Skip to main content

Photodynamic Therapy

  • Chapter
  • First Online:
Radiation Damage in Biomolecular Systems

Abstract

Treatments based on absorption of electromagnetic radiation may be categorized according to the photon wavelength range. On the one hand, radiotherapy is based on X-rays delivery to tissues and is widely spread and recognized for cancer treatment. On the other hand, photodynamic therapy (PDT) involves low energy radiation in the visible and near infrared range in combination with a drug referred to as the photosensitizer. A short overview of conventional radiotherapy and accelerator-based therapy is first presented. Then PDT is introduced and its mechanisms are reviewed along with the factors affecting its outcome. The domains of application of this therapy are presented through a discussion of the most used photosentizers. Finally we present new developments in the field that would permit the combination of potentialized radiotherapy and photodynamic therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ortega R, Bohic S, Tucoulou R, Somogyi A, Deves G, Anal Chem 76(2): 309–314 (2004)

    Article  Google Scholar 

  2. Modok S, Scott R, Alderden RA, Hall MD, Mellor HR, Bohic S, Roose T, Hambley TW, Callaghan R, Br J Cancer 97(2): 194–200 (2007)

    Article  Google Scholar 

  3. Fisher SE, Chalmers JM, Marcelli A, Byrne HJ, Lyng F, Lasch P, Miller LM, Dumas P, Gardner P, Moss D, Biomedical applications of synchrotron infrared microspectroscopy: A practical approach. In: Moss D (ed.) RSC Analytical Spectroscopy Series. (2010)

    Google Scholar 

  4. Chio-Srichan S, Refregiers M, Jamme F, Kascakova S, Rouam V, Dumas P, Biochim Biophys Acta 1780(5): 854–860 (2008)

    Article  Google Scholar 

  5. Mamoon AM, Gamal-Eldeen AM, Ruppel ME, Smith RJ, Tsang T, Miller LM, Photodiagnosis Photodyn Ther 6(2): 105–116 (2009)

    Article  Google Scholar 

  6. Buriankova L, Nadova Z, Jancura D, Refregiers M, Yousef I, Mikes J, Miskovsky P, Laser Physics Letters 7(8): 613–620 (2010)

    Article  ADS  Google Scholar 

  7. Dahele M, Senan S, J R Coll Physicians Edinb 40(2): 136–143 (2010)

    Article  Google Scholar 

  8. Webb S, Br J Radiol 78: S64–S72 (2005)

    Google Scholar 

  9. Bhide SA, Nutting CM, BMC Med 8: 25 (2010)

    Article  Google Scholar 

  10. Skowronska-Gardas A, Pedziwiatr K, Chojnacka M, Radiother Oncol 70: 269–273 (2004)

    Article  Google Scholar 

  11. Moretti R, Torre P, Antonello RM, Cattaruzza T, Cazzato G, Bava A, Ukmar M, Korczyn AD, J Neurol Sci 229–230: 195–200 (2005)

    Article  Google Scholar 

  12. Toogood AA, Growth Horm IGF Res (Suppl A) 14: 118–124 (2004)

    Google Scholar 

  13. Ng WK, Curr Diagn Pathol 9: 124–136 (2003)

    Article  Google Scholar 

  14. St George EJ, Kudhail J, Perks J, Plowman PN, J Neurosurg 97: 631–634 (2002)

    Google Scholar 

  15. Levegrun S, Hof H, Essig M, Schlegel W, Debus J, Int J Radiat Oncol Biol Phys 59(3): 796–808 (2004)

    Article  Google Scholar 

  16. Slatkin DN, Spanne P, Dilmanian FA, Sandborg M, Med Phys 19: 1395–1400 (1992)

    Article  Google Scholar 

  17. Slatkin DN, Spanne P, Dilmanian FA, Gebbers JO, Laissue JA, Proc Nat Acad Sci USA 92(19): 8783–8787 (1995)

    Article  ADS  Google Scholar 

  18. Thomlinson W, Berkvens P, Berruyer B, Blattmann H, Brauer-Krisch E, Brochard T, Charvet AM et al, Cell Mol Biol 46(6): 1053–1063 (2000)

