Skip to main content

Vitamin B6: Beyond Coenzyme Functions

  • Chapter
  • First Online:
Water Soluble Vitamins

Part of the book series: Subcellular Biochemistry ((SCBI,volume 56))

Abstract

Endogenous reactive intermediates such as photoexcited states of tissue chromophores, reactive oxygen species (ROS), reactive carbonyl species (RCS), and transition metal ions are mediators of tissue damage involved in initiation and progression of human pathologies including tumorigenesis, atherosclerosis, diabetes, and neurodegenerative disease. A large body of evidence now suggests that B6 vitamers antagonize the harmful activity of endogenous reactive intermediates fulfilling a very different role than that established as a cofactor for numerous enzymes. In this chapter, the structural basis of vitamin B6 activity as a potent antioxidant, metal chelator, carbonyl scavenger, and photosensitizer is presented and the physiological relevance is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 179.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 229.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Amarnath V, Amarnath K, Amarnath K, Davies S, Roberts LJ 2nd (2004) Pyridoxamine: an extremely potent scavenger of 1,4-dicarbonyls. Chem Res Toxicol 17:410–415

    Article  PubMed  CAS  Google Scholar 

  • Baynes JW (2001) The role of AGEs in aging: causation or correlation. Exp Gerontol 36:1527–1537

    Article  PubMed  CAS  Google Scholar 

  • Baynes JW, Thorpe SR (2000a, b) Glycoxidation and lipoxidation in atherogenesis. Free Radic Biol Med 28:1708–1716

    Article  PubMed  CAS  Google Scholar 

  • Bierhaus A, Humpert PM, Morcos M, Wendt T, Chavakis T, Arnold B, Stern DM, Bilski PP, Li MY, Ehrenshaft M, Daub ME, Chignell CF (2000) Vitamin B6 (pyridoxine) and its derivatives are efficient singlet oxygen quenchers and potential fungal antioxidants. Photochem Photobiol 71:129–134

    Article  Google Scholar 

  • Bierhaus A, Humpert PM, Morcos M, Wendt T, Chavakis T, Arnold B, Stern DM, Nawroth PP (2005) Understanding RAGE, the receptor for advanced glycation end products. J Mol Med 83:876–886

    Google Scholar 

  • Brewer GJ (2007) Iron and copper toxicity in diseases of aging, particularly atherosclerosis and Alzheimer’s disease. Exp Biol Med 232:323–335

    CAS  Google Scholar 

  • Coburn SP, Slominski A, Mahuren JD, Wortsman J, Hessle L, Millan JL (2003) Cutaneous metabolism of vitamin B-6. J Invest Dermatol 120:292–300

    Article  PubMed  CAS  Google Scholar 

  • Culbertson SM, Enright GD, Ingold KU (2003) Synthesis of a novel radical trapping and carbonyl group trapping anti-AGE agent: a pyridoxamine analogue for inhibiting advanced glycation (AGE) and lipoxidation (ALE) end products. Org Lett 5:2659–2662

    Article  PubMed  CAS  Google Scholar 

  • Degenhardt TP, Alderson NL, Arrington DD, Beattie RJ, Basgen JM, Steffes MW, Thorpe SR, Baynes JW (2002) Pyridoxamine inhibits early renal disease and dyslipidemia in the streptozotocin-diabetic rat. Kidney Int 61:939–950

    Article  PubMed  CAS  Google Scholar 

  • Foote CS (1991) Definition of type I and type II photosensitized oxidation. Photochem Photobiol 54:659

    Article  PubMed  CAS  Google Scholar 

  • Giannoukakis N (2005) Pyridoxamine. Curr Opin Investig Drugs 6:410–418

    PubMed  CAS  Google Scholar 

  • Jain SK, Lim G (2001) Pyridoxine and pyridoxamine inhibits superoxide radicals and prevents lipid peroxidation, protein glycosylation, and (Na+ + K+)-ATPase activity reduction in high glucosetreated human erythrocytes. Free Radic Biol Med 30:232–237

    Article  PubMed  CAS  Google Scholar 

  • Jain AK, Lim G, Langford M, Jain SK (2002) Effect of high-glucose levels on protein oxidation in cultured lens cells, and in crystalline and albumin solution and its inhibition by vitamin B6 and N-acetylcysteine: its possible relevance to cataract formation in diabetes. Free Radic Biol Med 33:1615–1621

