Skip to main content

Mitochondrial Dynamics and Axonal Transport

  • Chapter
  • First Online:
Mitochondrial Dynamics and Neurodegeneration

Abstract

Mitochondria are essential organelles for neuronal survival and function through ATP generation, calcium buffering, and apoptotic signaling. Due to their extreme polarity, neurons utilize specialized mechanisms to regulate mitochondrial transport along axons to areas in which energy production and calcium homeostasis are in high demand, namely, active growth cones, nodes of Ranvier, and synaptic terminals. Axonal mitochondria display complex mobility patterns and undergo saltatory and bidirectional movement. While one-third of axonal mitochondria are mobile, the rest remains stationary. Docked mitochondria serve as local power plants and maintain local Ca2+ homeostasis. The balance between mobile and stationary mitochondria is influenced by the diverse physiological states of axons and synapses. The coordination of mitochondrial mobility by axonal physiology is crucial for neuronal development and synaptic function. Defects in mitochondrial transport have been implicated in the pathologic processes of several major neurodegenerative diseases. Thus, understanding the regulation of axonal mitochondrial transport will increase our knowledge of fundamental processes that may affect human neurological disorders. In this chapter, we introduce recent advances in our understanding of motor-adaptor complexes and docking machinery that mediate mitochondrial transport and axonal distribution. We will also discuss the molecular mechanisms underlying the complex mobility patterns of axonal mitochondria and how mitochondrial mobility impacts the physiology and function of synapses.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

(MT):

Microtubule

(NF):

Neurofilament

(KIFs):

kinesin superfamily proteins

(KHC):

kinesin heavy chains

(KLC):

kinesin light chains

(DHC):

dynein heavy chains

(DIC):

dynein intermediate chains

(DLIC):

dynein light intermediate chains

(DLC):

dynein light chains

(dMiro):

drosophila mitochondrial Rho-GTPase

(TRAK1):

trafficking protein kinesin-binding 1

(FEZ1):

fasciculation and elongation protein zeta-1

(JIP1):

c-Jun N-terminal kinase (JNK)-interacting protein

(SNPH):

syntaphilin

(FCCP):

cyanide-p-trifluoromethoxyphenyhydrazone

(DRG):

dorsal root ganglion

(NO):

nitric oxide

(Mfn2):

mitofusin 2

(EPSCs):

excitatory postsynaptic currents

References

  • Aoyama, T, Hata, S, Nakao, T, Tanigawa, Y, Oka, C, Kawaichi, M, 2009, Cayman ataxia protein caytaxin is transported by kinesin along neurites through binding to kinesin light chains, J Cell Sci 122:4177–85

    PubMed  CAS  Google Scholar 

  • Baloh, RH, Schmidt, RE, Pestronk, A, Milbrandt, J, 2007, Altered axonal mitochondrial transport in the pathogenesis of Charcot-Marie-Tooth disease from mitofusin 2 mutations, J Neurosci 27:422–30

    PubMed  CAS  Google Scholar 

  • Belles, B., Hescheler, J, Trube, G, 1987, Changes of membrane currents in cardiac cells induced by long whole-cell recordings and tolbutamide, Pflugers Arch 409:582–8

    PubMed  CAS  Google Scholar 

  • Billups, B, Forsythe, ID, 2002, Presynaptic mitochondrial calcium sequestration influences transmission at mammalian central synapses, J Neurosci 22:5840–47

    PubMed  CAS  Google Scholar 

  • Blasius, TL, Cai, D, Jih, GT, Toret, CP, Verhey, KJ, 2007, Two binding partners cooperate to activate the molecular motor Kinesin-1, J Cell Biol 176:11–7

    PubMed  CAS  Google Scholar 

  • Bogan, N, Cabot, JB, 1991, Light and electron microscopic analyses of intraspinal axon collaterals of sympathetic preganglionic neurons, Brain Res 41:241–51

    Google Scholar 

  • Bridgman, PC, 2004, Myosin-dependent transport in neurons, J Neurobiol 58:164–74

    PubMed  CAS  Google Scholar 

  • Bristow, EA, Griffiths, PG, Andrews, RM, Johnson, MA, Turnbull, DM, 2002, The distribution of mitochondrial activity in relation to optic nerve structure, Arch Ophthalmol 120:791–6

    Google Scholar 

  • Brown, JR, Stafford, P, Langford, GM, 2004, Short-range axonal/dendritic transport by myosin-V: A model for vesicle delivery to the synapse, J Neurobiol 58:175–88

    PubMed  CAS  Google Scholar 

  • Cai, Q, Gerwin, C, Sheng, ZH, 2005, Syntabulin-mediated anterograde transport of mitochondria along neuronal processes, J Cell Biol 170:959–69

    PubMed  CAS  Google Scholar 

  • Cai, Q, Pan, PY, Sheng, ZH, 2007, Syntabulin-kinesin-1 family member 5B-mediated axonal transport contributes to activity-dependent presynaptic assembly, J Neurosci 27:7284–96

    PubMed  CAS  Google Scholar 

  • Cai, Q, Sheng, ZH, 2009, Moving or stopping mitochondria: Miro as a traffic cop by sensing calcium, Neuron, 61:493–6

    PubMed  CAS  Google Scholar 

  • Chada, SR, Hollenbeck, PJ, 2003, Mitochondrial movement and positioning in axons: the role of growth factor signaling, J Exp Biol 206:1985–92

    PubMed  CAS  Google Scholar 

  • Chada, SR, Hollenbeck, PJ, 2004, Nerve growth factor signaling regulates motility and docking of axonal mitochondria, Curr Biol 14:1272–76

    PubMed  CAS  Google Scholar 

  • Chan, DC., 2006, Mitochondria: dynamic organelles in disease, aging, and development, Cell, 125:1241–52

    PubMed  CAS  Google Scholar 

  • Chang, DT, Reynolds, IJ, 2006, Mitochondrial trafficking and morphology in healthy and injured neurons, Prog Neurobiol 80:241–68

    PubMed  CAS  Google Scholar 

  • Chen, H, Chan, DC, 2009, Mitochondrial dynamics – fusion, fission, movement, and mitophagy – in neurodegenerative diseases. Hum Mol Genet 18:169–76

    Google Scholar 

  • Chen, S, Owens, GC, Crossin, KL, Edelman, DB, 2007, Serotonin stimulates mitochondrial transport in hippocampal neurons, Mol Cell Neurosci 36:472–83

    PubMed  CAS  Google Scholar 

  • Chen, S, Owens, GC, Edelman, DB, 2008, Dopamine inhibits mitochondrial motility in hippocampal neurons, PLoS ONE, 30:e2804

    Google Scholar 

  • Chen, YM, Gerwin, C, Sheng, ZH, 2009, Dynein light chain LC8 regulates syntaphilin-mediated mitochondrial docking in axons, J Neurosci 29:9429–38

    PubMed  CAS  Google Scholar 

  • Cheney, RE, O’Shea, MK, Heuser, JE, Coelho, MV, Wolenski, JS, Espreafico, EM, Forscher, P, Larson, RE, Mooseker, MS, 1993, Brain myosin-V is a two-headed unconventional myosin with motor activity. Cell, 75:13–23

    PubMed  CAS  Google Scholar 

  • Chevalier-Larsen, E, Holzbaur, EL, 2006, Axonal transport and neurodegenerative disease, Biochim. Biophys Acta 1762:1094–108

    PubMed  CAS  Google Scholar 

  • Cho, KI, Cai, Y, Yi, H, Yeh, A, Aslanukov, A, Ferreira, PA, 2007, Association of the kinesin-binding domain of RanBP2 to KIF5B and KIF5C determines mitochondria localization and function, Traffic, 8:1722–35

    PubMed  CAS  Google Scholar 

  • Cleveland, DW, Rothstein, JD, 2001, From Charcot to Lou Gehrig: deciphering selective motor neuron death in ALS. Nat Rev Neurosci 2:806–19

    PubMed  CAS  Google Scholar 

  • De Vos, KJ, Chapman, AL, Tennant, ME, Manser, C, Tudor, EL, Lau, KF, Brownlees, J, Ackerley, S, Shaw, PJ, McLoughlin, DM, Shaw, CE, Leigh, PN, Miller, CC, Grierson, AJ, 2007, Familial amyotrophic lateral sclerosis-linked SOD1 mutants perturb fast axonal transport to reduce axonal mitochondria content. Hum Mol Genet 16:2720–28

    PubMed  Google Scholar 

  • Fabricius, C, Berthold, C,H, Rydmark, M, 1993, Axoplasmic organelles at nodes of Ranvier. II. Occurrence and distribution in large myelinated spinal cord axons of the adult cat, J Neurocytol 22:941–54

    PubMed  CAS  Google Scholar 

  • Fransson, A, Ruusala, A, Aspenström, P, 2003, Atypical Rho GTPases have roles in mitochondrial homeostasis and apoptosis, J Biol Chem 278:6495–502

    PubMed  CAS  Google Scholar 

  • Gindhart, JG, Chen, J, Faulkner, M, Gandhi, R, Doerner, K, Wisniewski, T, Nandlestadt, A, 2003, The kinesin-associated protein UNC-76 is required for axonal transport in the Drosophila nervous system, Mol Biol Cell, 14:3356–65

    PubMed  CAS  Google Scholar 

  • Glater, EE, Megeath, LJ, Stowers, RS, Schwarz, TL, 2006, Axonal transport of mitochondria requires milton to recruit kinesin heavy chain and is light chain independent, J Cell Biol 173:545–57

    PubMed  CAS  Google Scholar 

  • Górska-Andrzejak, J, Stowers, RS, Borycz, J, Kostyleva, R, Schwarz TL, Meinertzhagen, IA, 2003, Mitochondria are redistributed in Drosophila photoreceptors lacking milton, a kinesin-associated protein, J Comp Neurol 463:372–88

    PubMed  Google Scholar 

  • Gotow, T, Miyaguchi, K, Hashimoto, PH, 1991, Cytoplasmic architecture of the axon terminal: filamentous strands specifically associated with synaptic vesicles, Neuroscience, 40:587–98

    PubMed  CAS  Google Scholar 

  • Grishin, A, Li, H, Levitan, ES, Zaks-Makhina, E, 2006, Identification of gamma-aminobutyric acid receptor-interacting factor 1 (TRAK2) as a trafficking factor for the K  +  channel Kir2.1, J Biol Chem 281:30104–11

    PubMed  CAS  Google Scholar 

  • Guo, X, Macleod, GT, Wellington, A, Hu, F, Panchumarthi, S, Schoenfield, M, Marin, L, Charlton, MP, Atwood HL, Zinsmaier, KE, 2005, The GTPase dMiro is required for axonal transport of mitochondria to Drosophila synapses, Neuron, 47:379–93

    PubMed  CAS  Google Scholar 

  • Hafezparast, M et al., 2003, Mutations in dynein link motor neuron degeneration to defects in retrograde transport, Science, 300:808–12

    PubMed  CAS  Google Scholar 

  • Gurney, ME, Pu, H, Chiu, AY, Dal Canto, MC, Polchow, CY, Alexander, DD, Caliendo, J, Hentati, A, Kwon, YW, Deng, HX, et al. 1994, Motor neuron degeneration in mice that express a human Cu,Zn superoxide dismutase mutation. Science 264:1772–5

    PubMed  CAS  Google Scholar 

  • Haghnia, M, Cavalli, V, Shah, SB, Schimmelpfeng, K, Brusch, R, Yang, G, Herrera, C, Pilling, A, Goldstein, LS, 2007, Dynactin is required for coordinated bidirectional motility, but not for dynein membrane attachment, Mol Biol Cell, 18:2081–89

    PubMed  CAS  Google Scholar 

  • Hirokawa, N, 1982, Cross-linker system between neurofilaments, microtubules, and membranous organelles in frog axons revealed by the quick-freeze, deep-etching method, J Cell Biol 94:129–42

    PubMed  CAS  Google Scholar 

  • Hirokawa, N, Sato-Yoshitake, R, Yoshida, T, Kawashima, T, 1990, Brain dynein (MAP1C) localizes on both anterogradely and retrogradely transported membranous organelles in vivo, J Cell Biol 111:1027–37

    PubMed  CAS  Google Scholar 

  • Hirokawa, N, Sato-Yoshitake, R, Kobayashi, N, Pfister, KK, Bloom, GS, Brady, ST, 1991, Kinesin associates with anterogradely transported membranous organelles in vivo, J Cell Biol 114:295–302

    PubMed  CAS  Google Scholar 

  • Hirokawa, N, Takemura, R, 2004, Kinesin superfamily proteins and their various functions and dynamics, Exp Cell Res 301:50–9

    PubMed  CAS  Google Scholar 

  • Hirokawa, N, Takemura, R, 2005, Molecular motors and mechanisms of directional transport in neurons, Nat Rev Neurosci 6:201–14

    PubMed  CAS  Google Scholar 

  • Hollenbeck, PJ, 1996, The pattern and mechanism of mitochondrial transport in axons, Front Biosci 1:d91-102

    PubMed  CAS  Google Scholar 

  • Hollenbeck, PJ, Saxton, WM, 2005, The axonal transport of mitochondria, J Cell Sci 118:5411–19

    PubMed  CAS  Google Scholar 

  • Horiuchi, D, Barkus, RV, Pilling, AD, Gassman, A, Saxton, WM, 2005, APLIP1, a kinesin binding JIP-1/JNK scaffold protein, influences the axonal transport of both vesicles and mitochondria in Drosophila, Curr Biol 15:2137–41

    PubMed  CAS  Google Scholar 

  • Horiuchi, D, Collins, CA, Bhat, P, Barkus, RV, Diantonio, A, Saxton, WM, 2007, Control of a kinesin-cargo linkage mechanism by JNK pathway kinases, Curr Biol 17:1313–7

    PubMed  CAS  Google Scholar 

  • Hubley, MJ, Locke, BR, Moerland, TS, 1996, The effects of temperature, pH, and magnesium on the diffusion coefficient of ATP in solutions of physiological ionic strength, Biochim Biophys Acta 1291:115–21

    PubMed  Google Scholar 

  • Hurd, DD, Saxton, WM, 1996, Kinesin mutations cause motor neuron disease phenotypes by disrupting fast axonal transport in Drosophila, Genetics, 144:1075–85

    PubMed  CAS  Google Scholar 

  • Ikuta, J, Maturana, A, Fujita, T, Okajima, T, Tatematsu, K, Tanizawa, K, Kuroda, S. Fasciculation and elongation protein zeta-1 (FEZ1) participates in the polarization of hippocampal neuron by controlling the mitochondrial motility, Biochem Biophys Res Commun 353:127–32

    PubMed  CAS  Google Scholar 

  • Jonas, E, 2006, BCL-xL regulates synaptic plasticity, Mol Interv 6:208–22

    PubMed  CAS  Google Scholar 

  • Kanai, Y, Okada, Y, Tanaka, Y, Harada, A, Terada, S, Hirokawa, N, 2000, KIF5C, a novel neuronal kinesin enriched in motor neurons, J Neurosci 20:6374–84

    PubMed  CAS  Google Scholar 

  • Kang, JS, Tian, JH, Pan, PY, Zald, P, Li, C, Deng, C, Sheng, ZH, 2008, Docking of axonal mitochondria by syntaphilin controls their mobility and affects short-term facilitation, Cell, 132:137–48

    PubMed  CAS  Google Scholar 

  • Karki, S, Holzbaur, EL, 1999, cytoplasmic dynein and dynactin in cell division and intracellular transport, Curr Opin Cell Biol 11:45–53

    PubMed  CAS  Google Scholar 

  • King, SJ, Schroer, TA, 2000, Dynactin increases the processivity of the cytoplasmic dynein motor, Nat Cell Biol 2:20–4

    PubMed  CAS  Google Scholar 

  • Kirk, E, Chin, LS, Li, L, 2006, GRIF1 binds Hrs and is a new regulator of endosomal trafficking, J Cell Sci 119:4689–701

    PubMed  CAS  Google Scholar 

  • Kuroda, S, Nakagawa, N, Tokunaga, C, Tatematsu, K, Tanizawa, K, 1999, Mammalian homologue of the Caenorhabditis elegans UNC-76 protein involved in axonal outgrowth is a protein kinase C zeta-interacting protein, J Cell Biol 144:403–11

    PubMed  CAS  Google Scholar 

  • Langford, GM, 2002, Myosin-V, a versatile motor for short-range vesicle transport, Traffic, 3:859–65

    PubMed  CAS  Google Scholar 

  • Lee, CW, Peng, HB, 2008, The function of mitochondria in presynaptic development at the neuromuscular junction, Mol Biol Cell, 19:150–8

    PubMed  CAS  Google Scholar 

  • Leterrier, JF, Rusakov, DA, Nelson, BD, Linden, M, 1994, Interactions between brain mitochondria and cytoskeleton: evidence for specialized outer membrane domains involved in the association of cytoskeleton-associated proteins to mitochondria in situ and in vitro, Microsc Res Tech 27:233–61

    PubMed  CAS  Google Scholar 

  • Levy, M, Faas, GC, Saggau, P, Craigen WJ, Sweatt, JD, 2003, Mitochondrial regulation of synaptic plasticity in the hippocampus, J Biol Chem 278:17727–34

    PubMed  CAS  Google Scholar 

  • Levy, JR, Sumner, CJ, Caviston, JP, Tokito, MK, Ranganathan, S, Ligon, LA, Wallace, KE, LaMonte, BH, Harmison, GG, Puls, I, Fischbeck, KH, Holzbaur, EL, 2006, A motor neuron disease-associated mutation in p150Glued perturbs dynactin function and induces protein aggregation, J Cell Biol 172:733–45

    PubMed  CAS  Google Scholar 

  • Li, Z, Okamoto, K, Hayashi, Y, Sheng, M, 2004, The importance of dendritic mitochondria in the morphogenesis and plasticity of spines and synapses, Cell, 119:873–87

    PubMed  CAS  Google Scholar 

  • Ligon, LA, Steward, O, 2000, Movement of mitochondria in the axons and dendrites of cultured hippocampal neurons, J Comp Neurol 427:340–50