    Google Scholar 

  19. Brauer-Krisch E, Requardt H, Regnard P, Corde S, Siegbahn E, Leduc G, Brochard T, Blattmann H, Laiissue J, Bravin A, Phys Med Biol 50:3103–3111 (2005)

    Article  Google Scholar 

  20. Serduc R, Verant P, Vial JC, farion R, Rocas L, Remy C, Fadlallah T, Brauer E, Bravin A, Laissue J, Blattmann H, van der Sanden B, Int J Radiat Oncol Biol Phys 64: 1519–1527 (2006)

    Google Scholar 

  21. Serduc R, van de Looij Y, Francony G, Verdonck O, van der Sanden B, Laissue J, Farion R, Brauer-Krisch E et al, Phys Med Biol 53: 1153–1166 (2008)

    Article  Google Scholar 

  22. Dilmanian FA, Qu Y, Liu S, Cool CD, Gilbert J, Hainfeld JF, Kruse CA, Laterra J, Lenihan D, Nawrocky MM, Pappas G et al, Nucl Instrum Methods Phys Res A 548(1–2): 30–37 (2005)

    Article  ADS  Google Scholar 

  23. Laissue JA, Geiser G, Spanne PO, Dilmanian FA, Gebbers JO, Geiser M, Wu XY, Makar MS, Micca PL, Nawrocky MM, Joel DD, Slatkin DN, Int J Cancer 78(5): 654–660 (1998)

    Article  Google Scholar 

  24. Dilmanian FA, Zhong Z, Bacarian T, Benveniste H, Romanelli P, Wang R, Welwart J, Yuasa T, Rosen EM, Anschel DJ, Proc Natl Acad Sci USA 103(25): 9709–9714 (2006)

    Article  ADS  Google Scholar 

  25. Norman A, Iwamoto KS, Cochran ST, Invest Radiol 26: 120–121 (1991)

    Google Scholar 

  26. Mesa AV, Norman A, Solberg TD, Demarco JJ, Smathers JB, Phys Med Biol 44: 1955–1968 (1999)

    Article  Google Scholar 

  27. Douple EB, Richmond RC, Br J Cancer Suppl 3: 98–102 (1978)

    Google Scholar 

  28. Techer BA, Holden SA, Radiat Res 109(1): 58–67 (1987)

    Article  ADS  Google Scholar 

  29. Hall MD, Dillon CT, Zhang M, Beale P, Cai Z, Lai B, Stampfl AP, Hambley TW, J Biol Inorg Chem 8(7): 726–732 (2003)

    Article  Google Scholar 

  30. Ferrer S, Med Clin (Barc) 124(7): 271–273 (2005)

    Google Scholar 

  31. Bencokova Z, Balosso J, Foray N, J Synchrotron Radiat 15(Pt1): 74–85 (2008)

    Google Scholar 

  32. Biston MC, Joubert A, Adam JF, Elleaume H, Bohic S, Charvet AM, Esteve F, Foray N, Balosso J, Cancer res 64(7): 2317–2323 (2004)

    Article  Google Scholar 

  33. Rousseau J, Barth RF, Fernandez M, Adam JF, Balosso J, Esteve F, Elleaume H, J Neurooncol 98(3): 287–295 (2010)

    Article  Google Scholar 

  34. Boudou C, Balosso J, Esteve F, Elleaume, Phys Med Biol 50: 4841–4851 (2005)

    Article  Google Scholar 

  35. De Stasio G, Rajesh D, Ford JM, Daniels MJ, Erhardt RJ, Frazer BH, Tyliszczak T, Gilles MK, Conhaim RL, Howard SP, Fowler JF, Esteve F, Mehta MP, Clin Cancer Res 12(1): 206–213 (2006)

    Article  Google Scholar 

  36. Regnard P, Brauer-Krisch E, Tropes I, Keyrilainen J, Bravin A, Le Duc G, Eur J Radiol 68(3 Suppl): S151–S155 (2008)

    Article  Google Scholar 

  37. Prezado Y, Fois G, Le Duc G, Bravin A, Med Phys 36(8): 3568–3574 (2009)

    Article  Google Scholar 

  38. Deman P, Edouard M, Besse S, Vautrin M, Elleaume H, Adam JF, Esteve F, La Revue de Medecine Interne 31(8): 586–589 (2010)

    Article  Google Scholar 

  39. Wagner HP, Support Care Cancer 7: 293–294 (1999)

    Article  Google Scholar 

  40. Ribi K, Relly C, Landolt MA, Alber FD, Boltshauser E, Grotzer MA, Neuropediatrics 36: 357–365 (2005)

    Article  Google Scholar 

  41. Hasan T., Ortel B, Solban N, Pogue B, Photodynamic therapy of cancer. In: Kufe, Bast, Hait, Hong, Pollock, Weichselbaum et al (ed.) Cancer medicine, 7th edn. Hamilton (Ontario): B. C. Decker, Inc. (2006)

    Google Scholar 

  42. Dougherty TJ, J Clin Laser Med Surg 20: 3–7 (2002)

    Article  Google Scholar 

  43. Hamblin MR, Mroz P, Advances in photodynamic therapy: basic, translational and clinical, Artech House, Norwood (2008)

    Google Scholar 

  44. MacDonald IJ, Dougherty TJ, J Porph Pthalocyn 5(2): 105–129 (2001)

    Article  MathSciNet  Google Scholar 

  45. Hamblin MR, Mroz P, History of PDT: The first hundred years. In: Hamblin MR and Mroz P (ed.) Advances in photodynamic therapy: basic, translational and clinical, Artech House, Norwood (2008)

    Google Scholar 

  46. Doughery TJ, Henderson BW, Gomer CJ, Jori G, Kessel D, Korbelik M, Moan J, Peng Q, J Natl Cancer Inst 90 (12): 889–905 (1998)

    Article  Google Scholar 

  47. Raab C (1900) Uber die wirkung fluoreszierender stoffe auf infusoria. Z Biol 39: 524–526

    Google Scholar 

  48. Brown SB, Brown EA, Walker I, Lancet Oncol 5: 497–508 (2004)

    Article  Google Scholar 

  49. Wilson BC, Patterson MS, Phys Med Biol 53: R61–R109 (2008)

    Article  ADS  Google Scholar 

  50. Redmond RW, Photophysics and photochemistry in photodynamic therapy. In: Hamblin MR and Mroz P (ed.) Advances in photodynamic therapy: basic, translational and clinical, Artech House, Norwood (2008)

    Google Scholar 

  51. Foote CS, Mechanisms of photo-oxydation. In: Doiron DR, Gomer CJ (ed.) Porphyrin localization and treatment of tumours, Alain R. Liss, New York (1984)

    Google Scholar 

  52. Park J, English DS, Wannemuehler S, Carpenter S, Petrich JW, Photochem Photobiol 68: 593–597 (1998)

    Article  Google Scholar 

  53. Gai F, Fehr MJ, Petrich JW, J Am Chem Soc 115: 3384–3385 (1993)

    Article  Google Scholar 

  54. Sureau F, Miskovsky P, Chinsky L, Turpin PY, J Am Chem Soc 118: 9484–9487 (1996)

    Article  Google Scholar 

  55. Mirossay L, Mirossay A, Kocisova E, Radvakova I, Miskovsky P, Mojzis J, Physiol Res 48(2): 135–141 (1999)

    Google Scholar 

  56. Kocanova S, Miskovsky P, Hornakova T, Hritz J, Jancura D, Chorvat D, Mateasik A, Ulicny J, Refregiers M, Maurizot JC, Photochem Photobiol 82(3): 720–728 (2006)

