Skip to main content

New Dimensions of Hillslope Hydrology

  • Chapter
  • First Online:
Forest Hydrology and Biogeochemistry

Part of the book series: Ecological Studies ((ECOLSTUD,volume 216))

Abstract

Hillslopes are fundamental landscape units that strongly control the processes whereby precipitation or snowmelt is vertically and laterally transported to the streams. They are, in a sense, microcosms of catchments. Understanding and predicting the hillslope response is highly important in terms of flood prediction, transport of nutrients and sediments into surface water bodies, slope stability, and soil-atmosphere-vegetation exchange processes. Through numerous field experiments and numerical studies, much progress has been made in hillslope hydrology in the past decades. However, our ability to extrapolate these findings to ungauged hillslopes and catchments is still very poor (Sivapalan 2005). A common thread that has evolved recently is to search for the underlying principles of hydrological processes instead of characterizing and cataloging the enormous heterogeneity and complexity of rainfall-runoff processes (McDonnell et al. 2007). The aim of this chapter is to provide an overview on today’s conceptual models of processes at the hillslope scale and to examine the factors driving these mechanisms. The focus will be on compiling recent findings on the dominant controls of hillslope runoff processes to meet the need of identifying underlying principles. The chapter closes with thoughts on new dimensions and directions of hillslope hydrology and research avenues to follow for the future.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ali G, Roy A (2009) Revisiting hydrologic sampling strategies for an accurate assessment of hydrologic connectivity in humid temperate systems. Geogr Compass 3(1):350–374

    Article  Google Scholar 

  • Anderson A (2008) Patterns of water table dynamics and subsurface runoff generation in a watershed with preferential flow networks. Dissertation Thesis, University of British Columbia, Vancouver

    Google Scholar 

  • Anderson MG, Burt TP (1978) The role of topography in controlling throughflow generation. Earth Surf Process 3(4):331–344

    Article  Google Scholar 

  • Anderson S, Dietrich W, Montgomery D et al (1997) Subsurface flow paths in a steep, unchanneled catchment. Water Resour Res 33(12):2637–2653

    Article  Google Scholar 

  • Anderson A, Weiler M, Alila Y et al (2008) Dye staining and excavation of a lateral preferential flow network. Hydrol Earth Syst Sci Discuss 5(2):1043–1065

    Article  Google Scholar 

  • Anderson A, Weiler M, Alila Y et al (2009) Subsurface flow velocities in a hillslope with lateral preferential flow. Water Resour Res 45(11):W11407. doi:10.1029/2008WR007121

    Article  Google Scholar 

  • Angers D, Caron J (1998) Plant-induced changes in soil structure: processes and feedbacks. Biogeochemistry 42(1):55–72

    Article  Google Scholar 

  • Aryal S, O’Loughlin E, Mein R (2002) A similarity approach to predict landscape saturation in catchments. Water Resour Res 38(10):1208. doi:10.1029/2001WR000864

    Article  Google Scholar 

  • Aryal S, O’Loughlin E, Mein R (2005) A similarity approach to determine response times to steady-state saturation in landscapes. Adv Water Resour 28(2):99–115

    Article  Google Scholar 

  • Asano Y, Uchida T, Ohte N (2002) Residence times and flow paths of water in steep un-channelled catchments, Tanakami, Japan. J Hydrol 261(1–4):173–192

    Article  Google Scholar 

  • Asano Y, Ohte N, Uchida T (2004) Sources of weathering-derived solutes in two granitic catchments with contrasting forest growth. Hydrol Process 18(4):651–666

    Article  Google Scholar 

  • Bachmair S, Weiler M, Nützmann G (2009) Controls of land use and soil structure on water movement: lessons for pollutant transfer through the unsaturated zone. J Hydrol 369(3–4):241–252

    Article  Google Scholar 

  • Barnard H (2009) Inter-relationships of vegetation, hydrology, and climate in a young Doug-las-fir forest. Dissertation Thesis, Oregon State University

    Google Scholar 

  • Berne A, Uijlenhoet R, Troch P (2005) Similarity analysis of subsurface flow response of hill-slopes with complex geometry. Water Resour Res 41(9):W09410. doi:10.1029/2004WR003629

    Article  Google Scholar 

  • Beven K, Germann P (1982) Macropores and water flow in soils. Water Resour Res 18(5):1311–1325

    Article  Google Scholar 

  • Blume T, Zehe E, Reusser D et al (2008) Investigation of runoff generation in a pristine, poorly gauged catchment in the Chilean Andes I: a multi-method experimental study. Hydrol Process 22(18):3661–3675

    Article  Google Scholar 

  • Bogaart P, Troch P (2006) Curvature distribution within hillslopes and catchments and its effect on the hydrological response. Hydrol Earth Syst Sci Discuss 3(3):1071–1104

    Article  Google Scholar 

  • Bond B (2003) Hydrology and ecology meet-and the meeting is good. Hydrol Process 17(10):2087–2089

    Article  Google Scholar 

  • Boorman D, Hollis J, Lilly A (1995) Hydrology of soil types: a hydrologically based classification of the soils of the United Kingdom. IAHS Report 126. IAHS Press, Wallingford

    Google Scholar 

  • Bracken L, Croke J (2007) The concept of hydrological connectivity and its contribution to understanding runoff-dominated geomorphic systems. Hydrol Process 21(13):1749–1763

    Article  Google Scholar 

  • Broxton P, Troch P, Lyon S (2009) On the role of aspect to quantify water transit times in small mountainous catchments. Water Resour Res 45(8):W08427. doi:10.1029/2008WR007438

    Article  Google Scholar 

  • Bundt M, Jaggi M, Blaser P et al (2001) Carbon and nitrogen dynamics in preferential flow paths and matrix of a forest soil. Soil Sci Soc Am J 65(5):1529

    Article  Google Scholar 

  • Burns D, Hooper R, McDonnell J et al (1998) Base cation concentrations in subsurface flow from a forested hillslope: the role of flushing frequency. Water Resour Res 34(12):3535–3544

    Article  Google Scholar 

  • Buttle J, McDonald D (2002) Coupled vertical and lateral preferential flow on a forested slope. Water Resour Res 38(5):1060

    Article  Google Scholar 

  • Buttle J, Turcotte D (1999) Runoff processes on a forested slope on the Canadian shield. Nord Hydrol 30(1):1–20

    Google Scholar 

  • Cassiani G, Bruno V, Villa A et al (2006) A saline trace test monitored via time-lapse surface electrical resistivity tomography. J Appl Geophys 59(3):244–259

    Article  Google Scholar 

  • Chang S, Matzner E (2000) The effect of beech stemflow on spatial patterns of soil solution chemistry and seepage fluxes in a mixed beech/oak stand. Hydrol Process 14(1):135–144

    Article  Google Scholar 

  • Corradini C, Morbidelli R, Melone F (1998) On the interaction between infiltration and Hortonian runoff. J Hydrol 204(1–4):52–67

    Article  Google Scholar 

  • Crockford R, Richardson D (2000) Partitioning of rainfall into throughfall, stemflow and interception: effect of forest type, ground cover and climate. Hydrol Process 14(16–17):2903–2920

    Article  Google Scholar 

  • Doerr SH, Shakesby RA, Walsh RPD (2000) Soil water repellency: its causes, characteristics and hydro-geomorphological significance. Earth Sci Rev 51(1–4):33–65

    Article  Google Scholar 

  • Dunn S, McDonnell J, Vaché K (2007) Factors influencing the residence time of catchment waters: a virtual experiment approach. Water Resour Res 43(6):W06408

    Article  Google Scholar 

  • Dunne T (1978) Field studies of hillslope flow processes. In: Kirkby MJ (ed) Hillslope hydrology. Wiley, New York, pp 227–293

    Google Scholar 

  • Dunne T, Black R (1970) Partial area contributions to storm runoff in a small New England watershed. Water Resour Res 6(5):1296–1311

    Article  Google Scholar 

  • Elsenbeer H, Vertessy R (2000) Stormflow generation and flowpath characteristics in an Amazonian rainforest catchment. Hydrol Process 14(14):2367–2381

    Article  Google Scholar 

  • Fannin R, Jaakkola J, Wilkinson J et al (2000) Hydrologic response of soils to precipitation at Carnation Creek, British Columbia, Canada. Water Resour Res 36(6):1481–1494

    Article  Google Scholar 

  • Frazier C, Graham R, Shouse P et al (2002) A field study of water flow and virus transport in weathered granitic bedrock. Vadose Zone J 1(1):113

    Google Scholar 

  • Freer J, McDonnell JJ, Beven KJ et al (1997) Hydrological processes – letters. Topographic controls on subsurface storm flow at the hillslope scale for two hydrologically distinct small catchments. Hydrol Process 11(9):1347–1352

    Article  Google Scholar 

  • Freer J, McDonnell J, Beven K et al (2002) The role of bedrock topography on subsurface storm flow. Water Resour Res 38(12):1269. doi:10.1029/2001WR000872

    Article  Google Scholar 

  • Fujimoto M, Ohte N, Tani M (2008) Effects of hillslope topography on hydrological responses in a weathered granite mountain, Japan: comparison of the runoff response between the valley-head and the side slope. Hydrol Process 22(14):2581–2594

    Article  Google Scholar 

  • Godsey S, Elsenbeer H, Stallard R (2004) Overland flow generation in two lithologically distinct rainforest catchments. J Hydrol 295(1–4):276–290

    Article  Google Scholar 

  • Gomi T, Sidle R, Miyata S et al (2008) Dynamic runoff connectivity of overland flow on steep forested hillslopes: scale effects and runoff transfer. Water Resour Res 44(8):W08411. doi:10.1029/2007WR005894

    Article  Google Scholar 

  • Graham C (2008) A macroscale measurement and modeling approach to improve understanding of the hydrology of steep, forested hillslopes. PhD dissertation, Oregon State University, Corvallis, Oregon

    Google Scholar 

  • Grayson R, Western A, Chiew F et al (1997) Preferred states in spatial soil moisture patterns: local and nonlocal controls. Water Resour Res 33(12):2897–2908

    Article  Google Scholar 

  • Hannah D, Wood P, Sadler J (2004) Ecohydrology and hydroecology: a “new paradigm?”. Hydrol Process 18(17):3439–3445

    Article  Google Scholar 

  • Hendrickx J, Flury M (2001) Uniform and preferential flow mechanisms in the vadose zone. In: Feary DA (ed) Conceptual models of flow and transport in the fractured vadose zone. National Academy Press, Washington, pp 149–187

    Google Scholar 

  • Herwitz SR (1986) Infiltration-excess caused by stemflow in a cyclone-prone tropical rain-forest. Earth Surf Process Landforms 11(4):401–412

    Article  Google Scholar 

  • Holden J (2009) Topographic controls upon soil macropore flow. Earth Surf Process Landforms 34(3):345–351

    Article  Google Scholar 

  • Holden J, Burt T (2002) Piping and pipeflow in a deep peat catchment. Catena 48(3):163–199

    Article  Google Scholar 

  • Holden J, Burt TP, Vilas M (2002) Application of ground-penetrating radar to the identification of subsurface piping in blanket peat. Earth Surf Process Landforms 27(3):235–249

    Article  Google Scholar 

  • Hopp L, McDonnell J (2009) Connectivity at the hillslope scale: identifying interactions between storm size, bedrock permeability, slope angle and soil depth. J Hydrol 376(3–4):378–391

    Article  Google Scholar 

  • Hopp L, Harman C, Desilets S et al (2009) Hillslope hydrology under glass: confronting fundamental questions of soil-water-biota co-evolution at biosphere 2. Hydrol Earth Syst Sci Discuss 6:4411–4448

    Article  Google Scholar 

  • Horton R (1933) The role of infiltration in the hydrologic cycle. Trans Am Geophys Union 14:446–460

    Google Scholar 

  • Hrachowitz M, Soulsby C, Tetzlaff D et al (2009) Using long-term data sets to understand transit times in contrasting headwater catchments. J Hydrol 367(3–4):237–248

    Article  Google Scholar 

  • Jackson N, Wallace J, Ong C (2000) Tree pruning as a means of controlling water use in an agroforestry system in Kenya. For Ecol Manage 126(2):133–148

    Article  Google Scholar 

  • James A, Roulet N (2007) Investigating hydrologic connectivity and its association with threshold change in runoff response in a temperate forested watershed. Hydrol Process 21(25):3391–3408

    Article  Google Scholar 

  • Jarvis N, Larsbo M, Roulier S et al (2007) The role of soil properties in regulating non-equilibrium macropore flow and solute transport in agricultural topsoils. Eur J Soil Sci 58:282–292

    Article  Google Scholar 

  • Johnson M, Lehmann J (2006) Double-funneling of trees: stemflow and root-induced preferential flow. Ecoscience 13(3):324–333

    Article  Google Scholar 

  • Jones JAA (1997) The role of natural pipeflow in hillslope drainage and erosion: extrapolating from the Maesnant data. Phys Chem Earth 22(3–4):303–308

    Article  Google Scholar 

  • Jost G, Heuvelink G, Papritz A (2005) Analysing the space–time distribution of soil water storage of a forest ecosystem using spatio-temporal kriging. Geoderma 128(3–4):258–273

    Article  Google Scholar 

  • Keim R, Skaugset A (2003) Modelling effects of forest canopies on slope stability. Hydrol Process 17(7):1457–1467

    Article  Google Scholar 

  • Keim R, Tromp-van Meerveld H, McDonnell J (2006) A virtual experiment on the effects of evaporation and intensity smoothing by canopy interception on subsurface stormflow generation. J Hydrol 327(3–4):352–364

    Article  Google Scholar 

  • Kienzler PM, Naef F (2008a) Subsurface storm flow formation at different hillslopes and implications for the “old water paradox”. Hydrol Process 22:104–116

    Article  Google Scholar 

  • Kienzler PM, Naef F (2008b) Temporal variability of subsurface stormflow formation. Hydrol Earth Syst Sci 12:257–265

    Article  Google Scholar 

  • Kim S (2009) Characterization of soil moisture responses on a hillslope to sequential rainfall events during late autumn and spring. Water Resour Res 45(9):W09425. doi:10.1029/2008WR007239

    Article  Google Scholar 

  • Kim H, Sidle R, Moore R et al (2004) Throughflow variability during snowmelt in a forested mountain catchment, coastal British Columbia, Canada. Hydrol Process 18(7):1219–1236

    Article  Google Scholar 

  • Kim HJ, Sidle RC, Moore RD (2005) Shallow lateral flow from a forested hillslope: influence of antecedent wetness. Catena 60(3):293–306

    Article  Google Scholar 

  • Kleidon A, Schymanski S (2008) Thermodynamics and optimality of the water budget on land: a review. Geophys Res Lett 35(20):L20404

    Article  Google Scholar 

  • Knudby C, Carrera J (2005) On the relationship between indicators of geostatistical, flow and transport connectivity. Adv Water Resour 28(4):405–421

    Article  Google Scholar 

  • Kosugi K, Katsura S, Katsuyama M et al (2006) Water flow processes in weathered granitic bedrock and their effects on runoff generation in a small headwater catchment. Water Resour Res 42:W02414. doi:10.1029/2005WR004275

    Article  Google Scholar 

  • Kosugi K, Katsura S, Fujimoto M et al (2008a) Investigations on hydrological connectivity between soil mantle and weathered bedrock in headwater catchments. AGU fall meeting abstracts, San Francisco, CA

    Google Scholar 

  • Kosugi K, Katsura S, Mizuyama T et al (2008b) Anomalous behavior of soil mantle groundwater demonstrates the major effects of bedrock groundwater on surface hydrological processes. Water Resour Res 44. doi:10.1029/2006wr005859

  • Lange B, Lüscher P, Germann P (2009) Significance of tree roots to preferential flow in soil horizons with different degrees of hydromorphy. In: International conference on preferential and unstable flow – from water infiltration to gas injection, Monte Verità, Ascona (Switzerland), pp 1809–1821

    Google Scholar 

  • Lehmann P, Hinz C, McGrath G et al (2007) Rainfall threshold for hillslope outflow: an emergent property of flow pathway connectivity. Hydrol Earth Syst Sci 11:1047–1063

    Article  Google Scholar 

  • Levia D, Van Stan J, Mage S et al (2010) Temporal variability of stemflow volume in a beech-yellow poplar forest in relation to tree species and size. J Hydrol 380(1–2):112–120

    Article  Google Scholar 

  • Liang W, Kosugi K, Mizuyama T (2007) Heterogeneous soil water dynamics around a tree growing on a steep hillslope. Vadose Zone J 6(4):879

    Article  Google Scholar 

  • Lin H (2003) Hydropedology: bridging disciplines, scales, and data. Vadose Zone J 2(1):1–11

    Google Scholar 

  • Lin H, Bouma J, Pachepsky Y et al (2006) Hydropedology: synergistic integration of pedology and hydrology. Water Resour Res 42:W05301

    Article  Google Scholar 

  • López-Moreno J, Stähli M (2008) Statistical analysis of the snow cover variability in a subal-pine watershed: assessing the role of topography and forest interactions. J Hydrol 348(3–4):379–394

    Article  Google Scholar 

  • Lyon S, Troch P (2007) Hillslope subsurface flow similarity: real-world tests of the hillslope Péclet number. Water Resour Res 43(7):W07450. doi:10.1029/2006WR005323

    Article  Google Scholar 

  • Markart G, Kohl B, Sotier B et al (2004) Provisorische Geländeanleitung zur Abschätzung des Oberflächenabflussbeiwertes auf alpinen Boden-/Vegetationseinheiten bei kon-vektiven Starkregen. Schriftenreihe des Bundesamtes und Forschungszentrums für Wald, Wien

    Google Scholar 

  • Markart G, Bieber G, Römer A et al (2009) Assessment of bandwidths of near surface inter-flow velocities in a high-alpine catchment of Western Austria. In: International conference on preferential and unstable flow – from water infiltration to gas injection. Monte Verita, Ascona, Switzerland, pp 33

    Google Scholar 

  • McDonnell J (1990) A rationale for old water discharge through macropores in a steep, humid catchment. Water Resour Res 26(11):2821–2832

    Article  Google Scholar 

  • McDonnell JJ (2003) Where does water go when it rains? Moving beyond the variable source area concept of rainfall-runoff response. Hydrol Process 17:1869–1875

    Article  Google Scholar 

  • McDonnell J, Owens I, Stewart M (1991) A case study of shallow flow paths in a steep zero-order basin. Water Resour Bull 27(4):679–685

    Google Scholar 

  • McDonnell JJ, Sivapalan M, Vache K et al (2007) Moving beyond heterogeneity and process complexity: a new vision for watershed hydrology. Water Resour Res 43(7). doi:10.1029/2006wr005467

  • McGlynn BL, McDonnell JJ, Brammer DD (2002) A review of the evolving perceptual model of hillslope flowpaths at the Maimai catchments. New Zealand J Hydrol 257:1–26

    Google Scholar 

  • McGuire KJ, Weiler M, McDonnell JJ (2007) Integrating tracer experiments with modeling to assess runoff processes and water transit times. Adv Water Resour 30:824–837

    Article  Google Scholar 

  • McNamara J, Chandler D, Seyfried M et al (2005) Soil moisture states, lateral flow, and streamflow generation in a semi-arid, snowmelt-driven catchment. Hydrol Process 19(20):4023–4038

    Article  Google Scholar 

  • Michaelides K, Chappell A (2009) Connectivity as a concept for characterising hydrological behaviour. Hydrol Process 23(3):517–522

    Article  Google Scholar 

  • Molenat J, Gascuel-Odoux C, Ruiz L et al (2008) Role of water table dynamics on stream nitrate export and concentration in agricultural headwater catchment (France). J Hydrol 348:363–378

    Article  Google Scholar 

  • Molotch N, Brooks P, Burns S et al (2009) Ecohydrological controls on snowmelt partitioning in mixed-conifer sub-alpine forests. Ecohydrology 2(2):129–142

    Article  Google Scholar 

  • Mosley M (1979) Streamflow generation in a forested watershed, New Zealand. Water Resour Res 15(4):795–806

    Article  Google Scholar 

  • Newman B, Campbell A, Wilcox B (1998) Lateral subsurface flow pathways in a semiarid ponderosa pine hillslope. Water Resour Res 34(12):3485–3496

    Article  Google Scholar 

  • Noguchi S, Tsuboyama Y, Sidle RC et al (1999) Morphological characteristics of macro-pores and the distribution of preferential flow pathways in a forested slope segment. Soil Sci Soc Am J 63:1413–1423

    Article  Google Scholar 

  • Nordmann B, Göttlein A, Binder F (2009) Einfluss unterschiedlicher Waldbestockung auf die Abflussbildung – ein Beispiel aus einem Wassereinzugsgebiet im Frankenwald. Hydrol Wasserbewirtsch 53(2):80–95

    Google Scholar 

  • Phillips J (2003) Sources of nonlinearity and complexity in geomorphic systems. Progr Phys Geogr 27(1):1–23

    Article  Google Scholar 

  • Polomski J, Kuhn N (1998) Wurzelsysteme. Paul Haupt, Birmensdorf

    Google Scholar 

  • Porporato A, Rodriguez-Iturbe I (2002) Ecohydrology – a challenging multidisciplinary research perspective. Hydrol Sci J 47(5):811–821

    Article  Google Scholar 

  • Pringle C (2003) What is hydrologic connectivity and why is it ecologically important? Hydrol Process 17(13):2685–2689

    Article  Google Scholar 

  • Rasmussen C, Troch PA, Chorover JD et al (2011) An open system framework for integrating critical zone structure and function. Biogeochemistry 102:15–29

    Article  Google Scholar 

  • Reggiani P, Sivapalan M, Majid Hassanizadeh S (1998) A unifying framework for watershed thermodynamics: balance equations for mass, momentum, energy and entropy, and the second law of thermodynamics. Adv Water Resour 22(4):367–398

    Article  Google Scholar 

  • Retter M (2007) Subsurface flow formation. Dissertation Thesis, University of Bern, Bern, pp 97

    Google Scholar 

  • Ritsema CJ, Dekker LW (2000) Preferential flow in water repellent sandy soils: principles and modeling implications. J Hydrol 231–232:308–319

    Article  Google Scholar 

  • Ritsema C, Nieber J, Dekker L et al (1998a) Stable or unstable wetting fronts in water repellent soils – effect of antecedent soil moisture content. Soil Tillage Res 47(1–2):111–123

    Article  Google Scholar 

  • Ritsema CJ, Dekker LW, Nieber JL et al (1998b) Modeling and field evidence of finger formation and finger recurrence in a water repellent sandy soil. Water Resour Res 34. doi:10.1029/97wr02407

  • Rodriguez-Iturbe I (2000) Ecohydrology: a hydrologic perspective of climate-soil-vegetation dynamics. Water Resour Res 36(1):3–9

    Article  Google Scholar 

  • Sato Y, Kumagai T, Kume A et al (2004) Experimental analysis of moisture dynamics of litter layers – the effects of rainfall conditions and leaf shapes. Hydrol Process 18:3007–3018

    Article  Google Scholar 

  • Scherrer S, Naef F (2003) A decision scheme to indicate dominant hydrological flow processes on temperate grassland. Hydrol Process 17(2):391–401

    Article  Google Scholar 

  • Scherrer S, Naef F, Faeh AO et al (2007) Formation of runoff at the hillslope scale during intense precipitation. Hydrol Earth Sci Syst 11:907–922

    Article  Google Scholar 

  • Schmocker-Fackel P (2004) A method to delineate runoff processes in a catchment and its implications for runoff simulations. Dissertation Thesis, Swiss Federal Institute of Technology Zürich, Zürich

    Google Scholar 

  • Schulz K, Seppelt R, Zehe E et al (2006) Importance of spatial structures in advancing hydrological sciences. Water Resour Res 42:W0S33

    Article  Google Scholar 

  • Schume H, Jost G, Hager H (2004) Soil water depletion and recharge patterns in mixed and pure forest stands of European beech and Norway spruce. J Hydrol 289(1–4):258–274

    Article  Google Scholar 

  • Schwärzel K, Menzer A, Clausnitzer F et al (2009) Soil water content measurements deliver reliable estimates of water fluxes: a comparative study in a beech and a spruce stand in the Tharandt forest (Saxony, Germany). Agric For Meteorol 149(11):1994–2006

    Article  Google Scholar 

  • Schymanski S, Sivapalan M, Roderick M et al (2008) An optimality-based model of the coupled soil moisture and root dynamics. Hydrol Earth Sci Syst 12(3):913–932

    Article  Google Scholar 

  • Sidle R, Onda Y (2004) Hydrogeomorphology: overview of an emerging science. Hydrol Process 18(4):597–602

    Article  Google Scholar 

  • Sidle RC, Tsuboyama Y, Noguchi S et al (2000) Stormflow generation in steep forested headwaters: a linked hydrogeomorphic paradigm. Hydrol Process 14(3):369–385

    Article  Google Scholar 

  • Sidle RC, Noguchi S, Tsuboyama Y et al (2001) A conceptual model of preferential flow systems in forested hillslopes: evidence of self-organization. Hydrol Process 15(10):1675–1692

    Article  Google Scholar 

  • Sidle RC, Hirano T, Gomi T et al (2007) Hortonian overland flow from Japanese forest plantations – an aberration, the real thing, or something in between? Hydrol Process 21:3237–3247

    Article  Google Scholar 

  • Sivapalan M (1993) Linking hydrologic parameterizations across a range of scales: hillslope to catchment to region. Exchange processes at the land surface for a range of space and time scales: proceedings of an international symposium, Yokohama, Japan

    Google Scholar 

  • Sivapalan M (2005) Pattern, process and function: elements of a unified theory of hydrology at the catchment scale. In: Anderson MG (ed) Encyclopedia of hydrological sciences. Wiley, Chichester, pp 193–219

    Google Scholar 

  • Sklash M (1990) Environmental isotope studies of storm and snowmelt runoff generation. In: Burt TP, Anderson MG (eds) Process studies in hillslope hydrology. Wiley, Chichester, pp 401–435

    Google Scholar 

  • Sklash M, Stewart M, Pearce A (1986) Storm runoff generation in humid headwater catchments: 2. A case study of hillslope and low-order stream response. Water Resour Res 22(8):1273–1282

    Article  Google Scholar 

  • Soulsby C, Neal C, Laudon H et al (2008) Catchment data for process conceptualization: simply not enough? Hydrol Process 22(12):2057–2061

    Article  Google Scholar 

  • Stieglitz M, Shaman J, McNamara J et al (2003) An approach to understanding hydrologic connectivity on the hillslope and the implications for nutrient transport. Glob Biogeochem Cycles 17:1105. doi:10.1029/2003GB002041

    Article  Google Scholar 

  • Szeftel P, Moore RD, Weiler M, Alila Y (in review) Controls on water delivery to the stream network in a snowmelt-dominated montane catchment. Hydrol Process

    Google Scholar 

  • Terajima T, Sakamoto T, Shirai T (2000) Morphology, structure and flow phases in soil pipes developing in forested hillslopes underlain by a quaternary sand-gravel formation, Hokkaido, northern main island in Japan. Hydrol Process 14(4):713–726

    Article  Google Scholar 

  • Tetzlaff D, Seibert J, Soulsby C et al (2009) Inter-catchment comparison to assess the influence of topography and soils on catchment transit times in a geomorphic province; the Cairngorm mountains, Scotland. Hydrol Process 23(13):1874–1886

    Article  Google Scholar 

  • Troch P, Paniconi C, Van Loon E (2003) Hillslope-storage Boussinesq model for subsurface flow and variable source areas along complex hillslopes: 1. Formulation and characteristic response. Water Resour Res 39(11):1316

    Article  Google Scholar 

  • Troch P, Carrillo G, Heidbuechel I et al (2009) Dealing with landscape heterogeneity in watershed hydrology: a review of recent progress toward new hydrological theory. Geogr Compass 3(1):375–392

    Article  Google Scholar 

  • Tromp-van Meerveld HJ, McDonnell JJ (2006a) Threshold relations in subsurface stormflow: 1. A 147-storm analysis of the Panola hillslope. Water Resour Res 42:W02410. doi:10.1029/2004WR003778

    Article  Google Scholar 

  • Tromp-van Meerveld HJ, McDonnell JJ (2006b) Threshold relations in subsurface stormflow: 2. The fill and spill hypothesis. Water Resour Res 42:W02411. doi:10.1029/2004WR003800

    Article  Google Scholar 

  • Tromp-van Meerveld HJ, McDonnell JJ (2006c) On the interrelations between topography, soil depth, soil moisture, transpiration rates and species distribution at the hillslope scale. Adv Water Resour 29:293–310

    Article  Google Scholar 

  • Tromp-van Meerveld HJ, Weiler M (2008) Hillslope dynamics modeled with increasing complexity. J Hydrol 361:24–40

    Article  Google Scholar 

  • Tromp-van Meerveld HJ, Peters NE, McDonnell JJ (2007) Effect of bedrock permeability on subsurface stormflow and the water balance of a trenched hillslope at the Panola Mountain Research Watershed, Georgia, USA. Hydrol Process 21:750–769

    Article  Google Scholar 

  • Trubilowicz J, Cai K, Weiler M (2009) Viability of motes for hydrological measurement. Water Resour Res 45:W00D22. doi:10.1029/2008WR007046

    Article  Google Scholar 

  • Tsuboyama Y, Sidle RC, Noguchi S et al (1994) Flow and solute transport through the soil matrix and macropores of a hillslope segment. Water Resour Res 30. doi:10.1029/93wr03245

  • Tsukamoto Y, Minematsu H, Tange I (1988) Pipe development in hillslope soils in humid climate. Rolling Land Res 6:268–280

    Google Scholar 

  • Uchida T (2004) Clarifying the role of pipe flow on shallow landslide initiation. Hydrol Process 18(2):375–378

    Article  Google Scholar 

  • Uchida T, Kosugi K, Mizuyama T (2001) Effects of pipeflow on hydrological process and its relation to landslide: a review of pipeflow studies in forested headwater catchments. Hydrol Process 15(11):2151–2174

    Article  Google Scholar 

  • Uchida T, Kosugi KI, Mizuyama T (2002) Effects of pipe flow and bedrock groundwater on runoff generation in a steep headwater catchment in Ashiu, central Japan. Water Resour Res 38. doi:10.1029/2001WR000261

  • Uchida T, Asano Y, Ohte N et al (2003a) Seepage area and rate of bedrock groundwater discharge at a granitic unchanneled hillslope. Water Resour Res 39(1):1018

    Article  Google Scholar 

  • Uchida T, Asano Y, Ohte N et al (2003b) Analysis of flowpath dynamics in a steep unchannelled hollow in the Tanakami Mountains of Japan. Hydrol Process 17(2):417–430

    Article  Google Scholar 

  • Uchida T, Asano Y, Mizuyama T et al (2004) Role of upslope soil pore pressure on lateral subsurface storm flow dynamics. Water Resour Res 40:W12401. doi:10.1029/2003WR002139

    Article  Google Scholar 

  • Uchida T, Tromp-van Meerveld HJ, McDonnell JJ (2005) The role of lateral pipe flow in hill-slope runoff response: an intercomparison of non-linear hillslope response. J Hydrol 311:117–133

    Article  Google Scholar 

  • Uchida T, McDonnell JJ, Asano Y (2006) Functional intercomparison of hillslopes and small catchments by examining water source, flowpath and mean residence time. J Hydrol 327:627–642

    Article  Google Scholar 

  • Uhlenbrook S, Didszun J, Wenninger J (2008) Source areas and mixing of runoff components at the hillslope scale-a multi-technical approach. Hydrol Sci J 53(4):741–753

    Article  Google Scholar 

  • Wagener T, Sivapalan M, Troch P et al (2007) Catchment classification and hydrologic similarity. Geogr Compass 1(4):901–931

    Article  Google Scholar 

  • Ward RC, Robinson M (1990) Principles of hydrology. McGraw-Hill, New York

    Google Scholar 

  • Wassenaar L, Hendry M, Chostner V et al (2008) High resolution pore water 2H and 18O measurements by H2O (liquid)-H2O (vapor) equilibration laser spectroscopy. Environ Sci Technol 42(24):9262–9267

    Article  Google Scholar 

  • Weiler M (2001) Mechanisms controlling macropore flow during infiltration. Dissertation Thesis, Swiss Federal Institute of Technology Zürich, Zürich, pp 151

    Google Scholar 

  • Weiler M, Flühler H (2004) Inferring flow types from dye patterns in macroporous soils. Geoderma 120(1–2):137–153

    Article  Google Scholar 

  • Weiler M, McDonnell J (2004) Virtual experiments: a new approach for improving process conceptualization in hillslope hydrology. J Hydrol 285(1–4):3–18

    Article  Google Scholar 

  • Weiler M, McDonnell JJ (2006) Testing nutrient flushing hypotheses at the hillslope scale: a virtual experiment approach. J Hydrol 319:339–356

    Article  Google Scholar 

  • Weiler M, Naef F (2003) An experimental tracer study of the role of macropores in infiltration in grassland soils. Hydrol Process 17(2):477–493

    Article  Google Scholar 

  • Weiler M, McDonnel JJ, Tromp-van Meerveld I et al (2006) Subsurface stormflow. In: Anderson MG, McDonnell JJ (eds) Encyclopedia of hydrological sciences, volume 3, part 10. Wiley, New York

    Google Scholar 

  • Western A, Blöschl G, Grayson R (2001) Toward capturing hydrologically significant connectivity in spatial patterns. Water Resour Res 37(1):83–97

    Article  Google Scholar 

  • Western A, Grayson R, Blöschl G et al (2003) Spatial variability of soil moisture and its implications for scaling. In: Perchepsky Y, Selim M, Radcliffe D (eds) Scaling methods in soil physics. CRC Press, Boca Raton, pp 120–142

    Google Scholar 

  • Williams C, McNamara J, Chandler D (2008) Controls on the temporal and spatial variability of soil moisture in a mountainous landscape: the signatures of snow and complex terrain. Hydrol Earth Syst Sci Discuss 5:1927–1966

    Article  Google Scholar 

  • Woods R, Rowe L (1996) The changing spatial variability of subsurface flow across a hillside. J Hydrol (NZ) 35(1):51–86

    Google Scholar 

  • Zech W, Hintermaier-Erhard G (2002) Böden der Welt. Spektrum, Heidelberg

    Google Scholar 

  • Zehe E, Flühler H (2001) Slope scale variation of flow patterns in soil profiles. J Hydrol 247(1–2):116–132

    Article  Google Scholar 

  • Zehe E, Sivapalan M (2009) Threshold behaviour in hydrological systems as (human) geo-ecosystems: manifestations, controls, implications. Hydrol Earth Syst Sci 13:1273–1297

    Article  Google Scholar 

  • Zimmermann A, Germer S, Neill C et al (2008) Spatio-temporal patterns of throughfall and solute deposition in an open tropical rain forest. J Hydrol 360(1–4):87–102

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sophie Bachmair .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Bachmair, S., Weiler, M. (2011). New Dimensions of Hillslope Hydrology. In: Levia, D., Carlyle-Moses, D., Tanaka, T. (eds) Forest Hydrology and Biogeochemistry. Ecological Studies, vol 216. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-1363-5_23

Download citation

Publish with us

Policies and ethics