Skip to main content

Transcription Factors and Genes in Abiotic Stress

  • Chapter
  • First Online:
Crop Stress and its Management: Perspectives and Strategies

Abstract

Plants are constantly exposed to changes in environmental conditions. When these changes are rapid and extreme, plants generally perceive them as stresses. Abiotic stresses are the most serious factors limiting the productivity of agricultural crops, with adverse effects on germination, plant vigour and crop yield. Responses to abiotic stresses are not linear pathways, but are complicated integrated circuits involving the interaction of additional cofactors and/or signalling molecules to coordinate a specified response to a given stimulus. The regulation of these responses requires proteins operating in signal transduction pathways, such as transcriptional factors, which modulate gene expression by binding to specific DNA sequences in the promoters of respective target genes. This type of transcriptional regulatory system is called regulon. At least four different regulons that are active in response to abiotic stresses have been identified. Dehydration-responsive element binding protein 1 (DREB1)/C-repeat binding factor (CBF) and DREB2 regulons function in ABA-independent gene expression, whereas the ABA-responsive element (ABRE) binding protein (AREB)/ABRE binding factor (ABF) regulon functions in ABA-dependent gene expression. In addition to these major pathways, other regulons, including the NAC and MYB/MYC regulons are involved in abiotic stress-responsive gene expression. Transcription factors (TFs) are powerful targets for genetic engineering in abiotic stress resistance in crop plants and many studies have been done in the last two decades on this topic. The aim of this book chapter is to give a comprehensive and up-to-date literature review in this field.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ABA:

ABscisic Acid

ABF:

Abscisic Binding Factor

ABI:

Abelson interactor

ABRE:

ABA-responsive element

ADP:

Adenosine diphosphate

AP2:

APETALA2

APX:

Ascorbate Peroxidase

AREB:

ABA-responsive element binding

ATAF:

Arabidopsis Transcription Activation Factor

ATP:

Adenosine triphosphate

AVP:

Arginine vasopressin

bHLH:

basic Helix-Loop-Helix

bZIP:

Basic Leucine Zipper Domain

CBF:

C repeat Binding Factor

CBL:

Calcineurin B-Like

CDPK:

calcium-dependent protein kinase

cGMP:

cyclic Guanosine MonoPhosphate

CIPK:

Calcineurin B-like -Interacting Protein Kinase

CKII:

Casein kinase II

Cor:

Cold responsive

CRT/DRE:

C-repeat /Dehydration Responsive Element

CRY:

Cryptochrome Photoreceptors

CUC:

Cup-shaped Cotyledons

DHN:

Dehydrin

Dof:

DNA binding with one finger

DREB:

Dehydration-Responsive Element Binding protein

EL:

Excess Light

ERD:

Early Responsive Dehydration

EREBP:

Ethylene Responsive Element Binding Protein

ERF:

Ethylene Responsive element binding Factors

ESK1:

Eskimo1

FCA:

Flowering CA

GBF1:

G-box Binding Factor 1

GR:

Glutathione Reductase

H2O2:

Hydrogen Peroxide Superoxide

HOS1:

High expression Osmotically responsive gene 1

HY:

Hypocotyl

HYH:

Hypocotyl 5-like

ICE1:

Inducer C-repeat binding factor Expression

JA:

Jasmonic Acid

LAF:

Long After Farred

LBD:

Ligand Binding Domain

Lea:

Late embryogenesis abundant

LHC:

Light Harvesting Chlorophyll

LRE:

Light-Responsive cis-Element

MAPK:

Mitogen Activated Protein-Kinase

MYB:

Myeloblastosis

MYBRS:

Myeloblastosis Recognition Sequence

MYC:

Myelocytomatosis

MYCRS:

Myelocytomatosis Recognition Sequence

NAC- NAM:

No Apical Meristem

NAD:

Nicotinamide Adenine Dinucleotide

NADPH:

Nicotinamide Adenine Dinucleotide Phosphate

NCED3:

9-cis-epoxycarotenoid dioxygenase

NCP:

Nuclear Pore Complex

NHE:

Na + H + Exchanger

NO:

Nitrous Oxide

NOS:

Nitrous Oxide Systems

1O2 :

Singlet Oxygen

O 2 :

Hydroxyl radicals

Pfr:

Phytochrome Active

PHD:

Plant Homeodomain

Phy:

Phytochrome

PIF3:

Phytochromes Interacting Factor 3

PL:

Pyridoxal

PLP:

Pyridoxal-5-Phosphate

PR:

Pathogens Related

PS:

Photosystem

RbcS1A:

Ribulose bisphosphate carboxylase Small subunit

RD:

Responsive Dehydration

ROS:

Reactive Oxygen Species

SOS:

Salt Overly Sensitive

SUMO:

Small Ubiquitin-related Modifier

TFBS:

Transcription Factor Binding Sites

TFs:

Transcriptional Factors

UV:

UltraViolet

UVR:

Ultraviolet Resistance

References

  • Abe H, Urao T, Ito T et al (2003) Arabidopsis AtMYC2 (bHLH) and AtMYB2 (MYB) function as transcriptional activators in abscisic acid signalling. The Plant Cell 15:63–78

    PubMed  CAS  Google Scholar 

  • Adamiec M, Drath M, Jackowski G (2008) Redox state of plastoquinone pool regulates expression of Arabidopsis thaliana genes in response to elevated irradiance. Acta Biochim Pol 55:161–73

    PubMed  CAS  Google Scholar 

  • Agarwal PK, Agarwal P, Reddy MK et al (2006) Role of DREB transcription factors in abiotic and biotic stress tolerance in plants. Plant Cell Rep 25:1263–1274. doi:10.1007/s00299-006-0204-8

    PubMed  CAS  Google Scholar 

  • Ahmad M, Cashmore AR (1996) Seeing blue: the discovery of chryptochrome. Plant Mol Biol 30:851–61

    PubMed  CAS  Google Scholar 

  • Bailey-Serres J, Chang R (2005) Sensing and signalling in response to oxygen deprivation in plants and other organisms. Ann Bot 96:507–518

    PubMed  CAS  Google Scholar 

  • Bailey-Serres J, Voesenek LACJ (2008) Flooding stress: acclimations and genetic diversity. Annu Rev Plant Biol 59:313–39

    PubMed  CAS  Google Scholar 

  • Barnes PW, Shinkle JR, Flint SD et al (2005) UV-B radiation, photomorphogenesis and plant–plant interactions. In: Esser K, Lüttge U, Beyschlag W, Murata J (eds) Progress in Botany 66. Springer-Verlag, Berlin/Heidelberg, pp 313–340

    Google Scholar 

  • Barrero JM, Millar AA, Griffiths J et al (2009) Gene expression profiling identifies two regulatory genes controlling dormancy and ABA sensitivity in Arabidopsis seeds. Plant J 61:611–622

    PubMed  Google Scholar 

  • Bauer D, Victian A, Kircher S et al (2004) Constitutive photomorphogenesis 1 and multiple photoreceptors control degradation of phytochrome interacting factor 3, a transcription factor required for light signalling in Arabidopsis. Plant Cell 16:1433–1445

    PubMed  CAS  Google Scholar 

  • Bechtold U, Richard O, Zamboni A et al (2008) Impact of chloroplastic- and extracellular-sourced ROS on high light-responsive gene expression in Arabidopsis. J Exp Bot 59:121–33

    PubMed  CAS  Google Scholar 

  • Benedict C, Geisler M, Trygg J et al (2006) Consensus by democray. Using meta-analyses of microarray and genomic data to model the cold acclimation signalling pathway in Arabidopsis. Plant Physiol 141:1219–1232

    PubMed  CAS  Google Scholar 

  • Blokhina O, Virolainen E, Fagerstedt V (2003) Antioxidants, oxidative damage and oxygen deprivation stress: a review. Ann Bot 91:179–194

    PubMed  CAS  Google Scholar 

  • Blum JE, Casati P, Walbot V et al (2004) Split-plot microarray design allows sensitive detection of expression differences after UV radiation in the inbred parental lines of a key maize mapping population. Plant Cell Environ 27:1374–86

    CAS  Google Scholar 

  • Bohnert HJ (2007) Abiotic stress. Encyclopedia Life Sci. doi:10.1002/9780470015902.a0020087

  • Bohnert HJ, Jensen RG (1996) Strategies for engineering water stress tolerance in plants. Trends Biotechnol 14:89–97

    CAS  Google Scholar 

  • Bond DM, Wilson IW, Dennis ES et al (2009) Vernalization insensitive 3 (VIN3) is required for the response of Arabidopsis thaliana seedlings exposed to low oxygen conditions. Plant J 59:576–587

    PubMed  CAS  Google Scholar 

  • Branco-Price C, Kawaguchi R, Ferreira R et al (2005) Genome-wide analysis of transcript abundance and translation in Arabidopsis seedlings subjected to oxygen deprivation. Ann Bot 96:647–660

    PubMed  CAS  Google Scholar 

  • Branco-Price C, Kaiser KA, Jang CJH et al (2008) Selective mRNA translation coordinates energetic and metabolic adjustments to cellular oxygen deprivation and reoxygenation in Arabidopsis thaliana. Plant J 56:743–755

    PubMed  CAS  Google Scholar 

  • Bray EA (2004) Genes commonly regulated by water-deficit stress in Arabidopsis thaliana. J Exp Bot 55:2331–2341

    PubMed  CAS  Google Scholar 

  • Bray EA (2007) Plant response to water deficit stress. Encyclopedia Life Sci. doi:10.1002/9780470015902.a0001298.pub2

  • Brini F, Hanin M, Lumbreras V, Amara I, Khoudi H (2007) Overexpression of wheat dehydrin DHN-5 enhances tolerance to salt and osmotic stress in Arabidopsis thaliana. Plant Cell Rep 26:2017–2026

    PubMed  CAS  Google Scholar 

  • Brosche M, Strid A (2003) Molecular events following perception of ultraviolet-B radiation by plants. Physiol Plant 117:1–10

    CAS  Google Scholar 

  • Brown BA, Jenkins GI (2008) UV-B signalling pathways with different fluence-rate response profiles are distinguished in mature Arabidopsis leaf tissue by requirement for UVR8, HY5, and HYH. Plant Physiol 146:576–88

    PubMed  CAS  Google Scholar 

  • Casati P, Stapleton AE, Blum JE et al (2006) Genome-wide analysis of high-altitude maize and gene knockdown stocks implicates chromatin remodelling proteins in response to UV-B. Plant J 46:613–27

    PubMed  CAS  Google Scholar 

  • Chandra Babu R, Jingxian Z, Blumc A et al (2004) HVA1, a LEA gene from barley confers dehydration tolerance in transgenic rice (Oryza sativa L.) via cell membrane protection. Plant Sci 166:855–862

    Google Scholar 

  • Chaves MM (1991) Effects of water deficits on carbon assimilation. J Exp Bot 42:1–6

    PubMed  CAS  Google Scholar 

  • Chaves MM, Oliveira MM (2004) Mechanisms underlying plant resilience to water deficits: prospects for water-saving agriculture. J Exp Bot 55(407):2365–2384

    PubMed  CAS  Google Scholar 

  • Chaves MM, Maroco J, Pereira J (2003) Understanding plant responses to drought—from genes to the whole plant. Funct Plant Biol 30:239–2647

    CAS  Google Scholar 

  • Chinnusamy V, Ohta M, Kanrar S et al (2003) ICE1: a regulator of cold-induced transcriptome and freezing tolerance in Arabidopsis. Gene Dev 17:1043–1054

    PubMed  CAS  Google Scholar 

  • Chinnusamy V, Schumaker H, Zhu J-K (2004) The Arabidopsis LOS5/ABA3 locus encodes a molybdenum cofactor sulfurase and modulates cold stress– and osmotic stress–responsive gene expression. J Exp Bot 55(395):225–236

    PubMed  CAS  Google Scholar 

  • Chinnusamy V, Zhu J, Zhu JK (2006) Salt stress signaling and mechanisms of plant salt tolerance. Genet Eng 27:141–177

    PubMed  CAS  Google Scholar 

  • Chinnusamy V, Zhu J, Zhu J-K (2007) Cold stress regulation of gene expression in plants. Trend Plant Sci 12(10). doi:10.1016/j.tplants.2007.07.002

  • Christianson JA, Wilson IW, Llewellyn DJ et al (2009) The low oxygen-induced NAC domain transcription factor ANAC102 affects viability of Arabidopsis seeds following low-oxygen treatment. Plant Physiol 149:1724–1738

    PubMed  CAS  Google Scholar 

  • Christie JM, Reymond P, Powell GK et al (1998) Arabidopsis NPH1: a flavoproteins with the properties of a photoreceptor for phototropism. Science 282:1698–1701

    PubMed  CAS  Google Scholar 

  • Cominelli E, Galbiati M, Vavasseur A et al (2005) A guard-cell-specific MYB transcription ­factor regulates stomatal movements and plant drought tolerance. Curr Biol 15:1196–1200. doi:10.1093/jxb/erh005

    PubMed  CAS  Google Scholar 

  • Cramer GR, Nowak RS (1992) Supplemental manganese improves the relative growth, net assimilation and photosynthetic rates of salt-stressed barley. Physiol Plant 84:600–605

    PubMed  CAS  Google Scholar 

  • Davenport R, James RA, Plogander AZ, Tester M, Munns R (2005) Control of sodium transport in durum wheat. Plant Physiol 137:807–818

    PubMed  CAS  Google Scholar 

  • Davletova S, Rizhsky L, Liang HJ, Zhong SQ, Oliver DJ, Coutu J, Shulaev V, Schlauch K, Mittler R (2005) Cytosolic ascorbate peroxidase 1 is a central component of the reactive oxygen gene network of Arabidopsis. The Plant Cell 17:268–281

    PubMed  CAS  Google Scholar 

  • Degenhardt J, Tobin EM (1996) EM A DNA binding activity for one of two closely defined phytochrome regulatory elements in an Lhcb promoter is more abundant in etiolated than in green plants. Plant Cell 8:31–41

    PubMed  CAS  Google Scholar 

  • Desikan R, Griffiths R, Hancock J et al (2002) A new role for an old enzyme: nitrate reductase-mediated nitric oxide generation is required for abscisic acid-induced stomatal closure in Arabidopsis thaliana. Proc Natl Acad Sci USA 99:16314–16318

    PubMed  CAS  Google Scholar 

  • Desikan R, Hancock JT, Neill SJ (2004) Oxidative stress signalling. In: Hirt H, Shinozaki K (eds) Plant responses to abiotic stress. Springer-Verlag, Berlin/Heidelberg, pp 73–93

    Google Scholar 

  • Dong CH, Agarwal M, Zhang Y et al (2006) The negative regulator of plant cold responses, HOS1, is a RING E3 ligase that mediates the ubiquitination and degradation of ICE1. Proc Natl Acad Sci USA 103:8281–8286

    PubMed  CAS  Google Scholar 

  • Drews GN, Bowman JL, Meyerowitz EM (1991) Negative regulation of the Arabidopsis homeotic gene AGAMOUS by the APETELA2 product. Cell 65:991–1002

    PubMed  CAS  Google Scholar 

  • Dubouzet JG, Sakuma Y, Ito Y et al (2003) OsDREB genes in rice, Oryza sativa L., encode transcription activators that function in drought-, high-salt- and cold-responsive gene expression. Plant J 33:751–763

    PubMed  CAS  Google Scholar 

  • Durner J, Wendehenne D, Klessig DF (1998) Defence gene induction in tobacco by nitric oxide, cyclic GMP, and cyclic ADP-ribose. Proc Natl Acad Sci USA 95:10328–10333

    PubMed  CAS  Google Scholar 

  • Elliot RC, Betzner AS, Huttner E et al (1996) ANITEGUMENTA, an APETALA2 -type gene of Arabidopsis with pleiotropic roles in ovule development and floral organ growth. Plant Cell 8:155–168

    Google Scholar 

  • Feldbrugge M, Sprenger M, Dinkelbach M et al (1994) Functional analysis of a light-responsive plant bZIP transcriptional regulator. Plant Cell 6:1607–1621

    PubMed  CAS  Google Scholar 

  • Fernandez P, Di Rienzo J, Fernandez L et al (2008) Transcriptomic identification of candidate genes involved in sunflower responses to chilling and salt stresses based on cDNA microarray analysis. BMC Plant Biol 8:11. doi:10.1186/1471-2229-8-11

    PubMed  Google Scholar 

  • Fischer BB, Wiesendanger M, Eggen RIL (2006) Growth condition-dependent sensitivity, photodamage and stress response of Chlamydomonas reinhardtii exposed to high light conditions. Plant Cell Physiol 47:1135–45

    PubMed  CAS  Google Scholar 

  • Fowler S, Thomashow MF (2002) Arabidopsis transcriptome profiling indicates that multiple regulatory pathways are activated during cold acclimatation in addition to the CBF cold response pathway. Plant Cell 14:1675–1690

    PubMed  CAS  Google Scholar 

  • Fowler DB, Limin AE, Wang S-Y et al (1996) Relationship between low-temperature tolerance and vernalization response in wheat and rye. Can J Plant Sci 76:37–42

    Google Scholar 

  • Foyer CH, Noctor G (2005) Redox homeostasis and antioxidant signalling: a metabolic interface between stress perception and physiological responses. Plant Cell 17:1866–1875

    PubMed  CAS  Google Scholar 

  • Frohnmeyer H, Staiger D (2003) Ultraviolet-B radiation-mediated responses in plants. Balancing damage and protection. Plant Physiol 133:1420–1428

    PubMed  CAS  Google Scholar 

  • Fukao T, Xu K, Ronald PC et al (2006) A variable cluster of ethylene response factor-like genes regulates metabolic and developmental acclimation responses to submergence in rice. Plant Cell 18:2021–34

    PubMed  CAS  Google Scholar 

  • Gapper C, Dolan L (2006) Control of Plant Development by Reactive Oxygen Species. Plant Physiology 141:341–345

    PubMed  CAS  Google Scholar 

  • Garcia-Mata C, Lamattina L (2003) Abscisic acid, nitric oxide and stomatal closure: is nitrate reductase one of the missing links? Trends Plant Sci 8:20–26

    PubMed  CAS  Google Scholar 

  • Gaxiola RA, Li J, Undurraga S, Dang LM, Allen GJ, Alper SL, Fink GR (2001) Drought- and salt-tolerant plants result from overexpression of the AVP1 H + −pump. Proc Natl Acad Sci USA 98:11444–11449

    PubMed  CAS  Google Scholar 

  • Geigenberger P (2003) Response of plant metabolism to too little oxygen. Curr Opin Plant Biol 6:247–56

    PubMed  CAS  Google Scholar 

  • Gerhardt KE, Wilson MI, Greenberg BM (1999) Tryptophan photolysis leads to a UVB-induced 66 kDa photoproduct of ribulose-1,5- bisphosphate carboxylase/oxygenase (Rubisco) in vitro and in vivo. Photochem Photobiol 70:49–56

    CAS  Google Scholar 

  • Gong Z, Lee H, Xiong L et al (2002) RNA helicase-like protein as an early regulator of transcription factors for plant chilling and freezing tolerance. Proc Natl Acad Sci USA 99:11507–11512

    PubMed  CAS  Google Scholar 

  • Grün S, Lindermayr C, Sell S et al (2006) Nitric oxide and gene regulation in plants. J Exp Bot 57(3):507–516

    PubMed  Google Scholar 

  • Gu YQ, Yang C, Thara VK et al (2000) Pti4 is induced by ethylene and salicylic acid, and its product is phosphorylated by Pto kinase. Plant Cell 12:771–786

    PubMed  CAS  Google Scholar 

  • Halfter U, Ishitani M, Shu J-K (2000) The Arabidopsis SOS2 protein kinase physically interacts with and is activated by the calcium-binding protein, SOS3. Proc Natl Acad Sci USA 97:3535–3740

    PubMed  CAS  Google Scholar 

  • Hannah MA, Wiese D, Freund S et al (2006) Natural genetic variation of freezing tolerance in Arabidopsis. Plant Physiol 142:98–112

    PubMed  CAS  Google Scholar 

  • Harter K, Kircher S, Frohnmeyer H et al (1994) Light-regulated modification and nuclear translocation of cytosolic G-box binding factors in parsley. Plant Cell 6:545–559

    PubMed  CAS  Google Scholar 

  • Hasegawa P, Bressan R, Zhu J et al (2000) Plant cellular and molecular responses to high salinity. Ann Rev Plant Physiol Plant Mol Biol 51:463–499

    CAS  Google Scholar 

  • Hazen SP, Schultz TF, Pruneda-Paz JL et al (2005) LUX ARRHYTHMO encodes a Myb domain protein essential for circadian rhythms. Proc Natl Acad Sci USA 102:10387–10392

    PubMed  CAS  Google Scholar 

  • Hectors K, Prinsen E, De Coen W et al (2007) Arabidopsis thaliana plants acclimated to low dose rates of UV B radiation show specific changes in morphology and gene expression in the absence of stress symptoms. New Phytol 175:255–70

    PubMed  CAS  Google Scholar 

  • Hiltbrunner A, Tscheuschler A, Viczián A et al (2006) FHY1 and FHL act together to mediate nuclear accumulation of the phytochrome A photoreceptor. Plant Cell Physiol 47:1023–34

    PubMed  CAS  Google Scholar 

  • Hoeren FU, Dolferus R, Wu Y et al (1998) Evidence for a role for AtMYB2 in the induction of the Arabidopsis Alcohol Dehydrogenase gene (ADH1). Low Oxygen Genet 149:479–490

    CAS  Google Scholar 

  • Hu H, Dai M, Yao J et al (2006) Overexpressing a NAM, ATAF, and CUC (NAC) transcription factor enhances drought resistance and salt tolerance in rice. Proc Natl Acad Sci USA 103:12987–12992

    PubMed  CAS  Google Scholar 

  • Huq E, Hodges TK (2000) An anaerobically inducibile early (aie) gene family from rice. Plant Molecular Biology 40:591–601

    Google Scholar 

  • Ingram J, Bartels D (1996) The molecular basis of dehydration tolerance in plants. Ann Rev Plant Physiol Plant Mol Biol 47:377–403

    CAS  Google Scholar 

  • Jaleel CA, Gopi R, Sankar B et al (2008) Differential responses in water use efficiency in two varieties of Catharanthus roseus under drought stress. Comp Rend Biol 331:42–47

    Google Scholar 

  • Jaleel CA, Ksouri Riadh Ragupathi G, Manivannan P et al (2009) Antioxidant defence responses: physiological plasticity in higher plants under abiotic constraints. Acta Physiol Plant 31:427–436

    Google Scholar 

  • Jansen MAK, Gaba V, Greenberg BM (1998) Higher plants and UV-B radiation: balancing damage, repair and acclimation. Trends Plant Sci 3:131–135

    Google Scholar 

  • Jiao Y, Yang H, Ma L et al (2003) A genome-wide analysis of blue-light regulation of Arabidopsis transcription factor gene expression during seedling development. Plant Physiol 133:1480–1493

    PubMed  CAS  Google Scholar 

  • Jiao Y, Lau OS, Wang DX (2007) Light-regulated transcriptional networks in higher plants. Nat Rev Genet 8:217

    PubMed  CAS  Google Scholar 

  • Jordan BR (1996) The effects of ultraviolet-B radiation on plants: a molecular perspective. Adv Bot Res 22:97–162

    CAS  Google Scholar 

  • Kannangara R, Branigan C, Liu Y et al (2007) The transcription factor WIN1SHN1 regulates cutin biosynthesis in Arabidopsis thaliana. The Plant Cell 19:1278–1294

    PubMed  CAS  Google Scholar 

  • Kawasaki S, Borchert C, Deyholos M et al (2001) Gene expression profiles during the initial phase of salt stress in rice. Plant Cell 13(4):889–905

    PubMed  CAS  Google Scholar 

  • Kendrick RE, Kronenberg GHM (eds) (1994) Photomorphogenesis in plants, 2nd edn. Kluwer, Dordrecht

    Google Scholar 

  • Kilian J, Whitehead D, Horak J et al (2007) The AtGenExpress global stress expression data set: protocols, evaluation and model data analysis of UV-B light, drought and cold stress responses. Plant J 50:347–63

    PubMed  CAS  Google Scholar 

  • Klimczak LJ, Colline MA, Farini D et al (1995) Reconstitution of Arabidopsis casein kinase II from recombinant subunits and phosphorylation of transcription factor GBF1. Plant Cell 7:105–115

    PubMed  CAS  Google Scholar 

  • Klok EJ, Wilson IW, Wilson D et al (2002) Expression profile analysis of the low-oxygen response in Arabidopsis root cultures. The Plant Cell 14:2481–2494

    PubMed  CAS  Google Scholar 

  • Klucher KM, Chow H, Reiser L et al (1996) The AINTEGUMENTA gene of Arabidopsis required for ovule and female gametophyte development is related to the floral homeotic gene APETELA2. Plant Cell 8:137–153

    PubMed  CAS  Google Scholar 

  • Kovtun Y, Chiu WL, Tena G, Sheen J (2000) Functional analysis of oxidative stress-activated mitogen-activated protein kinase cascade in plants. Proc Natl Acad Sci USA 97(6):2940–2945

    PubMed  CAS  Google Scholar 

  • Lasanthi-Kudahettige R, Magneschi L, Loreti E et al (2007) Transcript profiling of the anoxic rice coleoptile. Plant Physiol 144:218–231

    PubMed  CAS  Google Scholar 

  • Lee B-H, Henderson DA, Zhu J-K (2005) The Arabidopsis cold-responsive transcriptome and its regulation by ICE1. Plant Cell 17:3155–3175

    PubMed  CAS  Google Scholar 

  • Lee J, He K, Stolc V et al (2007) Analysis of transcription factor HY5 genomic binding sites revealed its hierarchical role in light regulation of development. The Plant Cell 19:731–749

    PubMed  CAS  Google Scholar 

  • Leon-Kloosterziel KM, Keijzer CJ, Koornneef M (1994) A seed shape mutant of Arabidopsis that is affected in integument development. Plant Cell 6:385–392

    PubMed  Google Scholar 

  • Leshem YY (1996) Nitric oxide in biological systems. Plant Growth Regul 18:155–159

    CAS  Google Scholar 

  • Li XP, Tian AG, Luo GZ et al (2005) Soybean DRE-binding transcription factors that are responsive to abiotic stresses. Theor Appl Genet 110:1355–1362

    PubMed  CAS  Google Scholar 

  • Liang YK, Dubos C, Dodd IC et al (2005) AtMYB61, an R2R3-MYB transcription factor controlling stomatal aperture in Arabidopsis thaliana. Curr Biol 15:1201–1206

    PubMed  CAS  Google Scholar 

  • Licausi F, Perata P (2009) Low oxygen signalling and tolerance in plants. Adv Bot Res 50:139–198

    CAS  Google Scholar 

  • Licausi F, Daan A, Weits DA et al (2010a) Hypoxia responsive gene expression is mediated by various subsets of transcription factors and miRNAs that are determined by the actual oxygen availability. New Phytologist. doi:10.1111/j.1469-8137.2010.03451.x

  • Licausi F, van Dongen JT, Giuntoli B et al (2010b) HRE1 and HRE2, two hypoxiainducible ethylene response factors, affect anaerobic responses in Arabidopsis thaliana. Plant J 62:302–315

    PubMed  CAS  Google Scholar 

  • Lin C, Shalitin D (2003) Cryptochrome structure and signal transduction. Annu Rev Plant Biol 54:469–496

    PubMed  CAS  Google Scholar 

  • Little CHA, Eidt DC (1968) Effect of abscisic acid on budbreak and transpiration in woody species. Nature 220:498–499

    PubMed  CAS  Google Scholar 

  • Liu J, Ishitani M, Halfter U, Kim C-S, Shu J-K (2000) The Arabidopsis thaliana SOS2 gene encodes a protein kinase that is required for salt tolerance. Proc Natl Acad Sci USA 97:3730–3734

    PubMed  CAS  Google Scholar 

  • Liu Q, Kasuga M, Sakuma Y et al (1998) Two transcription factors, DREB1 and DREB2, with an EREBP/AP2 DNA binding domain separate two cellular signal transduction pathways in drought- and low-temperature-responsive gene expression, respectively, in Arabidopsis. Plant Cell 10:1391–1406

    PubMed  CAS  Google Scholar 

  • Loreti E, Poggi A, Novi G et al (2005) A genome-wide analysis of the effects of sucrose on gene expression in Arabidopsis seedlings under anoxia. Plant Physiol 137:1130–1138

    PubMed  CAS  Google Scholar 

  • Magneschi L, Perata P (2009) Rice germination and seedling growth in the absence of oxygen. Ann Bot 103:181–196

    PubMed  CAS  Google Scholar 

  • Mahajan S, Tuteja N (2005) Cold, salinity and drought stresses: an overview. Arch Biochem Biophys 444:139–158

    PubMed  CAS  Google Scholar 

  • Mahajan S, Pandey GK, Tuteja N (2008) Calcium-and salt-stress signaling in plants: shedding light on SOS pathway. Arch Biochem Biophys 471:146–158

    PubMed  CAS  Google Scholar 

  • Martinez-Garcia JF, Huq E, Quail PH (2000) Direct targeting of light signals to a promoter element-bound transcription factor. Science 288:859–863

    PubMed  CAS  Google Scholar 

  • Maruyama K, Sakuma Y, Kasuga M et al (2004) Identification of cold-inducible downstream genes of the Arabidopsis DREB1A/CBF3 transcriptional factor using two microarray systems. Plant J 38:982–993

    PubMed  CAS  Google Scholar 

  • Mc Kenzie RL, Bjorn LO, Bais A et al (2003) Changes in biologically active ultraviolet radiation reaching the Earth’s surface. Photochem Photobiol Sci 2:5–15

    CAS  Google Scholar 

  • Medina J, Bargues M, Terol J et al (1999) The Arabidopsis CBF gene family is composed of three genes encoding AP2 domain-containing proteins whose expression is regulated by low temperature but not by abscisic acid or dehydration. Plant Physiol 119:463–469

    PubMed  CAS  Google Scholar 

  • Miller G, Mittler R (2006) Could heat shock transcription factors function as hydrogen peroxide sensors in plants? Ann Bot 98:279–88

    PubMed  CAS  Google Scholar 

  • Miller AK, Galiba G, Dubcovsky J (2006) A cluster of 11 CBF transcription factors is located at the frost tolerance locus Fr-Am2 in Triticum monoccoccum. Mol Genet Genomics 275:193–203

    PubMed  CAS  Google Scholar 

  • Miller G, Suzuki N, Ciftci-Yilmaz S et al (2010) Reactive oxygen species homeostasis and signalling during drought and salinity stresses. Plant Cell Environ 33:453–467

    PubMed  CAS  Google Scholar 

  • Mittler R, Zilinskas BA (1992) Molecular cloning and characterization of a gene encoding pea cytosolic ascorbate peroxidase. The J Biol Chem 267:21802–21807

    PubMed  CAS  Google Scholar 

  • Mittler R (2002) Oxidative stress, antioxidants, and stress tolerance. Plant Science 7:405–410

    CAS  Google Scholar 

  • Mittler R (2006) Abiotic stress, the field environment and stress combination. Trends Plant Sci 11(1):15–19

    PubMed  CAS  Google Scholar 

  • Mittler R, Vanderauwera S, Gollery M et al (2004) Reactive oxygen gene network of plants. Trends Plant Sci 9(10):490–498

    PubMed  CAS  Google Scholar 

  • Monte E, Tepperman JM, Al-Sady B et al (2004) The phytochrome-interacting transcription factor, PIF3, acts early, selectively and positively in light-induced chloroplast development. Proc Natl Acad Sci USA 101:16091–16098

    PubMed  CAS  Google Scholar 

  • Moose SP, Sisco PH (1996) Glossy15, an APETAL2-like gene from maize that regulates leaf epidermal cell identity. Genes Dev 10:3018–3027

    PubMed  CAS  Google Scholar 

  • Moon H, Lee B, Choi G et al (2003) NDP kinase 2 interacts with two oxidative stress‐activated MAPKs to regulate cellular redox state and enhances multiple stress tolerance in transgenic plants. Proc Natl Acad Sci USA 100:358–363

    PubMed  CAS  Google Scholar 

  • Møller IM, Jensen PE, Hansson A (2007) Oxidative modifications to cellular components in plants. Annu Rev Plant Biol 58:459–481

    PubMed  CAS  Google Scholar 

  • Morcuende R, Bari R, Gibon Y et al (2007) Genome-wide reprogramming of metabolism and regulatory networks of Arabidopsis in response to phosphorus. Plant Cell Environ 30:85–112

    PubMed  CAS  Google Scholar 

  • Mullineaux PM, Baker NR (2010) Oxidative stress: antagonistic signalling for acclimation or cell death? Plant Physiol 154:521–525

    PubMed  CAS  Google Scholar 

  • Munns R (2002) Comparative physiology of salt and water stress. Plant Cell Environ 25:239–250

    PubMed  CAS  Google Scholar 

  • Munns R, Tester M (2008) Mechanisms of salinity tolerance. Annu Rev Plant Biol 59:651–681

    PubMed  CAS  Google Scholar 

  • Mustroph A, Lee SC, Oosumi T et al (2010) Cross-Kingdom comparison of transcriptomic adjustments to low-oxygen stress highlights conserved and plant-specific responses. Plant Physiol 152:1484–1500

    PubMed  CAS  Google Scholar 

  • Nakashima K, Kiyosue T, Yamaguchi-Shinozaki K et al (1997) A nuclear gene, erd1, encoding a chloroplast-targeted Clp protease regulatory subunit homolog is not only induced by water stress but also developmentally up-regulated during senescence in Arabidopsis thaliana. Plant J 12:851–861

    PubMed  CAS  Google Scholar 

  • Nakashima K, Shinwari ZK, Sakuma Y et al (2000) Organization and expression of two Arabidopsis DREB2 genes encoding DRE-binding proteins involved in dehydration- and high-salinity-responsive gene expression. Plant Mol Biol 42:657–665

    PubMed  CAS  Google Scholar 

  • Ni M, Tepperman JM, Quail PH (1998) PIF3, a phytochromeinteracting factor necessay for normal photoinduced signal transduction, is a novel basic helix-loop-helix protein. Cell 95:657–667

    PubMed  CAS  Google Scholar 

  • Niyogi KK (1999) Photoprotection revisited: genetic and molecular approaches. Annu Rev Plant Physiol Plant Mol Biol 50:333–359

    PubMed  CAS  Google Scholar 

  • Niyogi KK (2000) Safety valves for photosynthesis. Curr Opin Plant Biol 3:455–460

    PubMed  CAS  Google Scholar 

  • Noritake T, Kawakita K, Doke N (1996) Nitric oxide induces phytoalexin accumulation in potato tuber tissue. Plant Cell Physiol 37:113–116

    CAS  Google Scholar 

  • Ohme-Takagi M, Shinshi H (1995) Ethylene-inducible DNA binding proteins that interact with an ethylene-responsive element. Plant Cell 7:173–182

    PubMed  CAS  Google Scholar 

  • Oh DH, Lee SY, Bressan RA, Yun DJ, Bohnert HJ (2010) Intracellular consequences of SOS1 deficiency during salt stress. J Exp Bot 61:1205–1213

    PubMed  CAS  Google Scholar 

  • Okamuro JK, Caster B, Villarroel R et al (1997) The AP2 domain of APETELA2 defines a large new family of DNA binding proteins in Arabidopsis. Proc Natl Acad Sci USA 94:7076–7081

    PubMed  CAS  Google Scholar 

  • Panchuk II, Volkov RA, Schöffl F (2002) Heat stress and heat shock transcription factor dependent expression and activity of ascorbate peroxidase in Arabidopsis. Plant Physiol 129:838–853

    PubMed  CAS  Google Scholar 

  • Parcy F, Giraudat J (1997) Interactions between the ABI1 and the ectopically expressed ABI3 genes in controlling abscisic acid responses in Arabidopsis vegetative tissues. The Plant J 11:693–702

    CAS  Google Scholar 

  • Prasad T, Anderson M, Martin B et al (1994) Evidence for chilling induced oxidative stress in maize seedlings and a regulatory role for hydrogen peroxide. The Plant Cell 6(1):65–74

    PubMed  CAS  Google Scholar 

  • Qin X, Zeevaart JAD (1999) The 9-cis epoxycarotenoid cleavage reaction is the key regulatory step of abscisic acid biosynthesis in water-stressed bean. Proc Natl Acad Sci USA 96:15354–15361

    PubMed  CAS  Google Scholar 

  • Qiu QS, Guo Y, Dietrich MA, Schumaker KS, Zhu JK (2002) Regulation of SOS1, a plasma membrane Na+/H+ exchanger in Arabidopsis thaliana, by SOS2 and SOS3. Proc Natl Acad Sci USA 99:8436–8441

    PubMed  CAS  Google Scholar 

  • Quail PH (2002) Phytochrome photosensory signalling networks. Nature Rev Mol Cell Biol 3:85–93

    CAS  Google Scholar 

  • Quail PH, Boylan MT, Parks BM et al (1995) Phytochromes: photosensory perception and signal transduction. Science 268:675–80

    PubMed  CAS  Google Scholar 

  • Quintero FJ, Ohta M, Shi H, Zhu JK, Pardo JM (2002) Reconstitution in yeast of the Arabidopsis SOS signaling pathway for Na+ homeostasis. Proc Natl Acad Sci USA 99:9061–9066

    PubMed  CAS  Google Scholar 

  • Ratnayaka HH, Molin WT, Sterling TM (2003) Physiological and antioxidant responses of cotton and spurred anoda under interference and mild drought. J Exp Bot 54:2293–2305

    PubMed  CAS  Google Scholar 

  • Razem FA, El-Kareamy A, Abrams SR et al (2006) The RNA-binding protein FCA is an abscisic acid receptor. Nature 439:290–294

    PubMed  CAS  Google Scholar 

  • Rizhsky L, Davletova S, Liang H et al (2004) The zinc finger protein Zat12 is required for cytosolic ascorbate peroxidase 1 expression during oxidative stress in Arabidopsis. J Biol Chem 279:11736–11743

    PubMed  CAS  Google Scholar 

  • Rushton PJ, Somssich IE (1998) Transcriptional control of plant genes responsive to pathogens. Curr Opin Plant Biol 1:311–315

    PubMed  CAS  Google Scholar 

  • Saibo NJM, Lourenco T, Oliveira MM (2009) Transcription factors and regulation of photosynthetic and related metabolism under environmental stresses. Ann Bot 103:609–623

    PubMed  CAS  Google Scholar 

  • Saijo Y, Hata S, Kyozuka J, Shimamoto K, Izui K (2000) Over-expression of a single Ca2+−dependent protein kinase confers both cold and salt/drought tolerance on rice plants. The Plant J 23:319–327

    PubMed  CAS  Google Scholar 

  • Salomon M, Christie JM, Knieb E et al (2000) Photochemical and mutational analysis of the FMN-binding domains of the plant blue light receptor, phototropin. Biochemistry 39:9401–9410

    PubMed  CAS  Google Scholar 

  • Sang Y, Li Q-H, Rubio V et al (2005) N-terminal domain-mediated homodimerization is required for photoreceptor activity of Arabidopsis CRYPTOCHROME 1. Plant Cell 17:1569–1584

    PubMed  CAS  Google Scholar 

  • Sasaki T, Song J, Koga-Ban Y et al (1994) Toward cataloguing all rice genes: large scale sequencing of randomly chosen rice cDNAs from a callus cDNA library. Plant J 6:615–624. Sci USA 94:7076–7081

    Google Scholar 

  • Scarpeci TE, Zanor MI, Valle EM (2008) Investigating the role of plant heat shock proteins during oxidative stress. Plant Signal Behav 3:856–857

    PubMed  Google Scholar 

  • Seki M, Narusaka M, Ishida J et al (2002) Monitoring the expression profiles of 7000 Arabidopsis genes under drought, cold and highsalinity stresses using a full-length cDNA microarray. Plant Journal 3:279–292

    Google Scholar 

  • Shinozaki K, Yamaguchi-Shinozaki K (1997) Gene expression and signal transduction in water stress response. Plant Physiol 115:327–334

    PubMed  CAS  Google Scholar 

  • Shinwari ZK, Nakashima K, Miura S et al (1998) An Arabidopsis gene family encoding DRE/CRT binding proteins involved in low-temperature-responsive gene expression. Biochem Biophys Res Commun 250:161–170

    PubMed  CAS  Google Scholar 

  • Shi H, Ishitani M, Kim C, Zhu JK (2000) The Arabidopsis thaliana salt tolerance gene SOS1 encodes a putative Na+/H+ antiporter. Proc Natl Acad Sci USA 97:6896–6901

    PubMed  CAS  Google Scholar 

  • Shi H, Quintero FJ, Pardo JM, Zhu JK (2002) The putative plasma membrane Na+/H+ Antiporter SOS1 controls long-distance Na+ transport in plants. Plant Cell 14:465–477

    PubMed  CAS  Google Scholar 

  • Singh KB, Foley RC, Oñate-Sánchez L (2002) Transcription factors in plant defence and stress responses. Curr Opin Plant Biol 5:430–436. doi:10.1016/S1369-5266(02)00289-3

    PubMed  CAS  Google Scholar 

  • Skinner JS, Zitzewitz J, Szücs P et al (2005) Structural, functional, and phylogenetic characterizatio of a large CBF gene family in barley. Plan Mol Biol 59:533–551

    CAS  Google Scholar 

  • Sunkar R, Chinnusamy V, Zhu J et al (2007) Small RNAs as big players in plant abiotic stress responses and nutrient deprivation. Trend Plant Sci 12:301–309

    CAS  Google Scholar 

  • Tepperman JM, Hudson ME, Khanna R et al (2004) Expression profiling of PHYB mutant demonstrates substantial contribution of other phytochromes to red-light-regulated gene expression during seedling de-etiolation. Plant J 38:725–739

    PubMed  CAS  Google Scholar 

  • Teige M, Scheikl E, Eulgem T, Dóczi R, Ichimura K, Shinozaki K, Dangl JL, Hirt H (2004) The MKK2 pathway mediates cold and salt stress signaling in Arabidopsis. Mol Cell 15:141–152

    PubMed  CAS  Google Scholar 

  • Thompson WF, White MJ (1991) Physiological and molecular studies of light regulated nuclear genes in higher plants. Annu Rev Plant Physiol Plant Mol Biol 42:423–66

    CAS  Google Scholar 

  • Toledo-Ortiz G, Huq E, Quail PH (2003) The Arabidopsis basic/helix-loop-helix transcription factor family. Plant Cell 15:1749–1770

    PubMed  CAS  Google Scholar 

  • Tran LS, Nakashima K, Sakuma Y et al (2007) Co-expression of the stress-inducible zinc finger homeodomain ZFHD1 and NAC transcription factors enhances expression of the ERD1 gene in Arabidopsis. Plant J 49:46–63

    PubMed  CAS  Google Scholar 

  • Ulm R, Baumann A, Oravecz A et al (2004) Genome-wide analysis of gene expression reveals function of the bZIP transcription factor HY5 in the UV-B response of Arabidopsis. Proc Natl Acad Sci USA 101:1397–1402

    PubMed  CAS  Google Scholar 

  • Ulrich HD (2005) Mutual interactions between the SUMO and ubiquitin systema: a plea of no contest. Trends Cell Biol 15:525–532

    PubMed  CAS  Google Scholar 

  • United States Department of Agriculture (USDA) (1989) Agricultural statistics. US Government Printing Office, Washington, DC

    Google Scholar 

  • Vágúifalvi A, Aprile A, Miller A et al (2005) The expression of several Cbf genes at the Fr-A2 locus is linked to frost resistance in wheat. Mol Genet Genomics 274:506–514

    Google Scholar 

  • van Dongen JT, Froehlich A, Ramı´rez-Aguilar SJ et al (2009) Transcript and metabolite profiling of the adaptive response to mild decreases in oxygen concentration in the roots of Arabidopsis plants. Ann Bot 103:269–280

    PubMed  Google Scholar 

  • Vanderauwera S, Zimmermann P, Rombauts S et al (2005) Genomewide analysis of hydrogen peroxide-regulated gene expression in Arabidopsis reveals a high light-induced transcriptional cluster involved in anthocyanin biosynthesis. Plant Physiol 139:806–21

    PubMed  CAS  Google Scholar 

  • Please change in text to Verslues and Bray 2006Verslues PE, Bray EA (2006) Role of abscisic acid (ABA) and Arabidopsis thaliana ABA-insensitive loci in low water potential-induced ABA and proline accumulation. J Exp Bot 57:201–212

    PubMed  CAS  Google Scholar 

  • Wang Z-Y, Kenigsbuch D, Sun L et al (1997) A Myb-related transcription factor is involved in the phytochrome regulation of an Arabidopsis Lhcb gene. Plant Cell 9:491–507

    PubMed  CAS  Google Scholar 

  • Weigel D (1995) The APETELA2 domain is related to a novel type of DNA binding domain. Plant Cell 7:388–389

    PubMed  CAS  Google Scholar 

  • Wellmer F, Kircher S, Rugner A et al (1999) Phosphorylation of the parsley bZIP transcription factor CPRF2 is regulated by light. J Biol Chem 274:29476–29482

    PubMed  CAS  Google Scholar 

  • Wilson K, Long D, Swinburne J et al (1996) A dissociation insertion causes a semidominant mutation that increases expression of TINY, an Arabidopsis gene related to APETELA2. Plant Cell 8:659–671

    PubMed  CAS  Google Scholar 

  • Welsch R, Maass D, Voegel T, Dellapenna D, Beyer P (2007) Transcription factor RAP2.2 and its interacting partner SINAT2: stable elements in the carotenogenesis of Arabidopsis leaves. Plant Physiol 145(3):1073–1085

    Google Scholar 

  • Xin Z, Mandaokar A, Chen J et al (2007) Arabidopsis ESK1 encodes a novel regulator of freezing tolerance. Plant J 49:786–799

    PubMed  CAS  Google Scholar 

  • Xiong L, Ishitani M, Lee H, Zhu JK (2001) The Arabidopsis LOS5/ABA3 locus encodes a molybdenum cofactor sulfurase and modulates cold stress- and osmotic stress-responsive gene expression. Plant Cell 13(9):2063–2083

    PubMed  CAS  Google Scholar 

  • Xu D, Duan X, Wang B, Hong B, Ho THD, Wu R (1996) Expression of a late embryogenesis abundant protein gene, HVA1, from barley confers tolerance to water deficit and salt stress in transgenic rice. Plant Physiol 110(1):249–257

    PubMed  CAS  Google Scholar 

  • Yamaguchi R, Nakamura M, Mochizuki N et al (1999) Light-dependent translocation of a ­phytochrome B-GFP fusion protein to the nucleus in transgenic Arabidopsis. J Cell Biol 145:437–45

    PubMed  CAS  Google Scholar 

  • Yamaguchi-Shinozaki, Koizumi M, Urao S, Shinozaki K (1992) Molecular cloning and characterization of 9 cDNAs for genes that are responsive to desiccation in Arabidopsis thaliana: sequence analysis of one cDNA clone that encodes a putative transmembrane channel protein. Plant Cell Physiol 33(3):217–224

    PubMed  CAS  Google Scholar 

  • Yang Q, Chen Z-Z, Zhou X-F, Yin H-B, Li X, Xin X-F, Hong X-H, Zhu J-K, Gong Z (2009) Overexpression of SOS (salt overly sensitive) genes increases salt tolerance in transgenic Arabidopsis. Mol Plant 2:22–31

    PubMed  CAS  Google Scholar 

  • Yi N, Kim YS, Jeong MH et al (2010) Functional analysis of six drought-inducible promoters in transgenic rice plants throughout all stages of plant growth. Planta 232:743–754. doi:10.1007/s00425-010-1212-z

    PubMed  CAS  Google Scholar 

  • Zhang HX, Blumwald E (2001) Transgenic salt-tolerant tomato plants accumulate salt in foliage but not in fruit. Nat Biotechnol 19:765–768

    PubMed  CAS  Google Scholar 

  • Zhou JM, Tang X, Martin GB (1997) The Pto kinase conferring resistance to tomato bacterial speck disease interacts with proteins that bind a cis-element of pathogenesis-related genes. EMBO J 16:3207–3218

    PubMed  CAS  Google Scholar 

  • Zhu JK (2001) Plant salt tolerance. Trends Plant Sci 6(2):66–71

    PubMed  CAS  Google Scholar 

  • Zhu T, Budworth P, Han B et al (2001) Toward elucidating the global expression patterns of developing Arabidopsis: parallel analysis of 8300 genes by a high-density oligonucleotide probe array. Plant Physiol Biochem 39:221–242

    CAS  Google Scholar 

  • Zhu J, Shi H, Lee BH et al (2004) An Arabidopsis homeodomain transcription factor gene, HOS9, mediates cold tolerance through a CBF-independent pathway. Proc Natl Acad Sci USA 101:9873–9878

    PubMed  CAS  Google Scholar 

  • Zhu J, Verslues PE, Zheng X et al (2005) HOS10 encodes an R2R3-type MYB transcription factor essential for cold acclimation in plants. Proc Natl Acad Sci USA 102:9966–9971

    PubMed  CAS  Google Scholar 

  • Change in text to Zhu et al 1998Zhu KJ, Liu J, Xiong L (1998) Genetic analysis of salt tolerance in Arabidopsis: evidence for a critical role of potassium nutrition. Plant Cell 10:1181–1192

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giovanni Pontecorvo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Woodrow, P., Pontecorvo, G., Ciarmiello, L.F., Annunziata, M.G., Fuggi, A., Carillo, P. (2012). Transcription Factors and Genes in Abiotic Stress. In: Venkateswarlu, B., Shanker, A., Shanker, C., Maheswari, M. (eds) Crop Stress and its Management: Perspectives and Strategies. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-2220-0_9

Download citation

Publish with us

Policies and ethics