Skip to main content

Distributed Plasticity for Olfactory Learning and Memory in the Honey Bee Brain

  • Chapter
  • First Online:
Honeybee Neurobiology and Behavior

Abstract

Honey bees have a number of sophisticated learning abilities to track rapidly changing distributions of nectar and pollen resources the colony needs for survival. The honey bee is an excellent animal in which to study learning because these abilities can be evaluated both in the field and under laboratory conditions that permit use of physiological analyses. Our focus is on how the neural bases for these learning abilities can be tracked into different levels of processing in the CNS (central nervous system). We specifically review two kinds of conditioning protocols to show first how behavior changes over conditioning and second how plasticity can be tracked into the antennal lobe (AL) as well as in the mushroom body (MB). We begin by pointing out that, particularly when the learning problem becomes difficult, the behavioral response to conditioned stimuli proceeds in a nonlinear manner. Honey bees may have difficulty in making an appropriate response until some point when a precipitous change in their behavior occurs. We then discuss how plasticity related to behavioral conditioning has been reported at subsequent processing levels in the AL as well as in the MB, which receives input from the AL. We point out that this distributed plasticity in the CNS for any kind of learning raises an important conceptual issue, which regards how changes at a higher level of processing (the MB) can be adapted to track and perhaps be augmented by changes at an earlier level (the AL). We show by example how coupled behavioral and physiological analyses combined with computation modeling can begin to address these important issues.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AL:

Antennal lobe

CA:

Mushroom body calyces

CS:

Conditioned stimulus

KC:

Kenyon cell

MB:

Mushroom body

PN:

Projection neuron

References

  1. Assisi C, Stopfer M, Laurent G, Bazhenov M (2007) Adaptive regulation of sparseness by feedforward inhibition. Nat Neurosci 10(9):1176–1184

    Article  PubMed  CAS  Google Scholar 

  2. Bitterman ME, Menzel R, Fietz A, Schäfer S (1983) Classical conditioning of proboscis extension in honeybees (Apis mellifera). J Comp Psychol 97(2):107–119

    Article  PubMed  CAS  Google Scholar 

  3. Cassenaer S, Laurent G (2007) Hebbian STDP in mushroom bodies facilitates the synchronous flow of olfactory information in locusts. Nature 448(7154):709–713

    Article  PubMed  CAS  Google Scholar 

  4. Chandra SB, Wright GA, Smith BH (2010) Latent inhibition in the honey bee, Apis mellifera: is it a unitary phenomenon? Anim Cogn 13(6):805–815

    Article  PubMed  Google Scholar 

  5. Dacher M, Smith BH (2008) Olfactory interference during inhibitory backward pairing in honey bees. PLoS One 3(10):e3513

    Article  PubMed  Google Scholar 

  6. Daly KC, Christensen TA, Lei H, Smith BH, Hildebrand JG (2004) Learning modulates the ensemble representations for odors in primary olfactory networks. Proc Natl Acad Sci USA 101(28):10476–10481

    Article  PubMed  CAS  Google Scholar 

  7. Denker M, Finke R, Schaupp F, Grun S, Menzel R (2010) Neural correlates of odor learning in the honeybee antennal lobe. Eur J Neurosci 31(1):119–133

    Article  PubMed  Google Scholar 

  8. Ditzen M, Evers JF, Galizia CG (2003) Odor similarity does not influence the time needed for odor processing. Chem Senses 28(9):781–789

    Article  PubMed  Google Scholar 

  9. Drezner-Levy T, Shafir S (2007) Parameters of variable reward distributions that affect risk sensitivity of honey bees. J Exp Biol 210(Pt 2):269–277

    Article  PubMed  Google Scholar 

  10. Faber T, Joerges J, Menzel R (1999) Associative learning modifies neural representations of odors in the insect brain. Nat Neurosci 2(1):74–78

    Article  PubMed  CAS  Google Scholar 

  11. Farooqui T, Robinson K, Vaessin H, Smith BH (2003) Modulation of early olfactory processing by an octopaminergic reinforcement pathway in the honeybee. J Neurosci 23:5370–5380

    PubMed  CAS  Google Scholar 

  12. Fernandez PC, Locatelli FF, Person-Rennell N, Deleo G, Smith BH (2009) Associative conditioning tunes transient dynamics of early olfactory processing. J Neurosci 29(33):10191–10202

    Article  PubMed  CAS  Google Scholar 

  13. Galan RF, Weidert M, Menzel R, Herz AV, Galizia CG (2006) Sensory memory for odors is encoded in spontaneous correlated activity between olfactory glomeruli. Neural Comput 18(1):10–25

    Article  PubMed  Google Scholar 

  14. Galizia CG, Rössler W (2010) Parallel olfactory systems in insects: anatomy and function. Annu Rev Entomol 55:399–420

    Article  PubMed  CAS  Google Scholar 

  15. Ganeshina O, Menzel R (2001) GABA-immunoreactive neurons in the mushroom bodies of the honeybee: an electron microscopic study. J Comp Neurol 437(3):335–349

    Article  PubMed  CAS  Google Scholar 

  16. Giurfa M (2007) Behavioral and neural analysis of associative learning in the honeybee: a taste from the magic well. J Comp Physiol A 193(8):801–824

    Article  PubMed  Google Scholar 

  17. Guerrieri F, Schubert M, Sandoz JC, Giurfa M (2005) Perceptual and neural olfactory similarity in honeybees. PLoS Biol 3(4):e60

    Article  PubMed  Google Scholar 

  18. Hammer M (1993) An identified neuron mediates the unconditioned stimulus in associative olfactory learning in honeybees. Nature 366:59–63

    Article  Google Scholar 

  19. Hildebrand JG, Shepherd GM (1997) Mechanisms of olfactory discrimination: converging evidence for common principles across phyla. Annu Rev Neurosci 20:595–631

    Article  PubMed  CAS  Google Scholar 

  20. Hourcade B, Perisse E, Devaud JM, Sandoz JC (2009) Long-term memory shapes the primary olfactory center of an insect brain. Learn Mem 16(10):607–615

    Article  PubMed  Google Scholar 

  21. Huerta R, Nowotny T (2009) Fast and robust learning by reinforcement signals: explorations in the insect brain. Neural Comput 21(8):2123–2151

    Article  PubMed  Google Scholar 

  22. Joerges J, Kuttnet A, Galizia G, Menzel R (1997) Representations of odours and odour mixtures visualized in the honeybee brain. Nature 387:285–288

    Article  CAS  Google Scholar 

  23. Kreissl S, Eichmüller S, Bicker G, Rapus J, Eckert M (1994) Octopamine-like immunoreactivity in the brain and subesophageal ganglion of the honeybee. J Comp Neurol 348(4):583–595

    Article  PubMed  CAS  Google Scholar 

  24. Laurent G (2002) Olfactory network dynamics and the coding of multidimensional signals. Nat Rev Neurosci 3(11):884–895

    Article  PubMed  CAS  Google Scholar 

  25. LeCun Y, Cortes Chylcem (1998) MNIST database. http://yannlecuncom/exdb/mnist/

  26. Linster C, Menon AV, Singh CY, Wilson DA (2009) Odor-specific habituation arises from interaction of afferent synaptic adaptation and intrinsic synaptic potentiation in olfactory cortex. Learn Mem 16(7):452–459

    Article  PubMed  Google Scholar 

  27. Lubow RE (1973) Latent inhibition. Psychol Bull 79:398–407

    Article  PubMed  CAS  Google Scholar 

  28. Marr D (1969) A theory of cerebellar cortex. J Physiol 202(2):437–470

    PubMed  CAS  Google Scholar 

  29. Mauelshagen J (1993) Neural correlates of olfactory learning paradigms in an identified neuron in the honeybee brain. J Neurophysiol 69(2):609–625

    PubMed  CAS  Google Scholar 

  30. Menzel R (1990) Learning, memory, and ‘cognition’ in honeybees. In: Kesner RP, Olton DS (eds) Neurobiology of comparative cognition. Lawrence Erlbaum, Hillsdale, pp 237–292

    Google Scholar 

  31. Menzel R, Manz G (2005) Neural plasticity of mushroom body-extrinsic neurons in the honeybee brain. J Exp Biol 208(Pt 22):4317–4332

    Article  PubMed  Google Scholar 

  32. Okada R, Rybak J, Manz G, Menzel R (2007) Learning-related plasticity in PE1 and other mushroom body-extrinsic neurons in the honeybee brain. J Neurosci 27(43):11736–11747

    Article  PubMed  CAS  Google Scholar 

  33. Perez-Orive J, Mazor O, Turner GC, Cassenaer S, Wilson RI et al (2002) Oscillations and sparsening of odor representations in the mushroom body. Science 297(5580):359–365