    Article  Google Scholar 

  57. Miskovsky P, Current Drug Targets 3: 55–84 (2002)

    Article  Google Scholar 

  58. Moan J, J Photochem Photobiol B: Biol 6: 343–344 (1990)

    Article  Google Scholar 

  59. Moan J, Berg K, Photochem Photobiol 53: 549–553 (1991)

    Article  Google Scholar 

  60. Bressler NM, Arch Opthalomology 119: 198–207 (2001)

    Google Scholar 

  61. Gomer CJ, Luna M, Ferrario A, Wong S, Fisher AM, Rucker N, J Clin Laser Med Surg 14: 315–321 (1996)

    Google Scholar 

  62. Dolmans DEJGJ, Fukumura D, Jain RK, Nat Rev Cancer 3: 380–387 (2003)

    Article  Google Scholar 

  63. Ethirajan M, Saenz C, Gupta A, Dobhal MP, Pandey RK, Photosensitizers for photodynamic therapy and imaging In: Hamblin MR and Mroz P (ed.) Advances in photodynamic therapy: basic, translational and clinical, Artech House, Norwood (2008)

    Google Scholar 

  64. Star WM, Phys Med Biol 42(5): 763–787 (1997)

    Google Scholar 

  65. Schmidt-Erfurth U, Miller JW, Sickenberg M et al, Arch Ophthalmology 117: 1177–1187 (1999)

    Google Scholar 

  66. Allison RR, Downie GH, Cuenca R, Hu XH, Childs CJH, Sibata C, Photodiagnosis and Photodynamic Therapy 1: 27–42 (2004)

    Article  Google Scholar 

  67. Jones HJ, Vernon DI, Brown SB, Br J Cancer 89: 398–404 (2003)

    Article  Google Scholar 

  68. Grosjean P, Savary J, Wagniers G, Lasers Med Sci 8: 235–243 (1993)

    Article  Google Scholar 

  69. Kascakova S, Kruijt B, de Bruijn HS, van der Ploeg-van den Heuvel A, Robinson DJ, Sterenborg HJCM, Amelink A, J Photochem Photobiol B: Biol 91: 99–107 (2008)

    Article  Google Scholar 

  70. Kascakova S, de Visscher S, Kruijt B, de Bruijn HS, van der Ploeg-van den Heuvel A, Sterenborg HJCM, Witjes MJH, Amelink A, Robinson DJ, Lasers Med Sci, in press

    Google Scholar 

  71. Triesscheijn M, Ruevekamp M, Out R, van Berkel TJC, Schellens J, Baas P, Stewart FA, Cancer Chemother Pharmacol 60: 113–122 (2007)

    Article  Google Scholar 

  72. Del Governatore M, Hamblin MR, Shea ChR, Rizvi I, Molpus KG, Tanabe KK, Hasan T, Cancer Res 60: 4200–4205 (2000)

    Google Scholar 

  73. Del Governatore M, Hamblin MR, Piccinini EE, Ugolini G, Hasan T, British Journal of Cancer 82(1): 56–64 (2000)

    Article  Google Scholar 

  74. Oseroff AR, Ohuoha D, Hasan T, Bommer JC, Yarmush ML, Proc Natl Acad Sci USA 83: 8744–8748 (1986)

    Article  ADS  Google Scholar 

  75. Soukos NS, Hamblin MR, Keel S, Fabian RL, Deutsch TF, Hasan T, Cancer Res 61: 4490–4496 (2001)

    Google Scholar 

  76. Chen B, Pogue BW, Hoopes PJ, Hasan T, Crit Rev Eukaryot Gene Expr 16(4): 279–305 (2006)

    MATH  Google Scholar 

  77. Sharman WM, van Lier JE, Allen CM, Advanced Drug Delivery Reviews 56: 53–76 (2004)

    Article  Google Scholar 

  78. Rosenkranz AA, Jans DA, Sobolev AS, Immunol Cell Biol 78: 452–464 (2000)

    Article  Google Scholar 

  79. Kascakova S, Nadova Z, Mateasik A, Mikes J, Huntosova V, Refregiers M, Sureau F, Maurizot JC, Miskovsky P, Jancura D, Photochem Photobiol 84: 120–127 (2008)

    Google Scholar 

  80. Kascakova S, Refregiers M, Jancura D, Sureau F, Maurizot JC, Miskovsky P, Photochem Photobiol 81: 1395–1403 (2005)

    Article  Google Scholar 

  81. Foote CS, Photochem Photobiol 54(5): 659 (1991)

    Google Scholar 

  82. Foster TH, Murant RS, Bryant RG, Knox RS, Gibson SL, Hilf R, Radiat Res 126: 296–303 (1991)

    Article  Google Scholar 

  83. Robinson DJ, de Bruijn HS, van der Veen N, Stringer MR, Brown SB, Star WM, Photochem Photobiol 67: 140–149 (1998)

    Article  Google Scholar 

  84. Busch TM, Lasers Surg Med 38: 494–499 (2006)

    Article  Google Scholar 

  85. Foster TH, Gibson SL, Gao L, Hilf R, Proc SPIE 1645: 104–114 (1992)

    Article  ADS  Google Scholar 

  86. Foster TH, Gao L, Radiat Res 130: 379–383 (1992)

    Article  Google Scholar 

  87. Foster TH, Hartley DF, Nichols MG, Hilf R, Cancer Res 53: 1249–1254 (1993)

    Google Scholar 

  88. Nichols MG, Foster TH, Phys Med Biol 39: 2161–2181 (1994)

    Article  Google Scholar 

  89. Grossweiner LI, Hill JH, Lobraico RV, Photochem Photobiol 46: 911–917 (1987)

    Article  Google Scholar 

  90. Kruijt B, van der Ploeg-van den Heuvel A, de Bruijn HS, Sterenborg HJ, Amelink A, Robinson DJ, Lasers Surg Med 41(9): 653–664 (2009)

    Article  Google Scholar 

  91. Zhu TC, Finlay JC, Hahn SM, J Photochem Photobiol B: Biol 79(3): 231–241 (2005)

    Article  Google Scholar 

  92. Carpenter S, Fehr MJ, Kraus GA, Petrich JW, Proc Natl Acad Sci USA 91: 12273–12277 (1994)

    Article  ADS  Google Scholar 

  93. Laptev R, Nisnevitch M, Siboni G, Malik Z, Firer MA, British Journal of Cancer 95: 189–196 (2006)

    Article  Google Scholar 

  94. McElroy WD, DeLuca M, Bioluminescence and chemiluminescence. Academic Press: New-York (1981)

    Google Scholar 

  95. Theodossiou T, Hothersall JS, Woods EA, Okkenhaug K, Jacobson J, MacRobert AJ, Can Res 63: 1818–1821 (2003)

    Google Scholar 

  96. Chen W, Zhang J, Journal of Nanoscience and Nanotechnology 6: 1159–1166. (2006)

    Article  Google Scholar 

  97. Liu Y, Chen W, Wang S, Joly AG, Westcott S, Woo BK, X-ray luminescence of LaF3 : Tb3 +  and LaF3 : Ce3 + , J Appl Phys 103 (063105):1–7 (2008)

    Google Scholar 

  98. Liu Y, Chen W, Wang S, Joly AG, Appl Phys Lett 92 (043901): 1–3 (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexandre Giuliani .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Kaščáková, S., Giuliani, A., Jamme, F., Refregiers, M. (2012). Photodynamic Therapy. In: García Gómez-Tejedor, G., Fuss, M. (eds) Radiation Damage in Biomolecular Systems. Biological and Medical Physics, Biomedical Engineering. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-2564-5_27

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-2564-5_27

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-007-2563-8

  • Online ISBN: 978-94-007-2564-5

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics