Skip to main content

Processing and Scale-up of Polymeric Nanoparticles

  • Chapter
  • First Online:
Intracellular Delivery

Part of the book series: Fundamental Biomedical Technologies ((FBMT,volume 5))

Abstract

This chapter presents methods of nanoparticle processing based on the use of preformed polymers. It will discuss the basic principle of the different methods, the scale up and the methods for preparing the polymer nanoparticles for storage including purification, drying sterilization and eventually concentration. The last part of the chapter will discuss the performance, the application and the present limitation of the processing methods considered here.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ACN:

acetonitrile

CMC:

critical micellar concentration

DMAc:

N-N-dimethylacetamide

DMF:

dimethylformamide

O/O:

Oil in oil emulsion

O/W:

oil in water emulsion

PEC:

polyelectrolyte complexes

PEG:

poly(ethylene glycol)

PEI:

poly(ethylenimine)

PEO:

poly(oxyethylene)

PLL:

poly(lysine)

THF:

tetrahydrofuran

W/O/O:

water in oil in oil multiple emulsion

W/O/W:

water in oil in water multiple emulsion

W/O:

water in oil emulsion

References

  • Abate A.R., Weitz D.A. High order multiple emulsions formed in poly(dimethylsiloxane) microfluidics. Small 5:2030–2032 (2009)

    PubMed  CAS  Google Scholar 

  • Abdelwahed W., Degobert G., Stainmesse S., Fessi H. Freeze-drying of nanoparticles: Formulation, process and storage considerations. Adv Drug Deliv Rev. 58:1688–1713 (2006).

    PubMed  CAS  Google Scholar 

  • Akbulut M., Ginart P., Gindy M.E., Theriault C., Chin KH, Soboyejo W., Prud’homme R.K. Generic method of preparing multifunctional fluorescent nanoparticles using flash nanoprecipitation. Adv. Funct. Mater. 19:718–725 (2009).

    CAS  Google Scholar 

  • Allémann E., Gurny R., Doelker E. Preparation of aqueous polymeric nanodispersions by a ­reversible salting-out process: influence of process parameters on particle size. Int. J. Pharm. 87:247–253 (1992).

    Google Scholar 

  • Allémann E., Doelker E., Gurny R. Drug loaded poly(lactic acid) nanoparticles produced by a reversible salting-out process: Purification of an injectable dosage form. Eur. J. Pharm. Biopharm. 39:13–18 (1993).

    Google Scholar 

  • Anton N., Benoit J.P., Saulnier P. Design and production of nanoparticles formulated from nano-emulsion templates-a review. J Control Release. 128:185–199 (2008).

    PubMed  CAS  Google Scholar 

  • Athanasiou K.A., Niederauer G.G., Agrawal C.M. Sterilization, toxicity, biocompatibility and clinical applications of polylactic acid/polyglycolic acid copolymers. Biomaterials. 17:93–102 (1996).

    PubMed  CAS  Google Scholar 

  • Aubry J., Ganachaud F., Cohen, Addad J.P., Cabane B. Nanoprecipitation of Polymethylmethacrylate by Solvent Shifting: 1.Boundaries. Langmuir 25:19701979 (2009).

    PubMed  CAS  Google Scholar 

  • Avgoustakis K. Pegylated poly(lactide) and poly(lactide-co-glycolide) nanoparticles: preparation, properties and possible applications in drug delivery. Curr Drug Deliv. 1:321–333 (2004).

    PubMed  CAS  Google Scholar 

  • Aynié I., Vauthier C. Chacun H., Fattal E., Couvreur P. Sponge-like alginate nanoparticles as a new system for the delivery of antisense oligonucleotides. Antisens and Nucleic Acid Drug Development, 9:301–312 (1999).

    Google Scholar 

  • Barbosa M.E., Bouteiller L., Cammas-Marion S., Montembault V., Fontaine L., Ponchel G. Synthesis and ITC characterization of novel nanoparticles constituted by poly(gamma-benzyl L-glutamate)-beta-cyclodextrin. J Mol Recognit. 21:169–78 (2008).

    PubMed  CAS  Google Scholar 

  • Bawa P., Pillay V., Choonara Y.E., du Toit L.C. Stimuli-responsive polymers and their applications in drug delivery. Biomed Mater. 4:022001 (2009).

    PubMed  Google Scholar 

  • Bazile D., Prud’homme C., Bassoullet M.T., Marlard M., Spenlehauer G., Veillard M. Stealth Me.PEG-PLA nanoparticles avoid uptake by the mononuclear phagocytes system. J Pharm Sci. 84:493–498 (1995).

    PubMed  CAS  Google Scholar 

  • Beck P., Scherer D., Kreuter J. Separation of drug-loaded nanoparticles from free drug by gel filtration. J. Microencapsul. 7:491–496 (1990).

    PubMed  CAS  Google Scholar 

  • Berger J., Reist M., Mayer J.M., Felt O., Gurny R. Structure and interactions in chitosan hydrogels formed by complexation or aggregation for biomedical applications. Eur J Pharm Biopharm. 57:35–52 (2004).

    PubMed  CAS  Google Scholar 

  • Bertholon I., Vauthier C., Labarre D. Complement Activation by Core-Shell Poly(isobutylcyanoacrylate)-Polysaccharide Nanoparticles: Influences of Surface Morphology, Length, and Type of Polysaccharide. Pharm Res. 23:1313–1323 (2006).

    PubMed  CAS  Google Scholar 

  • Bilati U., Allémann E., Doelker E. Sonication parameters for the preparation of biodegradable nanocapsules of controlled size by the double emulsion method. Pharm Dev Technol. 8:1–9 (2003).

    PubMed  CAS  Google Scholar 

  • BioAlliance Pharma web site at “http://www.bioalliancepharma.com/fre/R-D/Projets” consulted 15 December 2010

  • Bodmeier R., Huagang C. Indomethacin polymeric nanosuspensions prepared by microfluidization. J Control Release. 12:223–233 (1990).

    CAS  Google Scholar 

  • Boess C., Bögl K.W. Influence of Radiation Treatment on Pharmaceuticals-A Review: Alkaloids, Morphine Derivatives, and Antibiotics. Drug Dev Ind Pharm. http://www.informaworld.com/smpp/title~content=t713597245~db=all~tab=issueslist~branches=22 - v2222:495–529 (1996).

  • Bouchemal K., Briançon S., Perrier E., Fessi H., Bonnet I., Zydowicz N. Synthesis and characterization of polyurethane and poly (ether urethane) nanocapsules using a new technique of interfacial polycondensation combined to spontaneous emulsification. Int J Pharm. 269:89–100 (2004).

    PubMed  CAS  Google Scholar 

  • Bouchemal K., Couenne F., Briançon S., Fessi H., Tayakout M. Stability studies on colloidal suspensions of Polyurethane nanocapsules. J. Nanosci. Nanotechnol. 6:3187–3192 (2006).

    PubMed  CAS  Google Scholar 

  • Boussif O., Lezoualc’h F., Zanta M.A., Mergny M.D., Scherman D., Demeneix B., Behr J.P. A versatile vector for gene and oligonucleotide transfer into cells in culture and in vivo: polyethylenimine. Proc Natl Acad Sci U S A. 92:7297–7301 (1995).

    PubMed  CAS  Google Scholar 

  • Bozdag S., Dillen K., Vandervoort J., Ludwig A. The effect of freeze drying with cryoprotectants and gamma-irradiation sterilization on the characteristics of ciprofloxacin HCl-loaded poly(D,L-lactideglycolide) nanoparticles. J Pharm Pharmacol. 57:699–707 (2005).

    PubMed  CAS  Google Scholar 

  • Briançon S., Fessi H., Lecompte F., Lieto J. Study of an original production process of nanoparticles by precipitation. Récents Progrès en Génie des Procédés. 13:157–164 (1999).

    Google Scholar 

  • Brigger I., Armand-Lefevre L., Chaminade P., Besnard M., Rigaldie Y., Largeteau A., Andremont A., Grislain L., Demazeau G., Couvreur P. The stenlying effect of high hydrostatic pressure on thermally and hydrolytically labile nanosized carriers. Pharm Res. 20:674–683 (2003).

    PubMed  CAS  Google Scholar 

  • Brunel F., Véron L., David L., Domard A., Verrier B., Delair T. Self-assemblies on chitosan nanohydrogels. Macromol Biosci. 10:424–432 (2010).

    PubMed  CAS  Google Scholar 

  • Calvo P., Remuñan-López C., Vila-Jato J.L., Alonso M.J. Chitosan and chitosan/ethylene oxide-propylene oxide block copolymer nanoparticles as novel carriers for proteins and vaccines. Pharm Res. 14:1431–1436 (1997).

    PubMed  CAS  Google Scholar 

  • Charcosset C., Fessi H. A new process for drug loaded nanocapsules preparation using a membrane contactor. Drug Dev Ind Pharm. 31:987–992 (2005).

    PubMed  CAS  Google Scholar 

  • Chauvierre C., Labarre D., Couvreur P., Vauthier C. Novel polysaccharide-decorated poly(isobutyl cyanoacrylate) nanoparticles. Pharm Res. 20:1786–1793 (2003).

    PubMed  CAS  Google Scholar 

  • Chauvierre C, Labarre D, Couvreur P, Vauthier C. A new approach for the characterization of insoluble amphiphilic copolymers based on their emulsifying properties. Coll Polym Sci. 282: 1097–1104 (2004).

    CAS  Google Scholar 

  • Chorny M., Fishbein I., Danenberg H.D., Golomb G. Study of the drug release mechanism from tyrphostin AG-1295-loaded nanospheres by in situ and external sink methods. J. Control. Release. 83:389–400 (2002).

    PubMed  CAS  Google Scholar 

  • Coll J.L., Chollet P., Brambilla E., Desplanques D., Behr J.P., Favrot M. In vivo delivery to tumors of DNA complexed with linear polyethylenimine. Hum Gene Ther. 10:1659–1666 (1999).

    PubMed  CAS  Google Scholar 

  • Colombo A.P., Briancon S., Lieto J., Fessi H. Project design and use of a pilot plant for nanocapsule production. Drug Dev Ind Pharm. 27:1063–1072 (2001).

    PubMed  CAS  Google Scholar 

  • Da Costa Martinez R., Gamazo C., Irache J.M. Design and influence of gamma-irradiation on the biopharmaceutical properties of nanoparticles containing an antigenic complex from Brucella ovis. Eur J Pharm Sci. 37:563–572 (2009).

    Google Scholar 

  • De Chasteigner S., Cavé G., Fessi H., Devissaguet J.P., Puisieux F. Freeze-drying of Itraconazole-loaded nanosphere suspensions : a feasibility study. Drug Dev Res. 38:116–124 (1996).

    Google Scholar 

  • De Jaeghere F., Allémann E., Leroux J.-C., Stevels W., Feijen J., Doelker E., Gurny R. Formulation and lyoprotection of poly (Lactic acid-co-ethylene oxide) nanoparticles: influence on physical stability and in vitro cell uptake. Pharm Res. 16:859–866 (1999).

    PubMed  Google Scholar 

  • Desgouilles D., Vauthier C., Bazile D., Vacus J., Grossiord J.L., Veillard M. Couvreur P. The design of nanoparticles obtained by solvent evaporation : A comprehensive study. Langmuir. 19:9504–9510 (2003)

    CAS  Google Scholar 

  • Douglas K.L., Tabrizian M. Effect of experimental parameters on the formation of alginate-chitosan nanoparticles and evaluation of their potential application as DNA carrier. J Biomater Sci Polym Ed. 16:43–56 (2005).

    PubMed  CAS  Google Scholar 

  • Drogoz A., David L., Rochas C., Domard A., Delair T. Polyelectrolyte complexes from polysaccharides: formation and stoichiometry monitoring. Langmuir. 23:10950–8 (2007).

    PubMed  CAS  Google Scholar 

  • Duchêne D., Ponchel G., Wouessidjewe D. Cyclodextrins in targeting. Application to nanoparticles. Adv Drug Deliv Rev. 36:29–40 (1999).

    PubMed  Google Scholar 

  • Fessi H., Puisieux F., Devissaguet J-P., Ammoury N., Benita S. Nanocapsule formation by interfacial deposition following solvent displacement. Int J Pharm. 55:R1- R4 (1989).

    CAS  Google Scholar 

  • Forrest M.L., Yanez J.A., Remsberg C.M., Ohgami Y., Kwon G.S., Davies N.M. Paclitaxel prodrugs with sustained release and high solubility in poly(ethylene glycol)-b-poly(ε-caprolactone) micelle nanocarriers: pharmacokinetic disposition, tolerability, and cytotoxicity. Pharm Res. 25:194–206 (2008).

    PubMed  CAS  Google Scholar 

  • Fournier E., Dufresne M.H., Smith D.C., Ranger M., Leroux J.C. A novel one-step drug-loading procedure for water-soluble amphiphilic nanocarriers. Pharm Res. 21:962–968 (2004).

    PubMed  CAS  Google Scholar 

  • França A., Pelaz B., Moros M., Sánchez-Espinel C., Hernández A., Fernández-López C., Grazú V., de la Fuente J.M., Pastoriza-Santos I., Liz-Marzán L.M., González-Fernández A. Sterilization matters: consequences of different sterilization techniques on gold nanoparticles. Small. 6:89–95 (2010).

