Skip to main content

A Compact S-Box Design for SMS4 Block Cipher

  • Conference paper
  • First Online:
IT Convergence and Services

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 107))

Abstract

This paper proposes a compact design of SMS4 S-box using combinational logic which is suitable for the implementation in area constraint environments like smart cards. The inversion algorithm of the proposed S-box is based on composite field GF(((22)2)2) using normal basis at all levels. In our approach, we examined all possible normal basis combinations having trace equal to one at each subfield level. There are 16 such possible combinations with normal basis and we have compared the S-box designs based on each case in terms of logic gates it uses for implementation. The isomorphism mapping and inverse mapping bit matrices are fully optimized using greedy algorithm. We prove that our best case reduces the complexity upon the SMS4 S-box design with existing inversion algorithm based on polynomial basis by 15% XOR and 42% AND gates.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Office of State Commercial Cipher Administration of China (2006) SMS4 cipher for WLAN products. http://www.oscca.gov.cn/UpFile/200621016423197990.pdf

  2. Diffie W, Ledin G (2008) SMS4 encryption algorithm for wireless networks. Cryptology ePrint Archive, Report 2008/329 http://eprint.iacr.org/

  3. Liu F, Ji W, Hu L, Ding J, Shuwang L, Pyshkin A, Weinmann RP (2007) Analysis of the SMS4 Block Cipher. In: ACISP, LNCS, vol 4586. Springer, Heidelberg, pp 158–170

    Google Scholar 

  4. Rijmen V (2000) Efficient implementation of the Rijndael S-box www.iaik.tugraz.at/RESEARCH/krypto/AES/old/~rijmen/rijndael/sbox.pdf

  5. Wolkerstorfer J, Oswald E, Lamberger M (2002) An ASIC implementation of the AES Sboxes. In: CT-RSA, LNCS, vol 2271. Springer, Heidelberg, pp 67–78

    Google Scholar 

  6. Rudra A, Dubey P, Jutla C, Kumar V, Rao J, Rohatgi P (2001) Efficient Rijndael encryption implementation with composite field arithmetic. In: CHES 2001, LNCS, Springer, Heidelberg, pp 171–184

    Google Scholar 

  7. Satoh A, Morioka S, Takano K, Munetoh S (2001) A compact Rijndael hardware architecture with S-box optimization. In: ASIACRYPT 2001, LNCS, vol 2248. Springer, Heidelberg, pp 239–254

    Google Scholar 

  8. Mentens N, Batina L, Preneel B, Verbauwhede I (2005) A systematic evaluation of compact hardware implementations for the Rijndael S-box. In: CT-RSA, LNCS, vol 3376. Springer, Heidelberg, pp 323–333

    Google Scholar 

  9. Canright D (2004) A very compact Rijndael S-box.Technical Report NPS-MA-04-001. Naval Postgraduate School (September) http://web.nps.navy.mil/∼dcanrig/pub/NPS-MA-05-001.pdf

  10. Bai X, Xu Y, Guo L (2008) Securing SMS4 Cipher against differential power analysis and its VLSI implementation. In: ICCS

    Google Scholar 

  11. Erickson J, Ding J, Christensen C (2009) Algebraic cryptanalysis of SMS4: Grobner basis attack and SAT attack compared. In: ICISC

    Google Scholar 

  12. Lidl R, Niederreiter H (1986) Introduction to finite fields and their applications. Cambridge University Press, New York

    Google Scholar 

  13. Deschamps J, Sutter G, Imana J (2009) Hardware Implementation of Finite Field Arithmetic. McGraw-Hill Professional. ISBN: 978-0-07-154582-2

    Google Scholar 

  14. Paar C (1994) Efficient VLSI architectures for bit parallel computation in Galois fields. Ph.D thesis, Institute for Experimental Mathematics, University of Essen

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Imran Abbasi .

Editor information

Editors and Affiliations

Appendices

Appendix A: GF(28) Representation for Sms4 S-Box

The Table A.1 gives the decimal, hexadecimal and binary values of the GF(28) generated modulo irreducible primitive polynomial f(x) = x8 + x7 + x6 + x5 + x4 + x2 + 1. Let A be the root of f(x) then the field generated with respective names of elements is as below.

Dec

Hex

Binary

θi

Name

Dec

Hex

Binary

θi

Name

0

00

00000000

–

0

39

27

00100111

θ187

β4

1

01

00000001

θ0

1

40

28

00101000

θ16

A16

2

02

00000010

θ1

A

41

29

00101001

θ104

G8

3

03

00000011

θ134

G128

42

2A

00101010

θ153

γ8

4

04

00000100

θ2

A2

43

2B

00101011

θ119

β8

5

05

00000101

θ13

G

44

2C

00101100

θ176

F16

6

06

00000110

θ135

H128

45

2D

00101101

θ223

q32

7

07

00000111

θ76

J4

46

2E

00101110

θ169

b2

8

08

00001000

θ3

B

47

2F

00101111

θ114

d128

9

09

00001001

θ210

a16

48

30

00110000

θ138

K128

10

0A

00001010

θ14

D2

49

31

00110001

θ250

n

11

0B

00001011

θ174

g16

50

32

00110010

θ241

m2

12

0C

00001100

θ 136

α 8

51

33

00110011

θ160

C32

13

0D

00001101

θ 34

α 2

52

34

00110100

θ36

E4

14

0E

00001110

θ77

b16

53

35

00110101

θ82

P16

15

0F

00001111

θ147

d4

54

36

00110110

θ90

a2

16

10

00010000

θ4

A4

55

37

00110111

θ96

B32

17

11

00010001

θ26

G2

56

38

00111000

θ79

k16

18

12

00010010

θ211

k4

57

39

00111001

θ47

j16

19

13

00010011

θ203

j4

58

3A

00111010

θ54

N2

20

14

00010100

θ15

H

59

3B

00111011

θ220

e32

21

15

00010101

θ152

J8

60

3C

00111100

θ149

Q128

22

16

00010110

θ175

n16

61

3D

00111101

θ50

M2

23

17

00010111

θ168

K8

62

3E

00111110

θ10

C2

24

18

00011000

θ137

J128

63

3F

00111111

θ31

m32

25

19

00011001

θ240

H16

64

40

01000000

θ6

B2

26

1A

00011010

θ35

M32

65

41

01000001

θ165

a32

27

1B

00011011

θ89

Q8

66

42

01000010

θ144

E16

28

1C

00011100

θ78

d16

67

43

01000011

θ73

P64

29

1D

00011101

θ53

b64

68

44

01000100

θ28

D4

30

1E

00011110

θ148

P4

69

45

01000101

θ93

g32

31

1F

00011111

θ9

E

70

46

01000110

θ111

l16

32

20

00100000

θ5

C

71

47

01000111

θ184

L8

33

21

00100001

θ143

m16

72

48

01001000

θ213

g2

34

22

00100010

θ27

N

73

49

01001001

θ193

D64

35

23

00100011

θ110

e16

74

4A

01001010

θ58

f64

36

24

00100100

θ212

b

75

4B

01001011

θ181

c2

37

25

00100101

θ57

d64

76

4C

01001100

θ205

e2

38

26

00100110

θ204

γ4

77

4D

01001101

θ99

N32

78

4E

01001110

θ188

j64

123

7B

01111011

θ238

β

79

4F

01001111

θ61

k64

124

7C

01111100

θ11

F

80

50

01010000

θ 17

α

125

7D

01111101

θ253

q2

81

51

01010001

θ 68

α 4

126

7E

01111110

θ32

A32

82

52

01010010

θ105

a8

127

7F

01111111

θ208

G16

83

53

01010011

θ129

B128

128

80

10000000

θ7

D

84

54

01010100

θ154

b32

129

81

10000001

θ87

g8

85

55

01010101

θ39

d8

130

82

10000010

θ166

b8

86

56

01010110

θ120

H8

131

83

10000011

θ201

d2

87

57

01010111

θ196

J64

132

84

10000100

θ145

M16

88

58

01011000

θ177

N16

133

85

10000101

θ172

Q4

89

59

01011001

θ230

e

134

86

10000110

θ74

P2

90

5A

01011010

θ224

D32

135

87

10000111

θ132

E128

91

5B

01011011

θ234

g

136

88

10001000

θ29

f32

92

5C

01011100

θ 170

λ 2

137

89

10001001

θ218

c

93

5D

01011101

θ 85

λ

138

8A

10001010

θ94

j32

94

5E

01011110

θ115

e128

139

8B

10001011

θ158

k32

95

5F

01011111

θ216

N8

140

8C

10001100

θ112

D16

96

60

01100000

θ139

L128

141

8D

10001101

θ117

g128

97

61

01100001

θ246

l

142

8E

10001110

θ185

e64

98

62

01100010

θ251

q4

143

8F

10001111

θ108

N4

99

63

01100011

θ22

F2

144

90

10010000

θ214

c8

100

64

01100100

θ242

j

145

91

10010001

θ232

f

101

65

01100101

θ244

k

146

92

10010010

θ194

F64

102

66

01100110

θ161

G32

147

93

10010011

θ127

q128

103

67

01100111

θ64

A64

148

94

10010100

θ 59

h 64

104

68

01101000

θ37

P

149

95

10010101

θ 179

h 4

105

69

01101001

θ66

