Skip to main content

Co-evolution of Pathogens, Mechanism Involved in Pathogenesis and Biocontrol of Plant Diseases: An Overview

  • Chapter
  • First Online:
Plant Defence: Biological Control

Part of the book series: Progress in Biological Control ((PIBC,volume 12))

Abstract

Plant pathogens pose a serious problem for global food security. More sustainable and reliable food production will be needed to support the human population for the upcoming years. To develop efficient, economic and environment friendly biocontrol measures, a deep understanding of diseases is required. The Phytopathology has four main objectives (i) etiology, (ii) pathogenesis, (iii) epidemiology and, (iv) control, which should be considered for an overall knowledge about a plant disease. Understanding of the plant response to the pathogen attack has advanced rapidly in recent years; still many plant diseases are unpredictable either due to emergence of new pathogenic strains or due to mutagenic changes in present strains, which cause a failure in all preventive measures. In this review, lacuna in present control measures and future requirements in disease management are discussed in the light of recent advances made in molecular mechanisms and components involved in pathogen defense in plants as well as how pathogens are continuously co-evolving. The complex picture of pathogen defense in plants is beginning to be unraveled but a lot more still remains unclear.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Strange RN, Scott PR (2005) Plant diseases: a threat to global food security. Annu Rev Phytopathol 43:83–116

    PubMed  CAS  Google Scholar 

  2. Pinstrup-Andersen P (2000) The future world food situation and the role of plant diseases. Can J Plant Pathol 22:321–331

    Google Scholar 

  3. United States Department of Agriculture (USDA) (2005) Foreign agricultural service circular series WAP 08–05, http://www.fas.usda.gov/wap/circular/2005/05-08/tables.html

  4. FAO (2000) The state of food insecurity in the world (SOFI). FAO, UN, Rome, www.fao.org/FOCUS/E/SOFI00/sofi001-e.htm

  5. Oerke EC, Dehne HW (2004) Safeguarding production—losses in major crops and the role of crop protection. Crop Prot 23:275–285

    Google Scholar 

  6. Pimentel DS, McNair J, Janecka J et al (2001) Economic and environmental threats of alien plant, animal, and microbe invasions. Agric Ecosyst Environ 84:1–20

    Google Scholar 

  7. Carefoot GL, Sprott ER (1967) Famine on the wind. Rand McNally & Co., Chicago

    Google Scholar 

  8. Birch PRJ, Whisson SC (2001) Phytophthora infestans enters the genomic era. Mol Plant Pathol 2:257–263

    PubMed  CAS  Google Scholar 

  9. Padmanabhan SY (1973) The great Bengal famine. Annu Rev Phytopathol 11:11–26

    Google Scholar 

  10. Ullstrup AJ (1972) The impact of the southern corn leaf blight epidemics of 1970–71. Annu Rev Phytopathol 10:37–50

    Google Scholar 

  11. Scheffer RP (1997) The nature of disease in plants. Cambridge University Press, Cambridge

    Google Scholar 

  12. Wellman FL (1957) Hemileia vastatrix. Federation Cafetalera de America, San Salvador

    Google Scholar 

  13. Mills LA (1964) Ceylon under British rule, 1795–1932. Cass & Co Ltd, Abingdon

    Google Scholar 

  14. Waage JK, Woodhall JW, Bishop SJ et al (2009) Patterns of plant pest introductions in Europe and Africa. Agric Syst 99:1–5

    Google Scholar 

  15. USBC (1998) Statistical abstract of the United States. US Bureau of the Census, US Government Printing Office, Washington, DC

    Google Scholar 

  16. Mack MC, D’Antonio CM (1998) Impacts of biological invasions on disturbance regimes. Trends Ecol Evol 13:195–198

    PubMed  CAS  Google Scholar 

  17. Pimentel D, Lach L, Zuniga R et al (2000) Environmental and economic costs associated with non-indigenous species in the United States. BioScience 50:53–65

    Google Scholar 

  18. McGee DC (1997) Plant pathogens and the worldwide movement of seeds. APS Press, Saint Paul

    Google Scholar 

  19. Stace-Smith R, Hamilton RI (1988) Inoculum thresholds of seedborne pathogens: viruses. Phytopathology 78:875–880

    Google Scholar 

  20. Anderson PK, Cunningham AA, Patel NG, Morales FJ, Epstein PR, Daszak P (2004) Emerging infectious diseases of plants: pathogen pollution, climate change and agrotechnological drivers. Trends Ecol Evol 19:535–544

    PubMed  Google Scholar 

  21. Hesler LR (2008) Grape diseases. In: Hesler LR (ed.) Manual of fruit diseases. Read Books, New York

    Google Scholar 

  22. Thresh JM, Otim-Nape GW (1994) Strategies for controlling African cassava mosaic geminivirus. Adv Dis Vector Res 10:215–236

    Google Scholar 

  23. Otim-Nape GW, Thresh JM, Bua A, Baguma Y, Shaw MW (1998) Temporal spread of cassava mosaic virus disease in a range of cassava cultivars in different agro-ecological regions of Uganda. Ann Appl Biol 133:415–430

    Google Scholar 

  24. Otim-Nape GW, Thresh JM (2006) The recent epidemic of cassava mosaic virus disease in Uganda. In: Cooke BM, Gareth Jones D, Kaye B (eds.) The epidemiology of plant diseases, 2nd edn. Springer, Dordrecht

    Google Scholar 

  25. Yirgou D, Bradbury JF (1968) Bacterial wilt of enset (Ensete ventricosum) incited by Xanthomonas musacearum sp. nov. Phytopathology 58:111–112

    Google Scholar 

  26. Tripathi L, Odipio J, Tripathi JN, Tusiime G (2008) A rapid technique for screening banana cultivars for resistance to Xanthomonas wilt. Eur J Plant Pathol 121:9–19

    Google Scholar 

  27. Kayobyo G, Aliguma L, Omiat G, Mugisha J, Benin S (2005) Impact of BXW on household livelihoods in Uganda. In: Proceedings workshop: assessing the impact of the banana bacterial wilt (Xanthomonas campestris pv. musacearum) on household livelihoods in East Africa, Kampala, 20 Dec 2005

    Google Scholar 

  28. Tripathi L, Mwangi M, Abele S, Aritua V, Tushemereirwe WK, Bandyopadhyay R (2009) Xanthomonas wilt: a threat to banana production in East and Central Africa. Plant Dis 93(5):440–451

    Google Scholar 

  29. Saari EE, Prescott JM (1985) World distribution in relation to economic losses. In: Roelfs AP, Bushnell WR (eds.) The cereal rusts; diseases, distribution, epidemiology, and control, vol II. Academic, Orlando

    Google Scholar 

  30. Gottwald TR (2010) Current epidemiological understanding of Citrus Huanglongbing. Annu Rev Phytopathol 48:6.1–6.21

    Google Scholar 

  31. Gilligan CA, van den Bosch F (2008) Epidemiological models for invasion and persistence of pathogens. Annu Rev Phytopathol 46:385–418

    PubMed  CAS  Google Scholar 

  32. Jones RAC, Salam MU, Maling TJ et al (2010) Principles of predicting plant virus disease epidemics. Annu Rev Phytopathol 48:179–203

    PubMed  CAS  Google Scholar 

  33. Williams PD (2009) Darwinian interventions taming pathogens through evolutionary ecology. Trends Parasitol 26:83–92

    PubMed  Google Scholar 

  34. Woolhouse MEJ, Webster JP, Domingo E et al (2002) Biological and biomedical implications of the co-evolution of pathogens and their hosts. Nat Genet 32:569–577

    PubMed  CAS  Google Scholar 

  35. Pagán I, Fraile A, Fernandez-Fueyo E et al (2010) Arabidopsis thaliana as a model for the study of plant-virus co-evolution. Philos Trans R Soc B 365:1983–1995

    Google Scholar 

  36. Thrall PH, Burdon JJ (2003) Evolution of virulence in a plant host-pathogen metapopulation. Science 299:1735–1737

    PubMed  CAS  Google Scholar 

  37. Fenner F, Fantini B (1999) Biological control of vertebrates pest. CABI Publishing, Wallingford

    Google Scholar 

  38. Dangl JL, Jones JDG (2001) Plant pathogens and integrated defence responses to infection. Nature 411:826–833

    PubMed  CAS  Google Scholar 

  39. Staskawicz BJ, Mudgett MB, Dangl JL et al (2001) Common and contrasting themes of plant and animal diseases. Science 292:2285–2289

    PubMed  CAS  Google Scholar 

  40. Burdon JJ, Thrall PH (2009) Co-evolution of plants and their pathogens in natural habitats. Science 324:755–756

    PubMed  CAS  Google Scholar 

  41. Rausher MD (2001) Co-evolution and plant resistance to natural enemies. Nature 411:857–864

    PubMed  CAS  Google Scholar 

  42. Shan L, He P, Sheen J (2007) Endless hide-and-seek: dynamic co-evolution in plant-bacterium warfare. J Integr Biol 49:105–111

    CAS  Google Scholar 

  43. Keen N (1990) Gene-for-gene complementarity in plant-pathogen interactions. Annu Rev Genet 24:447–463

    PubMed  CAS  Google Scholar 

  44. Rosenthal GA, Dahlman DL, Janzen DH (1976) A novel means for dealing with L-canavanine, a toxic metabolite. Science 192:256–258

    PubMed  CAS  Google Scholar 

  45. Bishop JG, Dean AM, Mitchell-Olds T (2000) Rapid evolution in plant chitinases: molecular targets of selection in plant-pathogen co-evolution. Proc Natl Acad Sci USA 10:5322–5327

    Google Scholar 

  46. Richards TA, Dacks JB, Jenkinson JM et al (2006) Evolution of filamentous plant pathogens: gene exchange across eukaryotic kingdoms. Curr Biol 16:1857–1864

    PubMed  CAS  Google Scholar 

  47. Anderson JO (2005) Lateral gene transfer in eukaryotes. Cell Mol Life Sci 62:1182–1197

    Google Scholar 

  48. Jain R, Rivera MC, Moore JE et al (2003) Horizontal gene transfer accelerates genome innovation and evolution. Mol Biol Evol 20:1598–1602

    PubMed  CAS  Google Scholar 

  49. Kurland CG, Canback B, Berg OG (2003) Horizontal gene transfer: a critical view. PNAS 100:9658–9662

    PubMed  CAS  Google Scholar 

  50. Boucher Y, Douady CJ, Papke RT et al (2003) Lateral gene transfer and the origins of prokaryotic groups. Annu Rev Genet 37:283–328

    PubMed  CAS  Google Scholar 

  51. Friesen TL, Stukenbrock EH, Liu ZH et al (2006) Emergence of a new disease as a result of interspecific virulence gene transfer. Nat Genet 38:953–956

    PubMed  CAS  Google Scholar 

  52. Oliver RP, Solomon PS (2008) Recent fungal diseases of crop plants: is lateral gene transfer a common theme? Mol Plant Microbe Interact 2:287–293

    Google Scholar 

  53. Cavender-Bares J, Kozak KH, Fine PVA et al (2009) The merging of community ecology and phylogenetic biology. Ecol Lett 12:693–715

    PubMed  Google Scholar 

  54. Howitz KT, Bitterman KJ, Cohen HY, Lamming DW, Lavu S, Wood JG et al (2003) Small molecule activators of sirtuins extend Saccharomyces cerevisiae lifespan. Nature 425:191–196

    PubMed  CAS  Google Scholar 

  55. Van Der Plank JE (1966) Horizontal (polygenic) and vertical (oligogenic) resistance against blight. Am J Potato Res 43(2):43–52

    Google Scholar 

  56. Agrios GN (2005) Plant pathology, 5th edn. Academic, San Diego

    Google Scholar 

  57. Robinson RA (1976) Plant pathosystems. Springer, Berlin/Heidelberg/New York

    Google Scholar 

  58. Debener T, Lehnackers H, Arnold M et al (1991) Identification and molecular mapping of a single Arabidopsis thaliana locus determining resistance to a phytopathogenic Pseudomonas syringae isolate. Plant J 1:289–302

    PubMed  CAS  Google Scholar 

  59. Whalen MC, Innes RW, Bent AF et al (1991) Identification of Pseudomonas syringae pathogens of Arabidopsis and a bacterial locus determining avirulence on both Arabidopsis and soybean. Plant Cell 3:49–59

    PubMed  CAS  Google Scholar 

  60. Flor HH (1955) Host-parasite interactions in flax—its genetics and other implications. Phytopathology 45:680–685

    Google Scholar 

  61. Bergelson J, Kreitman M, Stahl Eli A et al (2001) Evolutionary dynamics of plant R-genes. Science 292:2281–2285

    PubMed  CAS  Google Scholar 

  62. Nishimura MT, Dangl JL (2010) Arabidopsis and the plant immune system. Plant J 61:1053–1066

    PubMed  CAS  Google Scholar 

  63. Thomma B, Van Esse HP, Crous PW et al (2005) Cladosporium fulvum (syn. Passalora fulva), a highly specialized plant pathogen as a model for functional studies on plant pathogenic Mycosphaerellaceae. Mol Plant Pathol 6:379–393

    PubMed  CAS  Google Scholar 

  64. Dodds PN, Lawrence GJ, Catanzariti AM et al (2006) Direct protein interaction underlies gene-for-gene specificity and coevolution of the flax resistance genes and flax rust avirulence genes. PNAS 103:8888–8893

    PubMed  CAS  Google Scholar 

  65. Ausubel FM (2005) Are innate immune signaling pathways in plants and animals conserved? Nat Immunol 6:973–979

    PubMed  CAS  Google Scholar 

  66. He P, Shan L, Lin NC et al (2006) Specific bacterial suppressors of MAMP signaling upstream of MAPKKK in Arabidopsis innate immunity. Cell 125:563–575

    PubMed  CAS  Google Scholar 

  67. Chisholm ST, Coaker G, Day B et al (2006) Host-microbe interactions: shaping the evolution of the plant immune response. Cell 124:803–814

    PubMed  CAS  Google Scholar 

  68. Kaku H, Nishizawa Y, Ishii-Minami N et al (2006) Plant cells recognize chitin fragments for defense signaling through a plasma membrane receptor. Proc Natl Acad Sci USA 103:11086–11091

    PubMed  CAS  Google Scholar 

  69. Zipfel C, Kunze G, Chinchilla D et al (2006) Perception of the bacterial PAMP EF-Tu by the receptor EFR restricts Agrobacterium-mediated transformation. Cell 125:749–760

    PubMed  CAS  Google Scholar 

  70. Meyers BC, Kozik A, Griego A et al (2003) Genome-wide analysis of NBS-LRR-encoding genes in Arabidopsis. Plant Cell 15:809–834

    PubMed  CAS  Google Scholar 

  71. Umemoto N, Kakitani M, Iwamatsu A et al (1997) The structure and function of a soybean betaglucan- elicitor-binding protein. Proc Natl Acad Sci USA 94:1029–1034

    PubMed  CAS  Google Scholar 

  72. Gomez-Gomez L, Boller T (2000) FLS2: an LRR receptor-like kinase involved in the perception of the bacterial elicitor flagellin in Arabidopsis. Mol Cell 5:1003–1011

    PubMed  CAS  Google Scholar 

  73. Shiu SH, Bleecker AB (2003) Expansion of the receptor-like kinase/Pelle gene family and receptor-like proteins in Arabidopsis. Plant Physiol 132:530–543

    PubMed  CAS  Google Scholar 

  74. Mittler R, Vanderauwera S, Gollery M et al (2004) Reactive oxygen gene network of plants. Trends Plant Sci 9:490–498

    PubMed  CAS  Google Scholar 

  75. Grant JJ, Yun BW, Loake GJ (2000) Oxidative burst and cognate redox signalling reported by luciferase imaging: identification of a signal network that functions independently of ethylene, SA and Me-JA but is dependent on MAPKK activity. Plant J 24:569–582

    PubMed  CAS  Google Scholar 

  76. Fellbrich G, Blume B, Brunner F et al (2000) Phytophthora parasitica elicitor-induced reactions in cells of Petroselinum crispum. Plant Cell Physiol 41:692–701

    PubMed  CAS  Google Scholar 

  77. Lamb C, Dixon RA (1997) The oxidative burst in plant disease resistance. Annu Rev Plant Physiol Plant Mol Biol 48:251–275

    PubMed  CAS  Google Scholar 

  78. Heath MC (2000) Hypersensitive response-related death. Plant Mol Biol 44:321–334

    PubMed  CAS  Google Scholar 

  79. Gechev TS, Breusegem FV, Stone JM et al (2006) Reactive oxygen species as signals that modulate plant stress responses and programmed cell death. Bioessays 28:1091–1101

    PubMed  CAS  Google Scholar 

  80. Torres MA, Jones JDG, Dangl JL (2006) Reactive oxygen species signaling in response to pathogens. Plant Physiol 141:373–378

    PubMed  CAS  Google Scholar 

  81. Levine A, Tenhaken R, Dixon R et al (1994) H2O2 from the oxidative burst orchestrates the plant hypersensitive disease resistance response. Cell 79:583–593

    PubMed  CAS  Google Scholar 

  82. Bolwell GP, Daudi A (2009) Reactive oxygen species in plant signaling. In: del Río LA, Puppo A (eds.) Signaling and communication in plants. Springer, Berlin/Heidelberg

    Google Scholar 

  83. Lambeth JD (2004) NOX enzymes and the biology of reactive oxygen. Nat Rev Immunol 4:181–189

    PubMed  CAS  Google Scholar 

  84. Apel K, Hirt H (2004) Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu Rev Plant Biol 55:373–399

    PubMed  CAS  Google Scholar 

  85. Liu X, Williams CE, Nemacheck JA et al (2010) Reactive oxygen species are involved in plant defense against a gall midge. Plant Physiol 52:985–999

    Google Scholar 

  86. Huckelhoven R, Kogel KH (2003) Reactive oxygen intermediates in plantmicrobe interactions: who is who in powdery mildew resistance? Planta 216:891–902

    PubMed  CAS  Google Scholar 

  87. Collins NC, Thordal-Christensen H, Lipka V et al (2003) SNARE-protein-mediated disease resistance at the plant cell wall. Nature 425:973–977

    PubMed  CAS  Google Scholar 

  88. Bol JF, Linthorst HJM, Cornelissen BJC (1990) Plant pathogenesis-related proteins induced by virus infection. Annu Rev Phytopathol 28:113–138

    CAS  Google Scholar 

  89. Zhang J, Du X, Wang Q et al (2010) Expression of pathogenesis related genes in response to salicylic acid, methyl jasmonate and 1-aminocyclopropane-1-carboxylic acid in Malus hupehensis (Pamp.) Rehd. BMC Res Notes 3:208–214

    PubMed  Google Scholar 

  90. Van Loon LC, Pierpoint WS, Conejero V (1994) Recommendations for naming plant pathogenesis-related proteins. Plant Mol Biol Rep 12:246–264

    Google Scholar 

  91. Sato F, Koiwa H, Sakai Y et al (1995) Synthesis and secretion of tobacco neutral PR-5 protein by transgenic tobacco and yeast. Biochem Biophys Res Commum 211:909–913

    CAS  Google Scholar 

  92. Ohashi Y, Matsuoka M (1987) Induction and secretion of pathogenesis-related proteins by salicylate or plant hormones in tobacco suspension cultures. Plant Cell Physiol 28:573–580

    CAS  Google Scholar 

  93. Peña-Cortés H, Willmitzer L (1995) The role of hormones in gene activation in response to wounding. In: Davis PJ (ed.) Plant hormones. Kluwer Academic, Dordrecht

    Google Scholar 

  94. Okushima Y, Koizumi N, Kusano T et al (2000) Secreted proteins of tobacco cultured BY2 cells: identification of a new member of pathogenesis-related proteins. Plant Mol Biol 42:479–488

    PubMed  CAS  Google Scholar 

  95. Nimchuk Z, Eulgem T, Holt BF et al (2003) Recognition and response in the plant immune system. Annu Rev Genet 37:579–609

    PubMed  CAS  Google Scholar 

  96. Nimchuk Z, Rohmer L, Chang JH et al (2001) Knowing the dancer from the dance: R-gene products and their interactions with other proteins from host and pathogen. Curr Opin Plant Biol 4:288–294

    PubMed  CAS  Google Scholar 

  97. Desveaux D, Singer AU, Dangl JL (2006) Type III effector proteins: doppelgangers of bacterial virulence. Curr Opin Plant Biol 9:376–382

    PubMed  CAS  Google Scholar 

  98. Santner A, Estelle M (2010) The ubiquitin-proteasome system regulates plant hormone signaling. Plant J 61:1029–1040

    PubMed  CAS  Google Scholar 

  99. Grant MR, Jones JDG (2009) Hormone (Dis)harmony moulds plant health and disease. Science 324:750–752

    PubMed  CAS  Google Scholar 

  100. Pieterse CMJ, Leon-Reyes A, Van der Ent S et al (2009) Networking by small-molecule hormones in plant immunity. Nat Chem Biol 5:308–316

    PubMed  CAS  Google Scholar 

  101. Dong X (2004) NPR1, all things considered. Curr Opin Plant Biol 7:547–552

    PubMed  CAS  Google Scholar 

  102. Onkokesung N, Gális I, von Dahl CC et al (2010) Jasmonic acid and ethylene modulate local responses to wounding and simulated herbivory in Nicotiana attenuata leaves. Plant Physiol 153:785–798

    PubMed  CAS  Google Scholar 

  103. Yan J, Zhang C, Gu M et al (2009) The Arabidopsis CORONATINE INSENSITIVE1 protein is a jasmonate receptor. Plant Cell 21:2220–2236

    PubMed  CAS  Google Scholar 

  104. von Dahl CC, Winz RA, Halitschke R et al (2007) Tuning the herbivore-induced ethylene burst: the role of transcript accumulation and ethylene perception in Nicotiana attenuata. Plant J 51:293–307

    Google Scholar 

  105. Chen YF, Etheridge N, Schaller GE (2005) Ethylene signal transduction. Ann Bot Lond 95:901–915

    CAS  Google Scholar 

  106. Vlot AC, Dempsey D’Maris A, Klessig DF (2009) Salicylic acid, a multifaceted hormone to combat disease. Annu Rev Phytopathol 47:177–206

    PubMed  CAS  Google Scholar 

  107. Attaran E, Zeier TE, Griebel T et al (2009) Methyl salicylate production and jasmonate signaling are not essential for systemic acquired resistance in Arabidopsis. Plant Cell 21:954–971

    PubMed  CAS  Google Scholar 

  108. House Resolution- 1627 Food Quality Protection Act (FQPA) (1996) http://www.epa.gov/pesticides/regulating/laws/fqpa/

  109. Dayan FE, Cantrell CL, Duke SO (2009) Natural products in crop protection. Bioorg Med Chem 17:4022–4034

    PubMed  CAS  Google Scholar 

  110. De Angelis J (2010) Pesticides – insecticides, herbicides and fungicides. (http://www.livingwithbugs.com/pesticid.html)

  111. Spadaro D, Gullino ML (2005) Improving the efficacy of biocontrol agents against soil borne pathogens. Crop Prot 24:601–613

    Google Scholar 

  112. Sharma RR, Singh D, Singh R (2009) Biological control of postharvest diseases of fruits and vegetables by microbial antagonists: a review. Biol Control 50:205–221

    Google Scholar 

  113. McSpadden Gardener BB, Fravel DR (2002) Biological control of plant pathogens: research, commercialization, and application in the USA. Plant Health Prog. doi:10.1094/PHP-2002-0510-01-RV

  114. El-Hamshary OIM, Gebally O, El-Gebally Abou-El-Khier ZA et al (2010) Enhancement of the chitinolytic properties of Azospirillum strain against plant pathogens via transformation. J Am Sci 6:169–176

    Google Scholar 

  115. United States Environmental Protection Agency (US EPA). Termss: biopesticides. Online. Office of Pesticide Programs. http://www.epa.gov/pesticides/biopesticides/

  116. Lee SW, Il-P A, Sim SY et al (2010) Pseudomonas sp. LSW25R, antagonistic to plant pathogens, promoted plant growth, and reduced blossom-end rot of tomato fruits in a hydroponic system. Eur J Plant Pathol 126:1–11

    Google Scholar 

  117. Gill JJ, Svircev AM, Smith R et al (2003) Bacteriophages of Erwinia amylovora. Appl Environ Microbiol 69:2133–2138

    PubMed  CAS  Google Scholar 

  118. Jackson LE (1989) Bacteriophages prevention and control of harmful plant bacteria. US Patent 4,828,999, 9 May 1989

    Google Scholar 

  119. Jones JB, Jackson LE, Balogh B et al (2007) Bacteriophages for plant disease control. Annu Rev Phytopathol 45:245–262

    PubMed  CAS  Google Scholar 

  120. Helias V, Andrivon D, Jouan B (2000) Internal colonization pathways of potato plants by Erwinia carotovora ssp. atroseptica. Plant Pathol 49:33–42

    CAS  Google Scholar 

  121. Biosca EG, Marco-Noales E, Ordax M et al (2006) Long-term starvation-survival of Erwinia amylovora in sterile irrigation water. Acta Hortic 704:107–112

    Google Scholar 

  122. López MM, Llop P, Olmos A et al (2009) Are molecular tools solving the challenges posed by detection of plant pathogenic bacteria and viruses? Curr Issues Mol Biol 11:13–46

    PubMed  Google Scholar 

  123. Li R, Hartung JS (2007) Reverse transcription-polymerase chain reaction-based detection of cherry green ring mottle virus and cherry necrotic rusty mottle virus in Prunus spp. Unit 16C.1. In: Current protocols in microbiology. Wiley, New Jersey, pp 1–9

    Google Scholar 

  124. Schoen CD, de Weerdt M, Szemes M et al (2004) Multiplex detection of plant (quarantine) pathogens by micro-arrays: an innovative tool for plant health management. Acta Hortic ISHS 657:553–558

    CAS  Google Scholar 

  125. Xie XW, Yu J, Xu JL et al (2007) Introduction of a non host gene Rxo1 cloned from maize resistant to rice bacterial leaf streak into rice varieties. Chin J Biotechnol 23:607–611

    CAS  Google Scholar 

  126. Zakharchenko NS, Rukavtsova EB, GudkovYa AT et al (2005) Enhanced resistance to phytopathogenic bacteria in transgenic tobacco plants with synthetic gene of antimicrobial peptide cecropin P1. Russ J Genet 41:1187–1193

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kishan G. Ramawat .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Arora, J., Goyal, S., Ramawat, K.G. (2012). Co-evolution of Pathogens, Mechanism Involved in Pathogenesis and Biocontrol of Plant Diseases: An Overview. In: Mérillon, J., Ramawat, K. (eds) Plant Defence: Biological Control. Progress in Biological Control, vol 12. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-1933-0_1

Download citation

Publish with us

Policies and ethics