    Article  PubMed  CAS  Google Scholar 

  • Khalifah RG, Chen Y, Wassenberg JJ (2005) Post-Amadori AGE inhibition as a therapeutic target for diabetic complications: a rational approach to second-generation Amadorin design. Ann NY Acad Sci 1043:793–806

    Article  PubMed  CAS  Google Scholar 

  • Maeda T, Taguchi H, Minami H, Sato K, Shiga T, Kosaka H, Yoshikawa K (2000) Vitamin B6 phototoxicity induced by UVA radiation. Arch Dermatol Res 292:562–567

    Article  PubMed  CAS  Google Scholar 

  • Matxain JM, Ristila M, Strid A, Eriksson LA (2006) Theoretical study of the antioxidant properties of pyridoxine. J Phys Chem A Mol Spectrosc Kinet Environ Gen Theory 110:13068–13072

    PubMed  CAS  Google Scholar 

  • McCormick DB, Chen H (1999) Update on interconversions of vitamin B-6 with its coenzyme. J Nutr 129:325–327

    PubMed  CAS  Google Scholar 

  • Metz TO, Alderson NL, Chachich ME, Thorpe SR, Baynes JW (2003a) Pyridoxamine traps intermediates in lipid peroxidation reactions in vivo: evidence on the role of lipids in chemical modification of protein and development of diabetic complications. J Biol Chem 278:42012–42019

    Article  PubMed  CAS  Google Scholar 

  • Metz TO, Alderson NL, Thorpe SR, Baynes JW (2003b) Pyridoxamine, an inhibitor of advanced glycation and lipoxidation reactions: a novel therapy for treatment of diabetic complications. Arch Biochem Biophys 419:41–49

    Article  PubMed  CAS  Google Scholar 

  • Metzler DE, Ikawa M, Snell EE (1954) A general mechanism for vitamin B6-catalyzed reactions. J Am Chem Soc 76:648–652

    Article  CAS  Google Scholar 

  • Murata Y, Kumano K, Ueda T, Araki N, Nakamura T, Tani M (1998) Photosensitive dermatitis caused by pyridoxine hydrochloride. J Am Acad Dermatol 39:314–317

    Article  PubMed  CAS  Google Scholar 

  • Nagaraj RH, Sarkar P, Mally A, Biemel KM, Lederer MO, Padayatti PS (2002) Effect of pyridoxamine on chemical modification of proteins by carbonyls in diabetic rats: characterization of a major product from the reaction of pyridoxamine and methylglyoxal. Arch Biochem Biophys 402:110–119

    Article  PubMed  CAS  Google Scholar 

  • Onorato JM, Jenkins AJ, Thorpe SR, Baynes JW (2000) Pyridoxamine, an inhibitor of advanced glycation reactions, also inhibits advanced lipoxidation reactions. J Biol Chem 275:21177–21184

    Article  PubMed  CAS  Google Scholar 

  • Reddy VP, Beyaz A (2006) Inhibitors of the Maillard reaction and AGE breakers as therapeutics for multiple diseases. Drug Discov Today 11:646–654

    Article  PubMed  CAS  Google Scholar 

  • Roberts MJ, Wondrak GT, Cervantes-Laurean D, Jacobson MK, Jacobson EL (2003) DNA damage by carbonyl stress in human skin cells. Mutat Res 522:45–56

    Article  PubMed  CAS  Google Scholar 

  • Sasaki N, Fukatsu R, Tsuzuki K, Hayashi Y, Yoshida T, Fujii N, Koike T, Wakayama I, Sato R, Taguchi H, Maeda T, Yoshikawa K (1993) Pyridoxine toxicity to cultured fibroblasts caused by near-ultraviolet light. J Invest Dermatol 100:266–270

    Article  Google Scholar 

  • Schumacker PT (2006) Reactive oxygen species in cancer cells: live by the sword, die by the sword. Cancer Cell 10:175–176

    Article  PubMed  CAS  Google Scholar 

  • Shwartzman G, Fisher A (1947) Studies on antibacterial properties of irradiated pyridoxamine. J Biol Chem 167:345–362

    PubMed  CAS  Google Scholar 

  • Stocker P, Lesgards JF, Vidal N, Chalier F, Prost M (2003) ESR study of a biological assay on whole blood: antioxidant efficiency of various vitamins. Biochim Biophys Acta 1621:1–8

    Article  PubMed  CAS  Google Scholar 

  • Tabner BJ, El-Agnaf OM, German MJ, Fullwood NJ, Allsop D (2005) Protein aggregation, metals and oxidative stress in neurodegenerative diseases. Biochem Soc Trans 33:1082–1086

    Article  PubMed  CAS  Google Scholar 

  • Ulrich P, Cerami A (2001) Protein glycation, diabetes, and aging. Recent Prog Horm Res 56:1–21

    Article  PubMed  CAS  Google Scholar 

  • Valko M, Leibfritz D, Moncol J, Cronin MT, Mazur M, Telser J (2007) Free radicals and antioxidants in normal physiological functions and human disease. Int J Biochem Cell Biol 39:44–84

    Article  PubMed  CAS  Google Scholar 

  • Voziyan PA, Hudson BG (2005a) Pyridoxamine as a multifunctional pharmaceutical: targeting pathogenic glycation and oxidative damage. Cell Mol Life Sci 62:1671–1681

    Article  PubMed  CAS  Google Scholar 

  • Voziyan PA, Hudson BG (2005b) Pyridoxamine: the many virtues of a maillard reaction inhibitor. Ann NY Acad Sci 1043:807–816

    Article  PubMed  CAS  Google Scholar 

  • Wang J, and Boyd RJ (1996) Tautomeric equilibria of hydroxypyridines in different solvents: ab initio study. J Phys Chem 100:16141–16146

    Article  CAS  Google Scholar 

  • Williams ME (2004) Clinical studies of advanced glycation end product inhibitors and diabetic kidney disease. Curr Diab Rep 4:441–446

    Article  PubMed  Google Scholar 

  • Williams VR, Neilands JB (1954) Apparent ionization constants, spectral properties and metal chelation of the cotransaminases and related compounds. Arch Biochem 53:56–70

    Article  PubMed  CAS  Google Scholar 

  • Wondrak GT, Cervantes-Laurean D, Roberts MJ, Qasem JG, Kim M, Jacobson EL, Jacobson MK (2002a) Identification of alpha-dicarbonyl scavengers for cellular protection against carbonyl stress. Biochem Pharmacol 63:361–373

    Google Scholar 

  • Wondrak GT, Roberts MJ, Cervantes-Laurean D, Jacobson MK, Jacobson EL (2003) Proteins of the extracellular matrix are sensitizers of photo-oxidative stress in human skin cells. J Invest Dermatol 121:578–586

    Google Scholar 

  • Wondrak GT, Jacobson MK, Jacobson EL (2005) An emerging molecular targer in melanoma: Cellular carbonyl stress and the inhibition of miochondrial survival pathways by carbonyl scavenger agents. Curr Cancer Ther Rev 1(3):271–276

    Google Scholar 

  • Wondrak GT, Jacobson MK, Jacobson EL (2006a) Antimelanoma activity of apoptogenic carbonyl scavengers. J Pharmacol Exp Ther 316:805–814

    Article  PubMed  CAS  Google Scholar 

  • Wondrak GT, Jacobson MK, Jacobson EL (2006b) Endogenous UVA-photosensitizers: mediators of skin photodamage and novel targets for skin photoprotection. Photochem Photobiol Sci 5:215–237

    Article  PubMed  CAS  Google Scholar 

  • Wondrak GT, Roberts MJ, Jacobson MK, Jacobson EL (2002b) Photosensitized growth inhibition of cultured human skin cells: mechanism and suppression of oxidative stress from solar irradiation of glycated proteins. J Invest Dermatol 119:489–498

    Article  PubMed  CAS  Google Scholar 

  • Wondrak GT, Roberts MJ, Jacobson MK, Jacobson EL (2004) 3-Hydroxypyridine chromophores are endogenous sensitizers of photooxidative stress in human skin cells. J Biol Chem 279:30009–30020

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

Supported in part by National Institutes of Health Grants (CA 106677-01, SWEHSC pilot research grant [ES06694], and GI Cancer Pilot Grant [SPORE, CA95060]).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Georg T. Wondrak .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Wondrak, G.T., Jacobson, E.L. (2012). Vitamin B6: Beyond Coenzyme Functions. In: Stanger, O. (eds) Water Soluble Vitamins. Subcellular Biochemistry, vol 56. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-2199-9_15

Download citation

Publish with us

Policies and ethics