosystem II core complexes with a His-tagged Cyt b(559) subunit from transplastomic tobacco plants. Biochim Biophys Acta Bioenerg 1777:1501–1509

    Article  CAS  Google Scholar 

  • Fiebig A, Stegemann S, Bock R (2004) Rapid evolution of RNA editing sites in a small non-essential plastid gene. Nucleic Acids Res 32:3615–3622

    Article  PubMed  CAS  Google Scholar 

  • Fischer N, Stampacchia O, Redding K, Rochaix JD (1996) Selectable marker recycling in the chloroplast. Mol Gen Genet 251:373–380

    Article  PubMed  CAS  Google Scholar 

  • Fleischmann TT, Scharff LB, Alkatib S, Hasdorf S, Schoettler MA, Bock R (2011) Nonessential plastid-encoded ribosomal proteins in tobacco: a developmental role for plastid translation and implications for reductive genome evolution. Plant Cell 23:3137–3155

    Article  PubMed  CAS  Google Scholar 

  • Gilchrist E, Haughn G (2010) Reverse genetics techniques: engineering loss and gain of gene function in plants. Brief Funct Genomics 9:103–110

    Article  PubMed  CAS  Google Scholar 

  • Hager M, Biehler K, Illerhaus J, Ruf S, Bock R (1999) Targeted inactivation of the smallest plastid genome-encoded open reading frame reveals a novel and essential subunit of the cytochrome b(6)f complex. EMBO J 18:5834–5842

    Article  PubMed  CAS  Google Scholar 

  • Hager M, Hermann M, Biehler A, Krieger-Liszkay A, Bock R (2002) Lack of the small plastid-encoded PsbJ polypeptide results in a defective water-splitting apparatus of photosystem II, reduced photosystem I levels, and hypersensitivity to light. J Biol Chem 277:14031–14039

    Article  PubMed  CAS  Google Scholar 

  • Hajdukiewicz PTJ, Allison LA, Maliga P (1997) The two RNA polymerases encoded by the nuclear and the plastid compartments transcribe distinct groups of genes in tobacco plastids. EMBO J 16:4041–4048

    Article  PubMed  CAS  Google Scholar 

  • Hajdukiewicz PTJ, Gilbertson L, Staub JM (2001) Multiple pathways for Cre/lox-mediated recombination in plastids. Plant J 27:161–170

    Article  PubMed  CAS  Google Scholar 

  • Hardy S, Legagneux V, Audic Y, Paillard L (2010) Reverse genetics in eukaryotes. Biol Cell 102:561–580

    Article  PubMed  CAS  Google Scholar 

  • Herskowitz I (1987) Functional inactivation of genes by dominant negative mutations. Nature 329:219–222

    Article  PubMed  CAS  Google Scholar 

  • Hess WR, Prombona A, Fieder B, Subramanian AR, Börner T (1993) Chloroplast rps15 and the rpoB/C1/C2 gene cluster are strongly transcribed in ribosome deficient plastids: evidence for a functioning non chloroplast encoded RNA polymerase. EMBO J 12:563–571

    PubMed  CAS  Google Scholar 

  • Hohn B, Puchta H (2003) Some like it sticky: targeting of the rice gene Waxy. Trends Plant Sci 8:51–53

    Article  PubMed  CAS  Google Scholar 

  • Horváth EM, Peter SO, Joët T, Rumeau D, Cournac L, Horváth GV, Kavanagh TA, Schäfer C, Peltier G, Medgyesy P (2000) Targeted inactivation of the plastid ndhB gene in tobacco results in an enhanced sensitivity of photosynthesis to moderate stomatal closure. Plant Physiol 123:1337–1349

    Article  PubMed  Google Scholar 

  • Hotto AM, Huston ZE, Stern DB (2010) Overexpression of a natural chloroplast-encoded antisense RNA in tobacco destabilizes 5S rRNA and retards plant growth. BMC Plant Biol 10:213

    Article  PubMed  Google Scholar 

  • Huang FC, Klaus SM, Herz S, Zou Z, Koop HU, Golds TJ (2002) Efficient plastid transformation in tobacco using the aphA-6 gene and kanamycin selection. Mol Genet Genomics 268:19–27

    Article  PubMed  CAS  Google Scholar 

  • Kanevski I, Maliga P (1994) Relocation of the plastid rbcL gene to the nucleus yields functional ribulose-1,5-bisphosphate carboxylase in tobacco chloroplasts. Proc Natl Acad Sci USA 91:1969–1973

    Article  PubMed  CAS  Google Scholar 

  • Kanevski I, Maliga P, Rhoades DF, Gutteridge S (1999) Plastome engineering of ribulose-1,5-bisphosphate carboxylase/oxygenase in tobacco to form a sunflower large subunit and tobacco small subunit hybrid. Plant Physiol 119:133–141

    Article  PubMed  CAS  Google Scholar 

  • Khakhlova O, Bock R (2006) Elimination of deleterious mutations in plastid genomes by gene conversion. Plant J 46:85–94

    Article  PubMed  CAS  Google Scholar 

  • Klaus SMJ, Huang FC, Golds TJ, Koop HU (2004) Generation of marker-free plastid transformants using a transiently cointegrated selection gene. Nat Biotechnol 22:225–229

    Article  PubMed  CAS  Google Scholar 

  • Klaus SMJ, Huang FC, Eibl C, Koop HU, Golds TJ (2003) Rapid and proven production of transplastomic tobacco plants by restoration of pigmentation and photosynthesis. Plant J 35:811–821

    Article  PubMed  CAS  Google Scholar 

  • Klein TM, Wolf ED, Wu R, Sanford JC (1987) High velocity microprojectiles for delivering nucleic acids into living cells. Nature 327:70–73

    Article  CAS  Google Scholar 

  • Kode V, Mudd EA, Iamtham S, Day A (2005) The tobacco plastid accD gene is essential and is required for leaf development. Plant J 44:237–244

    Article  PubMed  CAS  Google Scholar 

  • Kode V, Mudd EA, Iamtham S, Day A (2006) Isolation of precise plastid deletion mutants by homology-based excision: a resource for site-directed mutagenesis, multi-gene changes and high-throughput plastid transformation. Plant J 46:901–909

    Article  PubMed  CAS  Google Scholar 

  • Kofer W, Koop HU, Wanner G, Steinmüller K (1998) Mutagenesis of the genes encoding subunits A, C, H, I, J and K of the plastid NAD(P)H-plastoquinone-oxidoreductase in tobacco by polyethylene glycol-mediated plastome transformation. Mol Gen Genet 258:166–173

    Article  PubMed  CAS  Google Scholar 

  • Koop HU, Kofer W, Steinmüller K (1998) Judging the homoplastomic state of plastid transformants – reply. Trends Plant Sci 3:377

    Article  Google Scholar 

  • Kuroda H, Maliga P (2003) The plastid clpP1 protease gene is essential for plant development. Nature 425:86–89

    Article  PubMed  CAS  Google Scholar 

  • Legen J, Wanner G, Herrmann RG, Small I, Schmitz-Linneweber C (2007) Plastid tRNA genes trnC-GCA and trnN-GUU are essential for plant cell development. Plant J 51:751–762

    Article  PubMed  CAS  Google Scholar 

  • Leelavathi S, Bhardwaj A, Kumar S, Dass A, Pathak R, Pandey S, Tripathy B, Padmalatha K, Dhandapani G, Kanakachari M, Kumar P, Cella R, Siva Reddy V (2011) Genome-wide transcriptome and proteome analyses of tobacco psaA and psbA deletion mutants. Plant Mol Biol 76:407–423

    Article  PubMed  CAS  Google Scholar 

  • Li SJ, Cronan JE (1992) Putative zinc finger protein encoded by a conserved chloroplast gene is very likely a subunit of a biotin dependent carboxylase. Plant Mol Biol 20:759–761

    Article  PubMed  CAS  Google Scholar 

  • Li W, Ruf S, Bock R (2010) Chloramphenicol acetyltransferase as selectable marker for plastid transformation. Plant Mol Biol 72:443–451

    Google Scholar 

  • Maliga P, Nixon PJ (1998) Judging the homoplastomic state of plastid transformants. Trends Plant Sci 3:376–377

    Article  Google Scholar 

  • Martin M, Funk HT, Serrot PH, Poltnigg P, Sabater B (2009) Functional characterization of the thylakoid Ndh complex phosphorylation by site-directed mutations in the ndhF gene. Biochim Biophys Acta Bioenerg 1787:920–928

    Article  CAS  Google Scholar 

  • Martin W, Rujan T, Richly E, Hansen A, Cornelsen S, Lins T, Leister D, Stoebe B, Hasegawa M, Penny D (2002) Evolutionary analysis of Arabidopsis, cyanobacterial, and chloroplast genomes reveals plastid phylogeny and thousands of cyanobacterial genes in the nucleus. Proc Natl Acad Sci USA 99:12246–12251

    Article  PubMed  CAS  Google Scholar 

  • Monde RA, Zito F, Olive J, Wollman FA, Stern DB (2000) Post-transcriptional defects in tobacco chloroplast mutants lacking the cytochrome b(6)/f complex. Plant J 21:61–72

    Article  PubMed  CAS  Google Scholar 

  • Mühlbauer SK, Lossl A, Tzekova L, Zou ZR, Koop HU (2002) Functional analysis of plastid DNA replication origins in tobacco by targeted inactivation. Plant J 32:175–184

    Article  PubMed  Google Scholar 

  • Nakamura T, Sugiura C, Kobayashi Y, Sugita M (2005) Transcript profiling in plastid arginine tRNA-CCG gene knock-out moss: construction of Physcomitrella patens plastid DNA microarray. Plant Biol 7:258–265

    Article  PubMed  CAS  Google Scholar 

  • Ohad I, Dal Bosco C, Herrmann RG, Meurer J (2004) Photosystem II proteins PsbL and PsbJ regulate electron flow to the plastoquinone pool. Biochemistry 43:2297–2308

    Article  PubMed  CAS  Google Scholar 

  • Petersen K, Schöttler MA, Karcher D, Thiele W, Bock R (2011) Elimination of a group II intron from a plastid gene causes a mutant phenotype. Nucleic Acids Res 39:5181–5192

    Google Scholar 

  • Pyke K, Zubko MK, Day A (2000) Marking cell layers with spectinomycin provides a new tool for monitoring cell fate during leaf development. J Exp Bot 51:1713–1720

    Article  PubMed  CAS  Google Scholar 

  • Rauwolf U, Golczyk H, Greiner S, Herrmann RG (2010) Variable amounts of DNA related to the size of chloroplasts III. Biochemical determinations of DNA amounts per organelle. Mol Genet Genomics 283:35–47

    Article  PubMed  CAS  Google Scholar 

  • Rogalski M, Ruf S, Bock R (2006) Tobacco plastid ribosomal protein S18 is essential for cell survival. Nucleic Acids Res 34:4537–4545

    Article  PubMed  CAS  Google Scholar 

  • Rogalski M, Karcher D, Bock R (2008a) Superwobbling facilitates translation with reduced tRNA sets. Nat Struct Mol Biol 15:192–198

    Article  PubMed  CAS  Google Scholar 

  • Rogalski M, Schöttler MA, Thiele W, Schulze WX, Bock R (2008b) Rpl33, a nonessential plastid-encoded ribosomal protein in tobacco, is required under cold stress conditions. Plant Cell 20:2221–2237

    Article  PubMed  CAS  Google Scholar 

  • Rolland N, Dorne AJ, Amoroso G, Sultemeyer DF, Joyard J, Rochaix JD (1997) Disruption of the plastid ycf10 open reading frame affects uptake of inorganic carbon in the chloroplast of Chlamydomonas. EMBO J 16:6713–6726

    Article  PubMed  CAS  Google Scholar 

  • Rothstein R (1991) Targeting, disruption, replacement, and allele rescue: integrative DNA transformation in yeast. Methods Enzymol 194:281–301

    Article  PubMed  CAS  Google Scholar 

  • Ruf S, Kössel H, Bock R (1997) Targeted inactivation of a tobacco intron-containing open reading frame reveals a novel chloroplast-encoded photosystem I-related gene. J Cell Biol 139:95–102

    Article  PubMed  CAS  Google Scholar 

  • Ruf S, Biehler K, Bock R (2000) A small chloroplast-encoded protein as a novel architectural component of the light-harvesting antenna. J Cell Biol 149:369–377

    Article  PubMed  CAS  Google Scholar 

  • Rumeau D, Becuwe-Linka N, Beyly A, Carrier P, Cuine S, Genty B, Medgyesy P, Horváth E, Peltier G (2004) Increased zinc content in transplastomic tobacco plants expressing a polyhistidine-tagged Rubisco large subunit. Plant Biotechnol J 2:389–399

    Article  PubMed  CAS  Google Scholar 

  • Schaefer DG (2002) A new moss genetics: targeted mutagenesis in Physcomitrella patens. Annu Rev Plant Biol 53:477–501

    Article  PubMed  CAS  Google Scholar 

  • Scharff LB, Koop HU (2007) Targeted inactivation of the tobacco plastome origins of replication A and B. Plant J 50:782–794

    Article  PubMed  CAS  Google Scholar 

  • Schöttler MA, Flugel C, Thiele W, Bock R (2007a) Knock-out of the plastid-encoded PetL subunit results in reduced stability and accelerated leaf age-dependent loss of the cytochrome b(6)f complex. J Biol Chem 282:976–985

    Article  PubMed  Google Scholar 

  • Schöttler MA, Flugel C, Thiele W, Stegemann S, Bock R (2007b) The plastome-encoded PsaJ subunit is required for efficient Photosystem I excitation, but not for plastocyanin oxidation in tobacco. Biochem J 403:251–260

    Article  PubMed  Google Scholar 

  • Schwenkert S, Legen J, Takami T, Shikanai T, Herrmann RG, Meurer J (2007) Role of the low-molecular-weight subunits PetL, PetG, and PetN in assembly, stability, and dimerization of the cytochrome b(6)f complex in tobacco(1[C]). Plant Physiol 144:1924–1935

    Article  PubMed  CAS  Google Scholar 

  • Schwenkert S, Umate P, Dal Bosco C, Volz S, Mlcochova L, Zoryan M, Eichacker LA, Ohad I, Herrmann RG, Meurer J (2006) PsbI affects the stability, function, and phosphorylation patterns of photosystem II assemblies in tobacco. J Biol Chem 281:34227–34238

    Article  PubMed  CAS  Google Scholar 

  • Serino G, Maliga P (1998) RNA polymerase subunits encoded by the plastid rpo genes are not shared with the nucleus-encoded plastid enzyme. Plant Physiol 117:1165–1170

    Article  PubMed  CAS  Google Scholar 

  • Shikanai T, Endo T, Hashimoto T, Yamada Y, Asada K, Yokota A (1998) Directed disruption of the tobacco ndhB gene impairs cyclic electron flow around photosystem I. Proc Natl Acad Sci USA 95:9705–9709

    Article  PubMed  CAS  Google Scholar 

  • Shikanai T, Shimizu K, Ueda K, Nishimura Y, Kuroiwa T, Hashimoto T (2001) The chloroplast clpP gene, encoding a proteolytic subunit of ATP-dependent protease, is indispensable for chloroplast development in tobacco. Plant Cell Physiol 42:264–273

    Article  PubMed  CAS  Google Scholar 

  • Sugita M, Svab Z, Maliga P, Sugiura M (1997a) Targeted deletion of sprA from the tobacco plastid genome indicates that the encoded small RNA is not essential for pre-16S rRNA maturation in plastids. Mol Gen Genet 257:23–27

    Article  PubMed  CAS  Google Scholar 

  • Sugita M, Sugiura M, Svab Z, Maliga P (1997b) Gene-disruption of sprA in tobacco plastid. Plant Physiol 114:887

    Google Scholar 

  • Svab Z, Maliga P (1993) High frequency plastid transformation in tobacco by selection for a chimeric aadA gene. Proc Natl Acad Sci USA 90:913–917

    Article  PubMed  CAS  Google Scholar 

  • Świątek M (2002) Functional analysis of plastid-encoded genes. Application of reverse genetics on Nicotiana tabacum. PhD dissertation, der Fakultät für Biologie der Ludwig-Maximilian-Universität München, München

    Google Scholar 

  • Swiatek M, Greiner S, Kemp S, Drescher A, Koop HU, Herrmann RG, Maier RM (2003a) PCR analysis of pulsed-field gel electrophoresis-purified plastid DNA, a sensitive tool to judge the hetero-/homoplastomic status of plastid transformants. Curr Genet 43:45–53

    PubMed  CAS  Google Scholar 

  • Swiatek M, Regel RE, Meurer J, Wanner G, Pakrasi HB, Ohad I, Herrmann RG (2003b) Effects of selective inactivation of individual genes for low-molecular-mass subunits on the assembly of photosystem II, as revealed by chloroplast transformation: the psbEFLJ operon in Nicotiana tabacum. Mol Genet Genomics 268:699–710

    PubMed  CAS  Google Scholar 

  • Swiatek M, Kuras R, Sokolenko A, Higgs D, Olive J, Cinque G, Muller B, Eichacker LA, Stern DB, Bassi R, Herrmann RG, Wollman FA (2001) The chloroplast gene ycf9 encodes a photosystem II (PSII) core subunit, PsbZ, that participates in PSII supramolecular architecture. Plant Cell 13:1347–1367

    PubMed  CAS  Google Scholar 

  • Tsuruya K, Suzuki M, Plader W, Sugita C, Sugita M (2006) Chloroplast transformation reveals that tobacco ycf5 is involved in photosynthesis. Acta Physiol Plantarum 28:365–371

    Article  CAS  Google Scholar 

  • Umate P, Fellerer C, Schwenkert S, Zoryan M, Eichacker LA, Sadanandam A, Ohad I, Herrmann RG, Meurer J (2008) Impact of PsbTc on forward and back electron flow, assembly, and phosphorylation patterns of photosystem II in tobacco. Plant Physiol 148:1342–1353

    Article  PubMed  CAS  Google Scholar 

  • Umate P, Schwenkert S, Karbat I, Dal Bosco C, Mlčochová L, Volz S, Zer H, Herrmann RG, Ohad I, Meurer J (2007) Deletion of PsbM in tobacco alters the Q(B) site properties and the electron flow within photosystem II. J Biol Chem 282:9758–9767

    Article  PubMed  CAS  Google Scholar 

  • Verhounig A, Karcher D, Bock R (2010) Inducible gene expression from the plastid genome by a synthetic riboswitch. Proc Natl Acad Sci USA 107:6204–6209

    Article  PubMed  CAS  Google Scholar 

  • Whitney SM, Sharwood RE (2008) Construction of a tobacco master line to improve RuBisCO engineering in chloroplasts. J Exp Bot 59:1909–1921

    Article  PubMed  CAS  Google Scholar 

  • Whitney SM, von Caemmerer S, Hudson GS, Andrews TJ (1999) Directed mutation of the Rubisco large subunit of tobacco influences photorespiration and growth. Plant Physiol 121:579–588

    Article  PubMed  CAS  Google Scholar 

  • Whitney SM, Sharwood RE, Orr D, White SJ, Alonso H, Galmes J (2011) Isoleucine 309 acts as a C(4) catalytic switch that increases ribulose-1,5-bisphosphate carboxylase/oxygenase (rubisco) carboxylation rate in Flaveria. Proc Natl Acad Sci USA 108:14688–14693

    Article  PubMed  CAS  Google Scholar 

  • Xie ZY, Merchant S (1996) The plastid-encoded ccsA gene is required for heme attachment to chloroplast c-type cytochromes. J Biol Chem 271:4632–4639

    Article  PubMed  CAS  Google Scholar 

  • Zoschke R, Liere K, Börner T (2007) From seedling to mature plant: arabidopsis plastidial genome copy number, RNA accumulation and transcription are differentially regulated during leaf development. Plant J 50:710–722

    Article  PubMed  CAS  Google Scholar 

  • Zubko MK, Day A (1998) Stable albinism induced without mutagenesis: a model for ribosome-free plastid inheritance. Plant J 15:265–271

    Article  PubMed  CAS  Google Scholar 

  • Zubko MK, Day A (2002) Differential regulation of genes transcribed by nucleus-encoded plastid RNA polymerase, and DNA amplification, within ribosome- deficient plastids in stable phenocopies of cereal albino mutants. Mol Gen Genomics 267:27–37

    Article  CAS  Google Scholar 

  • Zuo JR, Chua NH (2000) Chemical-inducible systems for regulated expression of plant genes. Curr Opin Biotechnol 11:146–151

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

I thank: Dr Elisabeth Mudd and the editors for improving the manuscript, and Prof Ulrich Koop (München) for information on the ycf10 knockout. This work was supported by research grants BB/E020445 and BB/I011552 from the Biotechnology and Biological Sciences Research Council (UK).

Note Added in Proof

Articles published after going to press: Fleischmann et al. (2011) used aadA-knockouts to show that the plastid genes encoding ribosomal proteins rpl22, rpl23, rpl32, rps3 and rps16 were essential whereas ribosomal proteins rps15 and rpl36 were nonessential. Whitney et al. (2011) introduced rbcL genes from Flaveria C3 and C4 species into aadA-free rbcM tobacco plants (Fig. 18.12) to identify amino acids affecting the carboxylation rate and CO2 affinity of RuBisCO.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anil Day .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Day, A. (2012). Reverse Genetics in Flowering Plant Plastids. In: Bock, R., Knoop, V. (eds) Genomics of Chloroplasts and Mitochondria. Advances in Photosynthesis and Respiration, vol 35. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-2920-9_18

Download citation

Publish with us

Policies and ethics