E64

150

96

10010110

θ182

c64

106

6A

01101010

θ83

b4

151

97

10010111

θ71

f8

107

6B

01101011

θ228

d

152

98

10011000

θ 206

h 16

108

6C

01101100

θ91

c32

153

99

10011001

θ 236

h

109

6D

01101101

θ163

f4

154

9A

10011010

θ100

M4

110

6E

01101110

θ97

F32

155

9B

10011011

θ43

Q

111

6F

01101111

θ191

q64

156

9C

10011100

θ189

l64

112

70

01110000

θ80

C16

157

9D

10011101

θ226

L32

113

71

01110001

θ248

m

158

9E

10011110

θ62

m64

114

72

01110010

θ48

B16

159

9F

10011111

θ20

C4

115

73

01110011

θ45

a

160

A0

10100000

θ18

E2

116

74

01110100

θ55

e8

161

A1

10100001

θ41

P8

117

75

01110101

θ141

N128

162

A2

10100010

θ69

K64

118

76

01110110

θ221

β2

163

A3

10100011

θ125

n128

119

77

01110111

θ102

γ2

164

A4

10100100

θ106

b128

120

78

01111000

θ150

a128

165

A5

10100101

θ156

d32

121

79

01111001

θ24

B8

166

A6

10100110

θ130

C128

122

7A

01111010

θ51

γ

167

A7

10100111

θ199

m8

168

A8

10101000

θ155

e4

212

D4

11010100

θ84

K4

169

A9

10101001

θ198

N64

213

D5

11010101

θ215

n8

170

AA

10101010

θ40

C8

214

D6

11010110

θ229

j2

171

AB

10101011

θ124

m128

215

D7

11010111

θ233

k2

172

AC

10101100

θ121

j128

216

D8

11011000

θ92

L4

173

AD

10101101

θ122

k128

217

D9

11011001

θ183

l8

174

AE

10101110

θ197

L64

218

DA

11011010

θ164

P32

175

AF

10101111

θ123

l128

219

DB

11011011

θ72

E8

176

B0

10110000

θ178

Q16

220

DC

11011100

θ98

J32

177

B1

10110001

θ70

M64

221

DD

11011101

θ60

H4

178

B2

10110010

θ 231

p 8

222

DE

11011110

θ192

B64

179

B3

10110011

θ 126

p 128

223

DF

11011111

θ180

a4

180

B4

10110100

θ225

H32

224

E0

11100000

θ81

K16

181

B5

10110101

θ19

J

225

E1

11100001

θ95

n32

182

B6

10110110

θ235

n4

226

E2

11100010

θ 249

p 2

183

B7

10110111

θ42

K2

227

E3

11100011

θ 159

p 32

184

B8

10111000

θ171

g4

228

E4

11100100

θ49

J16

185

B9

10111001

θ131

D128

229

E5

11100101

θ30

H2

186

BA

10111010

θ86

Q2

230

E6

11100110

θ46

L2

187

BB

10111011

θ200

M8

231

E7

11100111

θ219

l4

188

BC

10111100

θ116

f128

232

E8

11101000

θ56

D8

189

BD

10111101

θ107

c4

233

E9

11101001

θ186

g64

190

BE

10111110

θ 217

h 2

234

EA

11101010

θ142

f16

191

BF

10111111

θ 157

h 32

235

EB

11101011

θ109

c128

192

C0

11000000

θ140

M128

236

EC

11101100

θ222

l32

193

C1

11000001

θ101

Q32

237

ED

11101101

θ113

L16

194

C2

11000010

θ247

q8

238

EE

11101110

θ 103

h 8

195

C3

11000011

θ44

F4

239

EF

11101111

θ 118

h 128

196

C4

11000100

θ 252

p

240

F0

11110000

θ151

j8

197

C5

11000101

θ 207

p 16

241

F1

11110001

θ167

k8

198

C6

11000110

θ23

L

242

F2

11110010

θ25

M

199

C7

11000111

θ237

l2

243

F3

11110011

θ202

Q64

200

C8

11001000

θ 243

p 4

244

F4

11110100

θ52

G4

201

C9

11001001

θ 63

p 64

245

F5

11110101

θ8

A8

202

CA

11001010

θ245

n2

246

F6

11110110

θ239

q16

203

CB

11001011

θ21

K

247

F7

11110111

θ88

F8

204

CC

11001100

θ162

K32

248

F8

11111000

θ12

B4

205

CD

11001101

θ190

n64

249

F9

11111001

θ75

a64

206

CE

11001110

θ65

C64

250

FA

11111010

θ254

q

207

CF

11001111

θ227

m4

251

FB

11111011

θ133

F128

208

D0

11010000

θ38

J2

252

FC

11111100

θ33

E32

209

D1

11010001

θ195

H64

253

FD

11111101

θ146

P128

210

D2

11010010

θ67

G64

254

FE

11111110

θ209

f2

211

D3

11010011

θ128

A128

255

FF

11111111

θ173

c16

The minimal polynomials over GF(2) and their respective conjugate roots in terms of θi are presented in the following Table A.2.

Name

Minimal polynomial

Conjugate roots (θi )

1

x + 1

θ0

λ

x2 + x + 1

θ85, θ170

α

x4 + x + 1

θ17, θ34, θ68, θ136

β

x4 + x3 + 1

θ238, θ221, θ187, θ119

γ

x4 + x3 + x2 + x + 1

θ51, θ102, θ204, θ153

A

x8 + x7 + x6 + x5 + x4 + x2 + 1

θ1, θ2, θ4, θ8, θ16, θ32, θ64, θ128

B

x8 + x7 + x5 + x4 + x3 + x2 + 1

θ3, θ6, θ12, θ24, θ48, θ96, θ192, θ129

C

x8 + x4 + x3 + x + 1

θ5, θ10, θ20, θ40, θ80, θ160, θ65, θ130

D

x8 + x6 + x5 + x4 + 1

θ7, θ14, θ28, θ56, θ112, θ224, θ193, θ131

E

x8 + x5 + x4 + x3 + x2 + x + 1

θ9, θ18, θ36, θ72, θ144, θ33, θ66, θ132

F

x8 + x6 + x3 + x2 + 1

θ11, θ22, θ44, θ88, θ176, θ97, θ194, θ133

G

x8 + x7 + x3 + x2 + 1

θ13, θ26, θ52, θ104, θ208, θ161, θ67, θ134

H

x8 + x5 + x4 + x3 + 1

θ15, θ30, θ60, θ120, θ240, θ225, θ195, θ135

J

x8 + x5 + x3 + x2 + 1

θ19, θ38, θ76, θ152, θ49, θ98, θ196, θ137

K

x8 + x7 + x6 + x4 + x3 + x2 + 1

θ21, θ42, θ84, θ168, θ81, θ162, θ69, θ138

L

x8 + x7 + x2 + x + 1

θ23, θ46, θ92, θ184, θ113, θ226, θ197, θ139

M

x8 + x7 + x4 + x3 + x2 + 1

θ25, θ50, θ100, θ200, θ145, θ35, θ70, θ140

N

x8 + x7 + x3 + x + 1

θ27, θ54, θ108, θ216, θ177, θ99, θ198, θ141

P

x8 + x5 + x3 + x + 1

θ37, θ74, θ148, θ41, θ82, θ164, θ73, θ146

Q

x8 + x7 + x6 + x5 + x2 + x + 1

θ43, θ86, θ172, θ89, θ178, θ101, θ202, θ149

a

x8 + x7 + x6 + x4 + x2 + x + 1

θ45, θ90, θ180, θ105, θ210, θ165, θ75, θ150

b

x8 + x7 + x6 + x3 + x2 + x + 1

θ212, θ169, θ83, θ166, θ77, θ154, θ53, θ106

c

x8 + x7 + x5 + x3 + 1

θ218, θ181, θ107, θ214, θ173, θ91, θ182, θ109

d

x8 + x7 + x5 + x + 1

θ228, θ201, θ147, θ39, θ78, θ156, θ57, θ114

e

x8 + x7 + x6 + x5 + x4 + x + 1

θ230, θ205, θ155, θ55, θ110, θ220, θ185, θ115

f

x8 + x7 + x6 + x + 1

θ232, θ209, θ163, θ71, θ142, θ29, θ58, θ116

g

x8 + x6 + x5 + x4 + x2 + x + 1

θ234, θ213, θ171, θ87, θ174, θ93, θ186, θ117

h

x8 + x6 + x5 + x3 + 1

θ236, θ217, θ179, θ103, θ206, θ157, θ59, θ118

j

x8 + x6 + x5 + x + 1

θ242, θ229, θ203, θ151, θ47, θ94, θ188, θ121

k

x8 + x6 + x5 + x2 + 1

θ244, θ233, θ211, θ167, θ79, θ158, θ61, θ122

l

x8 + x7 + x6 + x5 + x4 + x3 + 1

θ246, θ237, θ219, θ183, θ111, θ222, θ189, θ123

m

x8 + x4 + x3 + x2 + 1

θ248, θ241, θ227, θ199, θ143, θ31, θ62, θ124

n

x8 + x7 + x5 + x4 + 1

θ250, θ245, θ235, θ215, θ175, θ95, θ190, θ125

p

x8 + x6 + x5 + x4 + x3 + x + 1

θ252, θ249, θ243, θ231, θ207, θ159, θ63, θ126

q

x8 + x6 + x4 + x3 + x2 + x + 1

θ254, θ253, θ251, θ247, θ239, θ223, θ191, θ127

Appendix B: Tables for GF(24) Computations

The Table B.1 gives the decimal, hexadecimal and binary values of the GF(24) generated modulo irreducible primitive polynomial g(x) = x4 + x + 1. Let α be the root of g(x) then the field generated with respective names of elements is as below.

Dec

Hex

ANF Ωi

Bin Ωi

Ωi

Name

0

00

0

0000

–

0

1

01

x

0001

Ω0

1

2

02

x2

0010

Ω1

α

3

03

x + 1

0011

Ω4

α4

4

04

x2

0100

Ω2

α2

5

05

x2 + 1

0101

Ω8

α8

6

06

x2 + x

0110

Ω5

λ

7

07

x2 + x + 1

0111

Ω10

λ2

8

08

x3

1000

Ω3

γ

9

09

x3 + 1

1001

Ω14

β

10

0A

x3 + x

1010

Ω9

γ8

11

0B

x3 + x + 1

1011

Ω7

β8

12

0C

x3 + x2

1100

Ω6

γ2

13

0D

x3 + x2 + 1

1101

Ω13

β2

14

0E

x3 + x2 + x

1110

Ω11

β4

15

0F

x3 + x2 + x + 1

1111

Ω12

γ4

The Table B.2 below gives the minimal polynomials over GF(2) and their respective conjugate roots in terms of Ωi are presented using irreducible primitive polynomial g(x) = x4 + x + 1.

Name

Minimal polynomial

Conjugate roots (θi )

1

x + 1

Ω0

λ

x2 + x + 1

Ω5, Ω10

α

x4 + x + 1

Ω, Ω2, Ω4, Ω8

β

x4 + x3 + 1

Ω14, Ω13, Ω11, Ω7

γ

x4 + x3 + x2 + x + 1

Ω3, Ω6, Ω12, Ω9

The addition Table B.3 in GF(16) using the naming convention in Table A.1 is given below.

⊕

0

1

α

α2

γ

α4

λ

γ2

β8

α8

γ8

λ2

β4

γ4

β2

β

0

0

1

α

α2

γ

α4

λ

γ2

β8

α 8

γ8

λ 2

β4

γ4

β2

β

1

1

0

α4

α8

β

α

λ2

β2

γ8

α2

β8

λ

γ4

β4

γ2

γ

α

α

α4

0

λ

γ8

1

α2

β4

β

λ2

γ

α8

γ2

β2

γ4

β8

α2

α2

α8

λ

0

γ2

λ2

α

γ

γ4

1

β4

α4

γ8

β8

β

β2

γ

γ

β

γ8

γ2

0

β8

β4

α2

α4

β2

α

γ4

λ

λ2

α8

1

α4

α4

α

1

λ2

β8

0

α8

γ4

γ

λ

β

α2

β2

γ2

β4

γ8

λ

λ

λ2

α2

α

β4

α8

0

γ8

β2

α4

γ2

1

γ

β

β8

γ4

γ2

γ2

β2

β4

γ

α2

γ4

γ8

0

λ2

β

λ

β8

α

α4

1

α8

β8

β8

γ8

β

γ4

α4

γ

β2

λ2

0

β4

1

γ2

α8

α2

λ

α

α8

α8

α2

λ2

1

β2

λ

α4

β

β4

0

γ4

α

β8

γ8

γ

γ2

γ8

γ8

β8

γ

β4

α

β

γ2

λ

1

γ4

0

β2

α2

α8

λ2

α4

λ2

λ2

λ

α8

α4

γ4

α2

1

β8

γ2

α

β2

0

β

γ

γ8

β4

β4

β4

γ4

γ2

γ8

λ

β2

γ

α

α8

β8

α2

β

0

1

α4

λ2

γ4

γ4

β4

β2

β8

λ2

γ2

β

α4

α2

γ8

α8

γ

1

0

α

λ

β2

β2

γ2

γ4

β

α8

β4

β8

1

λ

γ

λ2

γ8

α4

α

0

α2

β

β

γ

β8

β2

1

γ8

γ4

α8

α

γ2

α4

β4

λ2

λ

α2

0

The multiplication Table B.4 in GF(16) is given as below.

⊗

0

1

α

α2

γ

α4

λ

γ2

β8

α8

γ8

λ2

β4

γ4

β2

β

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

0

1

α

α2

γ

α4

λ

γ2

β8

α8

γ8

λ2

β4

γ4

β2

β

α

0

α

α2

γ

α4

λ

γ2

β8

α8

γ8

λ2

β4

γ4

β2

β

1

α2

0

α2

γ

α4

λ

γ2

β8

α8

γ8

λ2

β4

γ4

β2

β

1

α

γ

0

γ

α4

λ

γ2

β8

α8

γ8

λ2

β4

γ4

β2

β

1

α

α2

α4

0

α4

λ

γ2

β8

α8

γ8

λ2

β4

γ4

β2

β

1

α

α2

γ

λ

0

λ

γ2

β8

α8

γ8

λ2

β4

γ4

β2

β

1

α

α2

γ

α4

γ2

0

γ2

β8

α8

γ8

λ2

β4

γ4

β2

β

1

α

α2

γ

α4

λ

β8

0

β8

α8

γ8

λ2

β4

γ4

β2

β

1

α

α2

γ

α4

λ

γ2

α8

0

α8

γ8

λ2

β4

γ4

β2

β

1

α

α2

γ

α4

λ

γ2

β8

γ8

0

γ8

λ2

β4

γ4

β2

β

1

α

α2

γ

α4

λ

γ2

β8

α8

λ2

0

λ2

β4

γ4

β2

β

1

α

α2

γ

α4

λ

γ2

β8

α8

γ8

β4

0

β4

γ4

β2

β

1

α

α2

γ

α4

λ

γ2

β8

α8

γ8

λ2

γ4

0

γ4

β2

β

1

α

α2

γ

α4

λ

γ2

β8

α8

γ8

λ2

β4

β2

0

β2

β

1

α

α2

γ

α4

λ

γ2

β8

α8

γ8

λ2

β4

γ4

β

0

β

1

α

α2

γ

α4

λ

γ2

β8

α8

γ8

λ2

β4

γ4

β2

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this paper

Cite this paper

Abbasi, I., Afzal, M. (2011). A Compact S-Box Design for SMS4 Block Cipher. In: Park, J., Arabnia, H., Chang, HB., Shon, T. (eds) IT Convergence and Services. Lecture Notes in Electrical Engineering, vol 107. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-2598-0_69

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-2598-0_69

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-007-2597-3

  • Online ISBN: 978-94-007-2598-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics