Skip to main content

Dual Phase-Lag Thermoelasticity

  • Reference work entry
Encyclopedia of Thermal Stresses

Overview

High-rate heating of metallic films is a rapidly emerging area in heat transfer due to the advancement of short-pulse laser technologies and their applications in modern microfabrication technologies. The dual phase-lag (DPL) heat conduction equation [1, 2] has been introduced by including two phase-lags in Fourier law of heat conduction in order to take into account the microstructural effects that arise in high-rate heat transfer. In addition to its applications in the ultrafast pulse laser heating, temperature pulse propagation in liquid helium, nonhomogeneous lagging response in porous media, thermal lagging response in amorphous materials, the DPL heat conduction equation also arises in describing the effects of material defects and thermo-mechanical coupling due to ultrafast heating [37]. The dual phase-lag heat conduction model is extended to the dual phase-lag thermoelasticity (DPLTE) [3, 8]. The coupled dynamical thermoelasticity (CTE) theory was developed by Biot [9...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 3,999.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Tzou DY (1995) A unified approach for heat conduction from macro to micro scales. ASME J Heat Transf 117:8–16

    Google Scholar 

  2. Tzou DY (1995) The generalized lagging response in small-scale and high-rate heating. Int J Heat Mass Transf 38(17):3231–3240

    Google Scholar 

  3. Tzou DY (1997) Macro-to microscale heat transfer: the lagging behavior. Taylor & Francis, New York

    Google Scholar 

  4. Al-Nimr MA, Al-Huniti NS (2000) Transient thermal stresses in a thin elastic plate due to a rapid dual-phase-lag heating. J Therm Stress 23:731–746

    Google Scholar 

  5. Chen JK, Beraun JE, Tzou DY (2002) Thermomechanical response of metals heated by ultrashort-pulsed lasers. J Therm Stress 25:539–558

    Google Scholar 

  6. Lee YM, Tsai TW (2008) Effect of interfacial contact conductance on thermo-elastic response in a two-layered material heated by ultra-fast pulse-laser. J Phys D: Appl Phys 41:045308, (12pp)

    Google Scholar 

  7. Abdallah IA (2009) Dual phase lag heat conduction and thermoelastic properties of a semi-infinite medium induced by ultrashort pulsed laser. Prog Phys 3:60–63

    MathSciNet  Google Scholar 

  8. Chandrasekharaiah DS (1998) Hyperbolic thermoelasticity: a review of recent literature. Appl Mech Rev 51(12):705–729

    Google Scholar 

  9. Biot MA (1956) Thermoelasticity and irreversible thermodynamics. J Appl Phys 27:240–253

    MATH  MathSciNet  Google Scholar 

  10. Chandrasekharaiah DS (1986) Thermoelasticity with second sound: a review. Appl Mech Rev 39:355–376

    MATH  Google Scholar 

  11. Lord HW, Shulman Y (1967) A generalized dynamical theory of thermoelasticity. J Mech Phys Solids 15:299–309

    MATH  Google Scholar 

  12. Green AE, Lindsay KA (1972) Thermoelasticity. J Elast 2:1–7

    MATH  Google Scholar 

  13. Green AE, Naghdi PM (1991) A re-examination of the basic postulates of thermomechanics. Proc R Soc Lond Ser A-432:171–194

    MathSciNet  Google Scholar 

  14. Green AE, Naghdi PM (1992) On undamped heat waves in an elastic solid. J Therm Stress 15:253–264

    MathSciNet  Google Scholar 

  15. Green AE, Naghdi PM (1993) Thermoelasticity without energy dissipation. J Elast 3:189–209

    MathSciNet  Google Scholar 

  16. Ignaczak J (1980) Thermoelasticity with finite wave speeds – a survey. In: Hasselman DPH, Heller RA (eds) Thermal stresses in severe environments. Plenum Press, New York/London, pp 15–30

    Google Scholar 

  17. Ignaczak J (1989) Generalized thermoelasticity and its applications. In: Hetnarski RB (ed) Thermal stresses III. North-Holland, Amsterdam, pp 279–354

    Google Scholar 

  18. Ignaczak J (1991) Domain of influence results in generalized thermoelasticity – a survey. Appl Mech Rev 44(9):375–382

    MathSciNet  Google Scholar 

  19. Hetnarski RB, Ignaczak J (1999) Generalized thermoelasticity. J Therm Stress 22:451–476

    MathSciNet  Google Scholar 

  20. Hetnarski RB, Ignaczak J (2000) Nonclassical dynamical thermoelasticity. Int J Solids Struct 37(1–2):215–224

    MATH  MathSciNet  Google Scholar 

  21. Iesan D (2004) Thermoelastic models of continua. Kluwer Academic, Dordrecht

    MATH  Google Scholar 

  22. Ignaczak J, Ostoja-Starzewski M (2010) Thermoelasticity with finite wave speeds. Oxford University Press, New York

    MATH  Google Scholar 

  23. Hetnarski RB, Eslami MR (2009) Thermal stresses: advanced theory and applications. In: Gladwell GML (series ed.) Solid mechanics and its applications, Vol 158. Springer

    Google Scholar 

  24. Joseph DD, Preziosi L (1989) Heat waves. Rev Mod Phys 61:41–73

    MATH  MathSciNet  Google Scholar 

  25. Joseph DD, Preziosi L (1990) Addendum to the paper “Heat Waves”. Rev Mod Phys 62:375–391

    MathSciNet  Google Scholar 

  26. Tzou DY (1995) Experimental support for the lagging response in heat propagation. J Thermophys Heat Transf 9:686–693

    Google Scholar 

  27. Xu M (2011) Thermodynamic basis of dual phase-lagging heat conduction. ASME J Heat Transf 133:041401

    Google Scholar 

  28. Müller I, Ruggeri T (1993) Extended thermodynamics, Springer tracts on natural philosophy, vol 37. Springer, New York

    Google Scholar 

  29. Fichera G (1992) Is the Fourier theory of heat propagation paradoxical? Rendiconti del circolo matematico di Palermo 41:5–28

    MATH  MathSciNet  Google Scholar 

  30. Dreyer W, Struchtrup H (1993) Heat pulse experiments revisited. Continuum Mech Thermodyn 5:3–50

    MathSciNet  Google Scholar 

  31. Ozisik MN, Tzou DY (1994) On the wave theory of heat conduction. ASME J Heat Transf 116:526–535

    Google Scholar 

  32. Wang L, Zhou X, Wei X (2008) Heat conduction, mathematical models and analytical solutions. Springer, Berlin/Heidelberg

    MATH  Google Scholar 

  33. Cattaneo C (1958) A form of heat conduction equation which eliminates the paradox of instantaneous propagation. Compte Rendus 247:431–433

    MathSciNet  Google Scholar 

  34. Vernotte P (1958) Les paradoxes de la theorie continue de l’equation de la chaleur. Compte Rendus 246:3154–3155

    MathSciNet  Google Scholar 

  35. Vernotte P (1961) Some possible complications in the phenomena of thermal conduction. Compte Rendus 252:2190–2191

    MathSciNet  Google Scholar 

  36. Tzou DY (1992) The thermal shock phenomena under high-rate response in solids. In: Tien CL (ed) Annual review of heat transfer. Hemi-Sphere, Washington, DC, pp 111–185

    Google Scholar 

  37. Tzou DY (1993) An engineering assessment of the relaxation time in the thermal wave theory. Int J Heat Mass Transf 36:1845–1851

    MATH  Google Scholar 

  38. Boyd IW (1989) Laser processing of thin films and microstructures. Springer, New York

    Google Scholar 

  39. Chryssolouris G (1991) Laser machining, theory and practice. Springer, New York

    Google Scholar 

  40. Narayan J, Godbole VP, White GW (1991) Laser method for synthesis and processing of continuous diamond films on nondiamond substrates. Science 52:416–418

    Google Scholar 

  41. Brorson SD, Fujimoto JG, Ippen EP (1987) Femtosecond electronic heat-transport dynamics in thin gold films. Phys Rev Lett 59:1962–1965

    Google Scholar 

  42. Anisimov SI, Kapeliovich BL, Perel’man TL (1974) Electron emission from metal surfaces exposed to ultra-short laser pulses. Sov Phys JETP 39(3):75–377

    Google Scholar 

  43. Fujimoto JG, Liu JM, Ippen EP (1984) Femtosecond laser interaction with metallic tungsten and non-equilibrium electron and lattice temperatures. Phys Rev Lett 53:1837–1840

    Google Scholar 

  44. Qiu TQ, Tien CL (1992) Short-pulse laser heating on metals. Int J Heat Mass Transf 35:719–726

    Google Scholar 

  45. Qiu TQ, Tien CL (1993) Heat transfer mechanisms during short-pulse laser heating of metals. ASME J Heat Transf 115:835–841

    Google Scholar 

  46. Guyer RA, Krumhansl JA (1966) Solution of the linearized phonon Boltzmann equation. Phys Rev 148:766–780

    Google Scholar 

  47. Quintanilla R, Racke R (2007) Qualitative aspects in dual-phase-lag heat conduction. Proc R Soc Lond Ser A 463:659–674

    MATH  MathSciNet  Google Scholar 

  48. Xu M, Wang L (2005) Dual-phase-lagging heat conduction based on Boltzmann transport equation. Int J Heat Mass Transf 48(25):5616–5624

    MATH  Google Scholar 

  49. Nowacki W (1975) Dynamic problems of thermoelasticity, English Edition. In: Francis PH, Hetnarski RB (eds) Noordhoff Int. Pub, Leyden

    Google Scholar 

  50. Quintanilla R, Racke R (2006) Qualitative aspects in dual-phase-lag thermoelasticity. SIAM J Appl Math 66(3):977–1001

    MATH  MathSciNet  Google Scholar 

  51. Ignaczak J (1982) A note on uniqueness in thermoelasticity with one relaxation time. J Therm Stress 5(3–4):257–264

    MathSciNet  Google Scholar 

  52. Ignaczak J (1963) A completeness problem for stress equations of motion in the linear elasticity theory. Arch Mech Stos 15:225–234

    MATH  MathSciNet  Google Scholar 

  53. Gurtin ME (1964) Variational principles for linear elastodynamics. Arch Ration Mech An 16:34–50

    MATH  MathSciNet  Google Scholar 

  54. Biot MA (1959) New thermomechanical reciprocity relations with application to thermal stress analysis. J Aero Sci 26:401–408

    MATH  MathSciNet  Google Scholar 

  55. Iesan D (1966) Principes variationnels dans la theorie de la thermoelasticite couplee. Ann Sci Univ ‘Al I Cuza’ Iasi Mathematica 12:439–456

    MATH  Google Scholar 

  56. Chiriţă S, Ciarletta M (2010) Reciprocal and variational principles in linear thermoelasticity without energy dissipation. Mech Res Commun 37:271–275

    MATH  Google Scholar 

  57. Mukhopadhyay S, Prasad R, Kumar R (2011) Variational and reciprocal principles in linear theory of type-III thermoelasticity. Math Mech solid 16:435–444

    MATH  MathSciNet  Google Scholar 

  58. Prasad R, Mukhopadhyay S (2011) A variational theorem and reciprocal principle in linear theory of thermoelasticity with dual-phase-lags. Proceedings of national conference on mathematical modelling and computer simulation, Banaras Hindu University, Varanasi, pp 91–95

    Google Scholar 

  59. Nickell R, Sackman J (1968) Variational principles for linear coupled thermoelasticity. Q Appl Math 26:11–26

    MATH  MathSciNet  Google Scholar 

  60. Gurtin ME (1972) The linear theory of elasticity. In: Truesdell C (ed) Flugge’s handbuch der physik, VI a/2nd edn. Springer, Berlin/Heidelberg/New York, pp 1–295

    Google Scholar 

  61. RoyChoudhuri SK (2007) One-dimensional thermoelastic waves in elastic half-space with dual phase-lag effects. J Mech Mater Struct 2(3):489–503

    Google Scholar 

  62. Danilovskaya VI (1950) Thermal stresses in an elastic half-space due to sudden heating on the surface. J Appl Math Mech 14:316–318

    MathSciNet  Google Scholar 

  63. Boley BA, Tolins IS (1962) Transient coupled thermo-elastic boundary value problems in the halfspace. ASME J Appl Mech 29:637–646

    MATH  MathSciNet  Google Scholar 

  64. Dhaliwal RS, Rokne JG (1988) One-dimensional generalized thermo-elastic problem for a half-space. J Therm Stress 11:257–271

    Google Scholar 

  65. Dhaliwal RS, Rokne JG (1989) One dimensional thermal shock problem with two relaxation times. J Therm Stress 12:259–279

    MathSciNet  Google Scholar 

  66. Chandrasekhariah DS, Srinath KS (1996) One-dimensional waves in a thermoelastic half-space without energy dissipation. Int J Eng Sci 34(13):1447–1455

    Google Scholar 

  67. Quintanilla R (2003) A condition on the delay parameters in the one-dimensional dual-phase-lag thermoelastic theory. J Therm Stress 26(7):713–721

    MathSciNet  Google Scholar 

  68. Mukhopadhyay S, Kothari S, Kumar R (2011) A domain of influence theorem for dual phase-lags thermoelasticity. J Therm Stress 34(9):923–933

    Google Scholar 

  69. Prasad R, Kumar R, Mukhopadhyay S (2010) Propagation of harmonic plane waves under thermoelasticity with dual-phase-lags. Int J Eng Sci 48(12):2028–2043

    MATH  MathSciNet  Google Scholar 

  70. Abouelergal AE (2011) Rayleigh waves in a thermoelastic solid half space using dual-phase-lag model. Int J Eng Sci 49:781–791

    Google Scholar 

  71. Mukhopadhyay S, Kumar R (2010) Analysis of phase-lag effects on wave propagation in a thick plate under axisymmetric temperature distribution. Acta Mech 210(3–4):331–344

    MATH  Google Scholar 

  72. Abouelergal AE (2011) Generalized thermoelasticity in an infinite non-homogeneous solid having a spherical cavity using DPL model. Appl Math 2:271–282

    MathSciNet  Google Scholar 

  73. Abouelergal AE (2011) A problem of a semi-infinite medium subjected to exponential heating using a dual-phase-lag thermoelastic model. Appl Math 2:619–624

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Santwana Mukhopadhyay .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this entry

Cite this entry

Mukhopadhyay, S., Kothari, S., Kumar, R. (2014). Dual Phase-Lag Thermoelasticity. In: Hetnarski, R.B. (eds) Encyclopedia of Thermal Stresses. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-2739-7_706

Download citation

Publish with us

Policies and ethics