    PubMed  CAS  Google Scholar 

  • Lindén, M, Nelson, BD, Loncar, D, Leterrier, JF, 1989a, Studies on the interaction between mitochondria and the cytoskeleton, J Bioenerg. Biomembr 21:507–18

    PubMed  Google Scholar 

  • Lindén, M, Nelson, BD, Leterrier, JF, 1989b, The specific binding of the microtubule-associated protein 2 (MAP2) to the outer membrane of rat brain mitochondria, Biochem J 261:167–73

    PubMed  Google Scholar 

  • Ma, H, Cai, Q, Lu, W, Sheng, ZH, Mochida, S, 2009, KIF5B motor adaptor syntabulin maintains synaptic transmission in sympathetic neurons, J Neurosci 29:13019–29

    PubMed  CAS  Google Scholar 

  • Macaskill, AF, Rinholm, JE, Twelvetrees, AE, Arancibia-Carcamo, IL, Muir, J, Fransson, A, Aspenstrom, P, Attwell, D, Kittler, JT. 2009, Miro1 is a calcium sensor for glutamate receptor-dependent localization of mitochondria at synapses, Neuron, 61:541–55

    PubMed  CAS  Google Scholar 

  • Magrané, J, Hervias, I, Henning, MS, Damiano, M, Kawamata, H, Manfredi, G, 2009, Mutant SOD1 in neuronal mitochondria causes toxicity and mitochondrial dynamics abnormalities. Hum Mol Genet 18:4552–64

    PubMed  Google Scholar 

  • Magrané, J, Manfredi, G, 2009, Mitochondrial function, morphology, and axonal transport in amyotrophic lateral sclerosis, Antioxid Redox Signal, 11:1615–26

    PubMed  Google Scholar 

  • Malaiyandi, LM, Vergun, O, Dineley, KE, Reynolds, IJ, 2005, Direct visualization of mitochondrial zinc accumulation reveals uniporter-dependent and -independent transport mechanisms, J Neurochem 93:1242–50

    PubMed  CAS  Google Scholar 

  • Mallik, R, Petrov, D, Lex, SA, King, SJ, Gross, SP. 2005, Building complexity: an in vitro study of cytoplasmic dynein with in vivo implications, Curr Biol 15:2075–85

    PubMed  CAS  Google Scholar 

  • Martin, M, Iyadurai, SJ, Gassman, A, Gindhart, JG, Jr Hays, TS, Saxton, WM, 1999, Cytoplasmic dynein, the dynactin complex, and kinesin are interdependent and essential for fast axonal transport, Mol Biol Cell, 10:3717–28

    PubMed  CAS  Google Scholar 

  • Mavlyutov, TA, Cai, Y, Ferreira, PA, 2002, Identification of RanBP2- and kinesin-mediated transport pathways with restricted neuronal and subcellular localization, Traffic, 3:630–40

    Google Scholar 

  • Miller, KE, Sheetz, MP, 2004, Axonal mitochondrial transport and potential are correlated, J Cell Sci 117:2791–804

    PubMed  CAS  Google Scholar 

  • Minin, AA, Kulik, AV, Gyoeva, FK, Li, Y, Goshima, G, Gelfand, VI, 2006, Regulation of mitochondria distribution by RhoA and formins, J Cell Sci 119:659–70

    PubMed  CAS  Google Scholar 

  • Misko, A, Jiang, S, Wegorzewska, I, Milbrandt, J, Baloh, RH, 2010, Mitofusin 2 is necessary for transport of axonal mitochondria and interacts with the Miro/Milton complex, J Neurosci 30:4232–40

    PubMed  CAS  Google Scholar 

  • Mironov, SL, 2006, Spontaneous and evoked neuronal activities regulate movements of single neuronal mitochondria, Synapse, 59:403–11

    PubMed  CAS  Google Scholar 

  • Mironov, SL, 2007, ADP regulates movements of mitochondria in neurons, Biophys J 92:2944–52

    PubMed  CAS  Google Scholar 

  • Mironov, SL, 2009, Complexity of mitochondrial dynamics in neurons and its control by ADP produced during synaptic activity, Int J Biochem Cell Biol 41:2005–14

    PubMed  CAS  Google Scholar 

  • Morris, RL, Hollenbeck, PJ, 1993, The regulation of bidirectional mitochondrial transport is coordinated with axonal outgrowth, J Cell Sci 104:917–27

    PubMed  Google Scholar 

  • Morris, RL, Hollenbeck, PJ, 1995, Axonal transport of mitochondria along microtubules and F-actin in living vertebrate neurons, J Cell Biol 131:1315–26

    PubMed  CAS  Google Scholar 

  • Mutsaers, SE, Carroll, WM, 1998, Focal accumulation of intra-axonal mitochondria in demyelination of the cat optic nerve, Acta Neuropathol 96:139–43

    PubMed  CAS  Google Scholar 

  • Nangaku, M, Sato-Yoshitake, R, Okada, Y, Noda, Y, Takemura, R, Yamazaki, H, Hirokawa, N, 1994, KIF1B, a novel microtubule plus end-directed monomeric motor protein for transport of mitochondria, Cell, 79:1209–20

    PubMed  CAS  Google Scholar 

  • Naisbitt, S, Valtschanoff, J, Allison, DW, Sala, C, Kim, E, Craig, AM, Weinberg, RJ, Sheng, M, 2000, Interaction of the postsynaptic density-95/guanylate kinase domain-associated protein complex with a light chain of myosin-V and dynein, J Neurosci 20:4524–34

    PubMed  CAS  Google Scholar 

  • Orr, AL, Li, S, Wang, CE, Li, H, Wang, J, Rong, J, Xu, X, Mastroberardino, PG, Greenamyre, JT, Li, XJ, 2008, N-terminal mutant huntingtin associates with mitochondria and impairs mitochondrial trafficking, J Neurosci 28:2783–92

    PubMed  CAS  Google Scholar 

  • O’Toole, M, Latham, R, Baqri, RM, Miller, KE, 2008, Modeling mitochondrial dynamics during in vivo axonal elongation, J Theor Biol 255:369–77

    PubMed  Google Scholar 

  • Overly, CC, Rieff, HI, Hollenbeck, PJ, 1996, Organelle motility and metabolism in axons vs dendrites of cultured hippocampal neurons, J Cell Sci 109:971–80

    PubMed  CAS  Google Scholar 

  • Pathak, D, Sepp, KJ, Hollenbeck, PJ, 2010, Evidence that myosin activity opposes microtubule-based axonal transport of mitochondria, J Neurosci 30:8984–92

    PubMed  CAS  Google Scholar 

  • Pigino, G, Morfini, G, Pelsman, A, Mattson, MP, Brady, ST, Busciglio, J, 2003, Alzheimer’s presenilin 1 mutations impair kinesin-based axonal transport, J Neurosci 23:4499–508

    PubMed  CAS  Google Scholar 

  • Pilling, AD, Horiuchi, D, Lively, CM, Saxton, WM, 2006, Kinesin-1 and Dynein are the primary motors for fast transport of mitochondria in Drosophila motor axons, Mol Biol Cell, 17:2057–68

    PubMed  CAS  Google Scholar 

  • Povlishock, JT, 197 The fine structure of the axons and growth cones of the human fetal cerebral cortex, Brain Res 114:379-9i

    PubMed  CAS  Google Scholar 

  • Puls, I, Jonnakuty, C, LaMonte, BH, Holzbaur, EL, Tokito, M, Mann, E, Floeter, MK, Bidus, K, Drayna, D, Oh, SJ, Brown, RH, Jr, Ludlow CL, Fischbeck, KH, 2003, Mutant dynactin in motor neuron disease, Nat Genet 33:455–6

    PubMed  CAS  Google Scholar 

  • Reynolds, IJ, Rintoul, GL, 2004, Mitochondrial stop and go: signals that regulate organelle movement, Sci STKE 21:PE46

    Google Scholar 

  • Rintoul, GL, Filiano, AJ, Brocard, JB, Kress, GJ, Reynolds, IJ, 2003, Glutamate decreases mitochondrial size and movement in primary forebrain neurons, J Neurosci 23:7881–88

    PubMed  CAS  Google Scholar 

  • Rintoul, GL, Bennett, VJ, Papaconstandinou, NA, Reynolds, IJ, 2006, Nitric oxide inhibits mitochondrial movement in forebrain neurons associated with disruption of mitochondrial membrane potential, J Neurochem 97:800–6

    PubMed  CAS  Google Scholar 

  • Rosen, DR, Siddique, T, Patterson, D, Figlewicz, DA, Sapp, P, Hentati, A, Donaldson, D, Goto, J, O’Regan, JP, Deng, HX, et al. 1993, Mutations in Cu/Zn superoxide dismutase gene are associated with familial amyotrophic lateral sclerosis. Nature 362:59–62

    PubMed  CAS  Google Scholar 

  • Russo, GJ, Louie, K, Wellington, A, Macleod, GT, Hu, F, Panchumarthi, S, Zinsmaier, KE, 2009, Drosophila Miro is required for both anterograde and retrograde axonal mitochondrial transport, J Neurosci 29:5443–55

    PubMed  CAS  Google Scholar 

  • Ruthel, G, Hollenbeck, PJ, 2003, Response of mitochondrial traffic to axon determination and differential branch growth, J Neurosci 23:8618–24

    PubMed  CAS  Google Scholar 

  • Saotome, M, Safiulina, D, Szabadkai, G, Das S, Fransson, A, Aspenstrom, P, Rizzuto, R, Hajnóczky, G, 2008, Bidirectional Ca2+−dependent control of mitochondrial dynamics by the Miro GTPase, Proc Natl Acad Sci U S A 105:20728–33

    PubMed  CAS  Google Scholar 

  • Sasaki, S, Iwata, M, 1996, Impairment of fast axonal transport in the proximal axons of anterior horn neurons in amyotrophic lateral sclerosis. Neurology 47:535–40

    PubMed  CAS  Google Scholar 

  • Schroer, TA, 2004, Dynactin, Annu Rev Cell Dev Biol 20:759–79

    PubMed  CAS  Google Scholar 

  • Schwarzer, C, Barnikol-Watanabe, S, Thinnes, FP, Hilschmann, N, 2002, Voltage-dependent anion-selective channel (VDAC) interacts with the dynein light chain Tctex1 and the heat-shock protein PBP74, Int J Biochem Cell Biol 34:1059–70

    PubMed  CAS  Google Scholar 

  • Smith, MJ, Pozo, K, Brickley, K, Stephenson, FA, 2006, Mapping the GRIF-1 binding domain of the kinesin, KIF5C, substantiates a role for GRIF-1 as an adaptor protein in the anterograde trafficking of cargoes, J Biol Chem 281:27216–28

    PubMed  CAS  Google Scholar 

  • Stamer, K, Vogel, R, Thies, E, Mandelkow, E, Mandelkow, EM, 2002, Tau blocks traffic of organelles, neurofilaments, and APP vesicles in neurons and enhances oxidative stress, J Cell Biol 156:1051–63

    PubMed  CAS  Google Scholar 

  • Stokin, GB, Goldstein, LS, 2006, Axonal transport and Alzheimer’s disease, Annu Rev Biochem 75:607–27

    PubMed  CAS  Google Scholar 

  • Stowers, RS, Megeath, LJ, Górska-Andrzejak, J, Meinertzhagen IA, Schwarz, TL, 2002, Axonal transport of mitochondria to synapses depends on milton, a novel Drosophila protein, Neuron, 36:1063–77

    PubMed  CAS  Google Scholar 

  • Su, Q, Cai, Q, Gerwin, C, Smith, CL, Sheng, ZH, 2004, Syntabulin is a microtubule-associated protein implicated in syntaxin transport in neurons, Nat Cell Biol 6:941–53

    PubMed  CAS  Google Scholar 

  • Sung, JY, Engmann, O, Teylan, MA, Nairn, AC, Greengard, P, Kim, Y. 2008, WAVE1 controls neuronal activity-induced mitochondrial distribution in dendritic spines, Proc Natl Acad Sci USA 105:3112–6

    PubMed  CAS  Google Scholar 

  • Susalka, SJ, Pfister, KK, 2000, Cytoplasmic dynein subunit heterogeneity: implications for axonal transport, J Neurocytol 29:819–29

    PubMed  CAS  Google Scholar 

  • Tai, AW, Chuang, JZ, Bode, C, Wolfrum, U, Sung, CH, 1999, Rhodopsin’s carboxy-terminal cytoplasmic tail acts as a membrane receptor for cytoplasmic dynein by binding to the dynein light chain Tctex-1, Cell, 97:877–87

    PubMed  CAS  Google Scholar 

  • Tanaka, Y, Kanai, Y, Okada, Y, Nonaka, S, Takeda, S, Harada, A, Hirokawa, N, 1998, Targeted disruption of mouse conventional kinesin heavy chain, kif5B, results in abnormal perinuclear clustering of mitochondria, Cell, 93:1147–58

    PubMed  CAS  Google Scholar 

  • Tang, Y, Zucker, RS, 1997, Mitochondrial involvement in post-tetanic potentiation of synaptic transmission, Neuron, 18:483–91

    PubMed  CAS  Google Scholar 

  • Toh, BH, Lolait, SJ, Mathy, JP, Baum, R. 1980, Association of mitochondria with intermediate filaments and of polyribosomes with cytoplasmic actin, Cell Tissue Res 211:163–9

    PubMed  CAS  Google Scholar 

  • Trushina, E, Dyer, RB, Badger, JD 2nd, Ure D, Eide L, Tran, DD, Vrieze, BT, Legendre-Guillemin, V, McPherson, PS, Mandavilli, BS, Van Houten, B, Zeitlin, S, McNiven, M, Aebersold, R, Hayden, M, Parisi, JE, Seeberg, E, Dragatsis, I, Doyle, K, Bender, A, Chacko, C, McMurray, CT, 2004, Mutant huntingtin impairs axonal trafficking in mammalian neurons in vivo and in vitro, Mol Cell Biol 24:8195–209

    PubMed  CAS  Google Scholar 

  • Tynan, SH, Purohit, A, Doxsey, SJ, Vallee, RB, 2000, Light intermediate chain 1 defines a functional subfraction of cytoplasmic dynein which binds to pericentrin, J Biol Chem 275:32763–8

    PubMed  CAS  Google Scholar 

  • Vale, RD, Reese, TS, Sheetz, MP, 1985, Identification of a novel force-generating protein, kinesin, involved in microtubule-based motility, Cell, 42:39–50

    PubMed  CAS  Google Scholar 

  • Verburg, J, Hollenbeck, PJ, 2008, Mitochondrial membrane potential in axons increases with local nerve growth factor or semaphorin signaling, J Neurosci 28:8306–15

    PubMed  CAS  Google Scholar 

  • Verstreken, P, Ly, CV, Venken, KJ, Koh, TW, Zhou, Y, Bellen, HJ, 2005, Synaptic mitochondria are critical for mobilization of reserve pool vesicles at Drosophila neuromuscular junctions, Neuron 47:365–78

    PubMed  CAS  Google Scholar 

  • Wagner, OI, Lifshitz, J, Janmey, PA, Linden, M, McIntosh, TK, Leterrier, JF, 2003, Mechanisms of mitochondria-neurofilament interactions, J Neurosci 23:9046–58

    PubMed  CAS  Google Scholar 

  • Wang, X, Schwarz, TL, 2009, The mechanism of Ca2+ −dependent regulation of kinesin-mediated mitochondrial motility, Cell 2009 136:163–74

    PubMed  CAS  Google Scholar 

  • Waterman-Storer, CM, Karki, S, Holzbaur, EL, 1995, The p150Glued component of the dynactin complex binds to both microtubules and the actin-related protein centractin (Arp-1), Proc Natl Acad Sci USA 92:1634–38

    PubMed  CAS  Google Scholar 

  • Webber, E, Li, L, Chin, LS, 2008, Hypertonia-associated protein Trak1 is a novel regulator of endosome-to-lysosome trafficking, J Mol Biol 382:638–51

    PubMed  CAS  Google Scholar 

  • Winter, L, Abrahamsberg, C, Wiche, G, 2008, Plectin isoform 1b mediates mitochondrion-intermediate filament network linkage and controls organelle shape, J Cell Biol 181:903–11

    PubMed  CAS  Google Scholar 

  • Wolenski, JS, Cheney, RE, Mooseker, MS, Forscher, P, 1995, In vitro motility of immunoadsorbed brain myosin-V using a Limulus acrosomal process and optical tweezer-based assay, J Cell Sci 108:1489–96

    PubMed  CAS  Google Scholar 

  • Yang, F, He, XP, Russell, J, Lu, B, 2003, Ca2+ influx-independent synaptic potentiation mediated by mitochondrial Na(+)-Ca2+ exchanger and protein kinase C, J Cell Biol 163:511–23

    PubMed  CAS  Google Scholar 

  • Yi, M, Weaver, D, Hajnóczky, G, 2004, Control of mitochondrial motility and distribution by the calcium signal: a homeostatic circuit, J Cell Biol 167:661–72

    PubMed  CAS  Google Scholar 

  • Zanelli, SA, Trimmer, PA, Solenski, NJ, 2006, Nitric oxide impairs mitochondrial movement in cortical neurons during hypoxia, J Neurochem 97:724–36

    PubMed  CAS  Google Scholar 

  • Zhang, CL, Ho, PL, Kintner, DB, Sun, D, Chiu, SY, 2010, Activity-dependent regulation of mitochondrial motility by calcium and Na/K-ATPase at nodes of Ranvier of myelinated nerves, J Neurosci 30:3555–66

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We thank the members of the Sheng lab for helpful discussions and M. Davis for editing of the manuscript. The authors are supported by the Intramural Research Program of NINDS, NIH.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zu-Hang Sheng .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Cai, Q., Sheng, ZH. (2011). Mitochondrial Dynamics and Axonal Transport. In: Lu, B. (eds) Mitochondrial Dynamics and Neurodegeneration. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-1291-1_5

Download citation

Publish with us

Policies and ethics