    Article  PubMed  CAS  Google Scholar 

  34. Perez-Orive J, Bazhenov M, Laurent G (2004) Intrinsic and circuit properties favor ­coincidence detection for decoding oscillatory input. J Neurosci 24(26):6037–6047

    Article  PubMed  CAS  Google Scholar 

  35. Quinn M, Smith L, Mayley G, Husbands P (2003) Evolving controllers for a homogeneous system of physical robots: structured cooperation with minimal sensors. Philos Transact A Math Phys Eng Sci 361(1811):2321–2343

    Article  PubMed  Google Scholar 

  36. Rabinovich M, Huerta R, Laurent G (2008) Neuroscience. Transient dynamics for neural processing. Science 321(5885):48–50

    Article  PubMed  CAS  Google Scholar 

  37. Rinberg D, Koulakov A, Gelperin A (2006) Speed-accuracy tradeoff in olfaction. Neuron 51(3):351–358

    Article  PubMed  CAS  Google Scholar 

  38. Rybak J, Menzel R (1993) Anatomy of the mushroom bodies in the honey bee brain: the neuronal connections of the alpha-lobe. J Comp Neurol 334(3):444–465

    Article  PubMed  CAS  Google Scholar 

  39. Sachse S, Galizia CG (2003) The coding of odour-intensity in the honeybee antennal lobe: local computation optimizes odour representation. Eur J Neurosci 18(8):2119–2132

    Article  PubMed  Google Scholar 

  40. Smith BH, Menzel R (1989) An analysis of variability in the feeding motor program of the honey bee; the role of learning in releasing a modal action pattern. Ethology 82:68–81

    Article  Google Scholar 

  41. Smith BH, Menzel R (1989) The use of electromyogram recordings to quantify odorant discrimination in the honey bee, Apis mellifera. J Insect Physiol 35:369–375

    Article  CAS  Google Scholar 

  42. Smith BH, Abramson CI, Tobin TR (1991) Conditional withholding of proboscis extension in honeybees (Apis mellifera) during discriminative punishment. J Comp Psychol 105(4):345–356

    Article  PubMed  CAS  Google Scholar 

  43. Smith BH, Wright GA, Daly KS (2006) Learning-based recognition and discrimination of floral odors. In: Dudareva N, Pichersky E (eds) The biology of floral scents. CRC Press, Boca Raton, pp 263–295

    Google Scholar 

  44. Stopfer M, Bhagavan S, Smith BH, Laurent G (1997) Impaired odour discrimination on desynchronization of odour-encoding neural assemblies. Nature 390(6655):70–74

    Article  PubMed  CAS  Google Scholar 

  45. Strausfeld NJ, Hildebrand JG (1999) Olfactory systems: common design, uncommon origins? Curr Opin Neurobiol 9(5):634–639

    Article  PubMed  CAS  Google Scholar 

  46. Szyszka P, Ditzen M, Galkin A, Galizia CG, Menzel R (2005) Sparsening and temporal sharpening of olfactory representations in the honeybee mushroom bodies. J Neurophysiol 94(5):3303–3313

    Article  PubMed  Google Scholar 

  47. Szyszka P, Galkin A, Menzel R (2008) Associative and non-associative plasticity in kenyon cells of the honeybee mushroom body. Front Syst Neurosci 2:3

    Article  PubMed  Google Scholar 

  48. Uchida N, Mainen ZF (2003) Speed and accuracy of olfactory discrimination in the rat. Nat Neurosci 6(11):1224–1229

    Article  PubMed  CAS  Google Scholar 

  49. Vosshall LB, Wong AM, Axel R (2000) An olfactory sensory map in the fly brain. Cell 102(2):147–159

    Article  PubMed  CAS  Google Scholar 

  50. Wright GA, Carlton M, Smith BH (2009) A honeybee’s ability to learn, recognize, and discriminate odors depends upon odor sampling time and concentration. Behav Neurosci 123(1):36–43

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brian H. Smith .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Smith, B.H., Huerta, R., Bazhenov, M., Sinakevitch, I. (2012). Distributed Plasticity for Olfactory Learning and Memory in the Honey Bee Brain. In: Galizia, C., Eisenhardt, D., Giurfa, M. (eds) Honeybee Neurobiology and Behavior. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-2099-2_30

Download citation

Publish with us

Policies and ethics