Skip to main content

Electron Transport in Leaves: A Physiological Perspective

  • Chapter
  • First Online:
Photosynthesis

Part of the book series: Advances in Photosynthesis and Respiration ((AIPH,volume 34))

Summary

Light absorbed by photosystems I and II is used to drive linear electron transport, and associated proton transport, in the thylakoid membranes of leaves. In healthy leaves operating under non-stressful conditions and in which photorespiration is inhibited, photosynthetic electron transport is used primarily to reduce NADP+ to NADPH, which is then used to drive the assimilation of CO2 into carbohydrates with ca. 88% of electrons being consumed in this process. However, such a high quantum efficiency of CO2 assimilation is frequently not observed in leaves. We examine the intrinsic physiological, metabolic and environmental factors that can modify photosynthetic electron transport in leaves. Electron transport is also required for the reduction and activation of key enzymes involved in photosynthetic metabolism and driving other metabolic processes, such as nitrogen and sulfur metabolism. Oxygen can act as an electron acceptor, being reduced by electrons from photosystem I via a Mehler reaction or by electrons from photosystem II via the plastid terminal oxidase. Although such photoreductions of oxygen do not appear to have a significant role in healthy, non-stressed leaves, there is evidence to support the contention that these processes can be important for photoprotection of photosystem II in leaves under light stress. Cyclic electron transport can occur around photosystem I; however, this process would also appear to only be of physiological importance when the ability of the leaf to assimilate CO2 is severely restricted. It is concluded that leaves exhibit a high degree of plasticity in their ability to modify the pathways of photosynthetic electron transport in order to deal with fluctuations in metabolic demands and environmental stresses.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

Ca – :

Molar ratio of CO2 in ambient air;

Ci – :

Molar ratio of CO2 concentration in intercellular leaf space;

CET1 –:

Cyclic electron transfer around PS I;

FBPase –:

Fructose 1,6-bisphosphatase;

FNR –:

Ferredoxin NADP oxidoreductase;

LET –:

Linear electron transfer;

LHCII –:

Light-harvesting complexes associated with PS II;

MDA –:

Monodehydroascorbate;

MDH –:

Malate dehydrogenase;

Ndh –:

NAD(P)H dehydrogenase complex;

PPFD –:

Photosynthetically-active photon flux density;

PS I –:

Photosystem I;

PS II –:

Photosystem II;

PTOX –:

Plastid terminal oxidase;

Rubisco –:

Ribulose 1,5-­bisphosphate carboxylase-oxygenase;

φCO2max – :

Maximum quantum yield of CO2 assimilation;

φO2max – :

Maximum quantum yield of O2 evolution

References

  • Albertsson P-Å (2001) A quantitative model of the domain structure of the photosynthetic membrane. Trends Plant Sci 6: 349–354

    Article  PubMed  CAS  Google Scholar 

  • Allen JF (1992) Protein phosphorylation in regulation of photosynthesis. Biochim Biophys Acta 1098: 275–335

    Article  PubMed  CAS  Google Scholar 

  • Andrews JR, Bredenkamp GJ and Baker NR (1993) Evaluation of the role of state transitions in determining the efficiency of light utilisation for CO2 assimilation in leaves. Photosynth Res 38: 15–26

    Article  CAS  Google Scholar 

  • Apel K and Hirt H (2004) Reactive oxygen species: Metabolism, oxidative stress, and signal transduction. Annu Rev Plant Biol 55: 373–99

    Article  PubMed  CAS  Google Scholar 

  • Aro E-M, Suorsa M, Rokka A, Allahverdiyeva Y, Paakkarinen V, Saleem A, Battchikova N and Rintamäki E (2004) Dynamics of photosystem II: a proteomic approach to thylakoid protein complexes. J Exp Bot 56: 347–356

    Article  PubMed  Google Scholar 

  • Asada K (1996) Radical production and scavenging in the chloroplasts. In: Baker NR (ed) Photosynthesis and the Environment, Advances in Photosynthesis, Vol 5, pp 123–150. Kluwer Academic Publishers, Dordrecht

    Chapter  Google Scholar 

  • Asada K (1999) The water–water cycle in chloroplasts: scavenging of active oxygens and dissipation of excess photons. Annu Rev Plant Physiol Plant Mol Biol 50: 601–639

    Article  PubMed  CAS  Google Scholar 

  • Bachhausen JE, Kitzmann C and Scheibe R (1994) Electron acceptors in photosynthesis – regulation of the malate valve during CO2 fixation and nitrite reduction. Photosynth Res 42: 75–86

    Article  Google Scholar 

  • Badger MR (1985) Photosynthetic oxygen exchange. Annu Rev Plant Physiol 36: 27–53

    Article  CAS  Google Scholar 

  • Badger MR, von Caemmerer S, Ruuska S and Nakanao H (2000) Electron flow to oxygen in higher plants and algae: rates and control of direct photoreduction (Mehler reaction) and rubisco oxygenase. Phil Trans Roy Soc London B 355: 1433–1446

    Google Scholar 

  • Balmer Y, Stritt-Etter A-L, Hirasawa M, Jacquot J-P, Keryer E, Knaff DB and Schürmann P (2001) Oxidation-reduction and activation properties of chloroplast fructose 1,6-bisphosphatase with mutated regulatory site. Biochemistry 40: 15444–15450

    Article  PubMed  CAS  Google Scholar 

  • Bendall DS and Manasse RS (1995) Cyclic photophosphorylation and electron transport. Biochim Biophys Acta 1229: 23–28

    Article  Google Scholar 

  • Bennoun P (1982) Evidence for a respiratory chain in the chloroplast. Proc Natl Acad Sci USA 79: 4352–4356

    Article  PubMed  CAS  Google Scholar 

  • Biehler K and Fock H (1996) Evidence for the contribution of the Mehler-peroxidase reaction in dissipating excess electrons in drought-stressed wheat. Plant Physiol 112: 265–272

    PubMed  CAS  Google Scholar 

  • Björkman O and Demmig B (1987) Photon yield of O2 evolution and chlorophyll fluorescence characteristics at 77 K among vascular plants of diverse origins. Planta 170: 489–504

    Article  Google Scholar 

  • Brestic M, Cornic G, Fryer MJ and Baker NR (1995) Does photorespiration protect the photosynthetic apparatus in French bean leaves from photoinhibition during drought stress? Planta 196: 450–457

    Article  CAS  Google Scholar 

  • Buchanan BB and Balmer Y (2005) Redox regulation: A broadening horizon. Annu Rev Plant Biol 56: 187–220

    Article  PubMed  CAS  Google Scholar 

  • Cheeseman JM, Herendeen LB, Cheeseman AT and Clough BF (1997) Photosynthesis and photoprotection in mangroves under field conditions. Plant Cell Environ 20: 579–588

    Article  CAS  Google Scholar 

  • Cornic G (1976) Effet exercé sur l’activité photosynthétique du Sinapis alba L. par une inhibition temporaire de la photorespiration se déroulant dans un air sans CO2. C R Acad Sc Paris série D 282: 1955–1958

    CAS  Google Scholar 

  • Cornic G and Briantais JM (1991) Partitioning of photosynthetic electron flow between CO2 and O2 reduction in a C3 leaf (Phaseolus vulgaris L.) at different CO2 concentrations and during drought stress. Planta 183: 178–184

    Article  CAS  Google Scholar 

  • Cornic G and Massacci A (1996) Leaf photosynthesis under drought stress. In: Baker NR (ed) Photosynthesis and the Environment, Advances in Photosynthesis, Vol 5, pp 347–366. Kluwer Academic Press, Dordrecht

    Chapter  Google Scholar 

  • Cruz JA, Salbilla BA, Kanazawa A and Kramer DM (2001) Inhibition of plastocyanin to P +700 electron transfer in Chlamydomonas reinhardii by hyperosmotic stress. Plant Physiol 127: 1167–1179

    Article  PubMed  CAS  Google Scholar 

  • Cruz JA, Avenson TJ, Kanazawa K, Edwards GE and Kramer DM (2005) Plasticity in light reactions of photosynthesis for energy production and photoprotection. J Exp Bot 56: 395–406

    Article  PubMed  CAS  Google Scholar 

  • Driever SM and Baker NR (2011) The water-water cycle in leaves is not a major alternative electron sink for dissipation of excess excitation energy when CO2 assimilation is restricted. Plant Cell Environ 34: 837–846

    Google Scholar 

  • Falkowski PG, Fujita Y, Ley A and Mauzerall D (1986) Evidence for cyclic electron flow around photosystem-II in Chlorella pyrenoidosa. Plant Physiol 81: 310–312

    Article  PubMed  CAS  Google Scholar 

  • Farage PK, Blowers D, Long SP and Baker NR (2006) Low growth temperatures modify the efficiency of light use by photosystem II for CO2 assimilation in leaves of two chilling-tolerant C4 species, Cyperus longus L. and Miscanthus x giganteus. Plant Cell Environ 29: 720–728

    Article  PubMed  CAS  Google Scholar 

  • Field TS, Nedbal L and Ort DR (1998) Nonphotochemical reduction of the plastoquinone pool in sunflower leaves originates from chlororespiration. Plant Physiol 116: 1209–1218

    Article  Google Scholar 

  • Finazzi G (2004) The central role of the green alga Chlamydomonas reinhardtii in revealing the mechanism of state transitions. J Exp Bot 56: 383–388

    Article  PubMed  Google Scholar 

  • Fork DC and Herbert SK (1993) Electron transport and photophosphorylation by photosystem I in vivo in plants and cyanobacteria. Photosynth Res 36: 149–168

    Article  CAS  Google Scholar 

  • Fork DC and Satoh K (1986) The control by state transitions of the distribution of excitation energy in photosynthesis. Annu Rev Plant Physiol 37: 335–361

    Article  CAS  Google Scholar 

  • Foyer C, Furbank R, Harbinson J and Horton P (1990) The mechanisms contributing to control of electron transport by carbon assimilation in leaves. Photosynth Res 25: 83–100

    Article  CAS  Google Scholar 

  • Foyer C, Lelandais M and Harbinson J (1992) Control of quantum efficiencies of Photosystems I and II electron flow and enzyme activation following dark-to-light transitions in pea leaves. Relationship between NADP/NADPH ratios and NADP-malate dehydrogenase activation state. Plant Physiol 99: 979–986

    Article  PubMed  CAS  Google Scholar 

  • Fryer MJ, Andrews JR, Oxborough K, Blowers DA and Baker NR (1998) Relationship between CO2 assimilation, photosynthetic electron transport, and active O2 metabolism in leaves of maize in the field during periods of low temperature. Plant Physiol 116: 571–580

    Article  PubMed  CAS  Google Scholar 

  • Genty B and Harbinson J (1996) Regulation of light utilisation for photosynthetic electron transport. In: Baker N R (ed) Photosynthesis and the Environment, Advances in Photosynthesis, Vol 5, pp 67–99. Kluwer Academic Publishers, Dordrecht

    Chapter  Google Scholar 

  • Genty B, Harbinson J and Baker NR (1990) Relative quantum efficiencies of the two photosystems of leaves in photorespiratory and non-photorespiratory conditions. Plant Physiol Biochem 28: 1–10

    CAS  Google Scholar 

  • Golding AJ and Johnson GN (2003) Down-regulation of linear and activation of cyclic electron transport during drought. Planta 218: 107–114

    Article  PubMed  CAS  Google Scholar 

  • Golding AJ, Finazzi G and Johnson GN (2004) Reduction of the thylakoid electron transport chain by stromal reductants – evidence for activation of cyclic electron transport upon dark adaptation or under drought. Planta 220: 356–363

    Article  PubMed  CAS  Google Scholar 

  • Habash D, Paul M, Parry MAJ, Keys AJ and Lawlor DW (1995) Increased capacity for photosynthesis in wheat grown at elevated CO2: the relationship between electron transport and carbon metabolism. Planta 197: 482–489

    Article  CAS  Google Scholar 

  • Haehnel W (1984) Photosynthetic electron transport in higher plants. Annu Rev Plant Physiol 35: 659–693

    Article  CAS  Google Scholar 

  • Harbinson J and Foyer CH (1991) Relationships between the efficiencies of photosystems I and II and stromal redox state in CO2-free air. Evidence for cyclic electron flow in vivo. Plant Physiol 97: 41–49

    Article  PubMed  CAS  Google Scholar 

  • Harbinson J, Genty B and Baker NR (1989) The relationship between the quantum efficiencies of photosystems I and II in pea leaves. Plant Physiol 90: 1029–1034

    Article  PubMed  CAS  Google Scholar 

  • Harbinson J, Genty B and Baker NR (1990) The relationship between CO2 assimilation and electron transport in leaves. Photosynth Res 25: 213–224

    Article  CAS  Google Scholar 

  • Hauska G, Schütz M and Büttner M (1996) The cytochrome b 6    f complex-composition, structure and function. In: Ort DR and Yocum CF (eds) Oxygenic Photosynthesis: The Light Reactions, Advances in Photosynthesis, Vol 4, pp 377–398. Kluwer Academic Publishers, Dordrecht

    Chapter  Google Scholar 

  • Heber U (2002) Irrungen, Wirrungen? The Mehler reaction in relation to cyclic electron transport in C3 plants. Photosynth Res 73: 223–231

    Article  PubMed  CAS  Google Scholar 

  • Heber U, Kirk MR and Boardman NK (1979) Photoreactions of cytochrome b-559 and cyclic electron flow in Photosystem II of intact chloroplasts. Biochim Biophys Acta 546: 292–306

    Article  PubMed  CAS  Google Scholar 

  • Hirasawa M, Brandes HK, Hartman FC and Knaff DB (1998) Oxidation-reduction properties of the regulatory site of spinach phosphoribulokinase. Arch Biochem Biophys 350: 127–131

    Article  PubMed  CAS  Google Scholar 

  • Hirasawa M, Ruelland E, Schepens I, Issakidis-Bourget E, Miginiac-Maslow M and Knaff DB (2000) Oxidation-reduction properties of the regulatory disulfides of sorghum chloroplast nicotinamide adenine dinucleotide phosphate-malate dehydrogenase. Biochemistry 39: 3344–3350

    Article  PubMed  CAS  Google Scholar 

  • Ivanov B, Asada K, Kramer DM and Edwards G (2005) Characterization of photosynthetic electron transport in bundle sheath cells of maize. I. Ascorbate effectively stimulates cyclic electron flow around PSI. Planta 220: 572–581

    Article  PubMed  CAS  Google Scholar 

  • Johnson GN (2005) Cyclic electron transport in C3 plants: fact or artifact? J Exp Bot 56: 407–416

    Article  PubMed  CAS  Google Scholar 

  • Joliot P and Joliot A (2002) Cyclic electron transfer in plant leaf. Proc Natl Acad Sci USA 99, 10209–10214

    Article  PubMed  CAS  Google Scholar 

  • Joliot P and Joliot A (2005) Quantification of cyclic and linear flows in plants. Proc Natl Acad Sci USA 102: 4913–4918

    Article  PubMed  CAS  Google Scholar 

  • Klughammer C and Schreiber U (1994) An improved method, using saturating pulses, for the determination of Photosystem I quantum yield via P700+-absorbance changes at 830 nm. Planta 192: 261–268

    Article  CAS  Google Scholar 

  • Knaff DB (1996) Ferredoxin and ferredoxin-dependent enzymes. In : Ort DR and Yocum CF (eds) Oxygenic Photosynthesis: The Light Reactions, Advances in Photosynthesis, Vol 4, pp 333–361. Kluwer Academic Publishers, Dordrecht

    Chapter  Google Scholar 

  • Kobayashi Y and Heber U (1995) Bioenergetics of carbon assimilation in intact chloroplasts: coupling of proton to electron transport at the ratio H+/ATP  =  4 in ATP synthesis. Plant Cell Physiol 36: 1629–1637

    CAS  Google Scholar 

  • Kramer DM, Sacksteder CA and Cruz JA (1999) How acidic is the lumen? Photosynth Res 60: 151–163

    Article  CAS  Google Scholar 

  • Kramer DM, Cruz JA and Kanazawa A (2003) Balancing the central roles of the thylakoid proton gradient. Trends Plant Sci 8: 27–32

    Article  PubMed  CAS  Google Scholar 

  • Lavergne J and Joliot P (1991) Restricted diffusion in photosynthetic membranes. Trends Biochem Sci 16: 129–134

    Article  PubMed  CAS  Google Scholar 

  • Long SP, Postl WF and Bolhar-Nordenkampf HR (1993) Quantum yield for uptake of carbon dioxide in C3 vascular plants of contrasting habitats and taxonomic groupings. Planta 189: 226–234

    Article  CAS  Google Scholar 

  • Miginiac-Maslow M, Jacquot JP and Droux M (1985) Energetic aspects of the light activation of two chloroplast enzymes: fructose-1,6-bisphosphatase and NADP-malate dehydrogenase. Photosynth Res 6:201–213

    Article  CAS  Google Scholar 

  • Myers J (1971) Enhancement studies in photosynthesis. Annu Rev Plant Physiol 22: 289–312

    Article  CAS  Google Scholar 

  • Nilsson A, Stys D, Drakenberg T, Spangfort MD, Forsen S and Allen JF (1997) Phosphorylation controls the three-dimensional structure of plant light-harvesting complex II. J Biol Chem 272: 18350–18357

    Article  PubMed  CAS  Google Scholar 

  • Nixon PJ (2000) Chlororespiration. Phil Trans Royal Soc Lond B 355: 1541–1547

    Article  CAS  Google Scholar 

  • Ort DR and Baker NR (2002) A photoprotective role for O2 as an alternative electron sink in photosynthesis? Curr Opin in Plant Biol 5: 193–198

    Article  CAS  Google Scholar 

  • Pearcy RW, Krall JP and Sassenrath-Cole GF (1996) Photosynthesis in fluctuating light environments. In: Baker NR (ed) Photosynthesis and the Environment, Advances in Photosynthesis, Vol 5, pp 321–346. Kluwer Academic Publishers, Dordrecht

    Chapter  Google Scholar 

  • Peltier G and Cournac L (2002) Chlororespiration. Annu Rev Plant Biol 53: 523–550

    Article  PubMed  CAS  Google Scholar 

  • Powles SB (1984) Photoinhibition of photosynthesis induced by visible light. Annu Rev Plant Physiol 35: 15–44

    Article  CAS  Google Scholar 

  • Radmer RJ and Kok B (1976). Photoreduction of O2 primes and replaces CO2 assimilation. Plant Physiol 58: 336–340

    Article  PubMed  CAS  Google Scholar 

  • Rumberg B, Schubert K, Strelow F and Tran-Anh T (1990) The H+/ATP coupling ratio at the H+-ATP-synthase of spinach chloroplasts is four. In: Baltscheffsky M (ed) Current Research in Photosynthesis III, pp 125–128. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Sacksteder C and Kramer DM (2000) Dark-interval relaxation kinetics (DIRK) of absorbance changes as a quantitative probe of steady-state electron transfer. Photosynth Res 66: 145–158

    Article  PubMed  CAS  Google Scholar 

  • Seelert H, Poetsch A, Dencher NA, Engel A, Stahlberg H, Muller DJ (2000) Proton-powered turbine of a plant motor. Nature 405: 418–419

    Article  PubMed  CAS  Google Scholar 

  • Smirnoff N, Conklin PL and Loewus FA (2001) Biosynthesis of ascorbic acid in plants: A renaissance. Annu Rev Plant Physiol Plant Mol Biol 52: 437–467

    Article  PubMed  CAS  Google Scholar 

  • Staehelin LA and Van der Staay GWM (1996) Structure, composition, functional organisation and dynamic properties of thylakoid membranes. In: Ort DR and Yocum CF (eds) Oxygenic Photosynthesis: The Light Reactions, Advances in Photosynthesis, Vol 4, pp 11–30. Kluwer Academic Publishers, Dordrecht

    Chapter  Google Scholar 

  • Stewart DH and Brudvig GW (1998) Cytochrome b 559 of photosystem II. Biochim Biophys Acta 1367: 63–87

    Article  PubMed  CAS  Google Scholar 

  • Streb P, Josse E-M, Gallouët E, Baptist F, Kuntz M and Cornic G (2005) Evidence for alternative electron sinks to photosynthetic carbon assimilation in the high mountain plant species Ranunculus glacialis. Plant Cell Environ 28: 1123–1135

    Article  CAS  Google Scholar 

  • Tourneux C and Peltier G (1995) Effect of water deficit on photosynthetic oxygen exchange measured using 18O2 and mass spectrometry in Solanum tuberosum L. leaf discs. Planta 195: 570–577

    Article  CAS  Google Scholar 

  • Tremmel IG, Kirchhoff H, Weis E and Farquhar GD (2003) Dependence of plastoquinol diffusion on the shape, size, and density of integral thylakoid proteins. Biochim Biophys Acta 1607: 97–109

    Article  PubMed  CAS  Google Scholar 

  • Vallon O, Bulte L, Dainese, Olive J, Bassi R and Wollman F-A (1991) Lateral redistribution of cytochrome b 6    f complexes along thylakoid membranes upon state transitions. Proc Natl Acad Sci USA 88: 8262–8266

    Article  PubMed  CAS  Google Scholar 

  • von Caemmerer S (2000) Biochemical models of leaf photosynthesis. CSIRO publishing, Collingwood, Australia

    Google Scholar 

  • Waring J, Klenell M, Underwood GJC and Baker NR (2010) Light-induced responses of oxygen photoresuction, reactive oxygen species production and scavenging in two diatom species. J Phycol 46: 1206–1217

    Google Scholar 

  • Whithmarsh J and Pakrasi HB (1996) Form and function of cytochrome b-559. In: Ort DR and Yocum CF (eds) Oxygenic Photosynthesis: The Light Reactions, Advances in Photosynthesis, Vol 4, pp 249–264. Kluwer Academic Publishers, Dordrecht

    Chapter  Google Scholar 

  • Williams WP and Allen JF (1987) State 1/State 2 changes in higher plants and algae. Photosynth Res 13: 19–45

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank CNRS and the UK Biotechnology and Biological Sciences and Natural Environment Research Councils for support of research related to the subject of this chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gabriel Cornic .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Cornic, G., Baker, N.R. (2012). Electron Transport in Leaves: A Physiological Perspective. In: Eaton-Rye, J., Tripathy, B., Sharkey, T. (eds) Photosynthesis. Advances in Photosynthesis and Respiration, vol 34. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-1579-0_23

Download citation

Publish with us

Policies and ethics