    PubMed  Google Scholar 

  • Freitas S., Rudolf B., Merkle H.P., Gander B. Flow-through ultrasonic emulsification combined with static micromixing for aseptic production of microspheres by solvent extraction. Eur J Pharm Biopharm. 61:181–187 (2005).

    PubMed  CAS  Google Scholar 

  • Galindo-Rodriguez S.A., Puel F., Briançon S., Allémann E., Doelker E., Fessi H. Comparative scale-up of three methods for producing ibuprofen-loaded nanoparticles. Eur J Pharm Sci. 25:357–367 (2005).

    PubMed  CAS  Google Scholar 

  • Ganachaud F., Katz J.L. Nanoparticles and Nanocapsules Created Using the Ouzo Effect: Spontaneous Emulsification as an Alternative to Ultrasonic and High-Shear Devices ChemPhysChem. 6:209–216 (2005).

    CAS  Google Scholar 

  • Gaucher G., Marchessault R.H., Leroux J.C. Polyester-based micelles and nanoparticles for the parenteral delivery of taxanes. J Control Release. 143:2–12 (2010a).

    PubMed  CAS  Google Scholar 

  • Gaucher G., Satturwar P., Jones M.C., Furtos A., Leroux J.C. Polymeric micelles for oral drug delivery. Eur J Pharm Biopharm. 76:147–158 (2010b).

    PubMed  CAS  Google Scholar 

  • Gavi E., Marchisio D.L., Barresi A.A. CDF modelling of polycaprolactone nanoparticles precipitation via solvent-displacement for pharmaceutical applications. Proceedings of the 8th World Congress of Chemical Engineering, 23–29 August 2009, Montreal, Canada. http://www.wcce8.org/index.html and http://archivos.labcontrol.cl/wcce8/offline/techsched/manuscripts%5Cvilu6w.pdf. Accessed 15 November 2010

  • Govender T., Stolnik S., Garnett M. C., Illum L., Davis S.S. PLGA nanoparticles prepared by nanoprecipitation: drug loading and release studies of a water soluble drug. J Control Release. 57:171–185 (1999).

    PubMed  CAS  Google Scholar 

  • Goycoolea F.M., Lollo G., Remuñán-López C., Quaglia F., Alonso M.J. Chitosan-Alginate Blended Nanoparticles as Carriers for the Transmucosal Delivery of Macromolecules. Biomacromolecules. 2009 Jun 22. [Epub ahead of print]

    Google Scholar 

  • Gref R., Minamitake Y., Peracchia M.T., Trubetskoy V., Torchilin V., Langer R. Biodegradable long-circulating polymeric nanospheres. Science. 263:1600–1603 (1994).

    PubMed  CAS  Google Scholar 

  • Gref R., Lück M., Quellec P., Marchand M., Dellacherie E., Harnisch S., Blunk T., Müller R.H. ‘Stealth’ corona-core nanoparticles surface modified by polyethylene glycol (PEG): influences of the corona (PEG chain length and surface density) and of the core composition on phagocytic uptake and plasma protein adsorption. Colloids Surf B Biointerfaces. 18:301–313 (2000).

    PubMed  CAS  Google Scholar 

  • Gref R., Couvreur P., Barratt G., Mysiakine E. Surface-engineered nanoparticles for multiple ligand coupling. Biomaterials 24:4529–4537 (2003).

    PubMed  CAS  Google Scholar 

  • Guinebretière S., Briancon S., Fessi H., Teodorescu V.S., Blanchin M.G. Nanocapsules of biodegradable polymers: preparation and characterization by direct high resolution electron microscopy. Mater. Sci. Eng. C. 21:137–142 (2002).

    Google Scholar 

  • Gurny R., Peppas N.A., Harrington D.D., Banker G.S. Development of biodegradable and injectable lattices for controlled release potent drugs. Drug Dev Ind Pharm, 7:1–25 (1981)

    CAS  Google Scholar 

  • Hawkins M.J., Soon-Shiong P., Desai N. Protein nanoparticles as drug carriers in clinical medicine. Adv Drug Deliv Rev. 60:876–885 (2008).

    PubMed  CAS  Google Scholar 

  • He G., Ma L.L., Pan J., Venkatraman S. ABA and BAB type triblock copolymers of PEG and PLA: a comparative study of drug release properties and “stealth” particle characteristics. Int J Pharm. 334:48–55 (2007).

    PubMed  CAS  Google Scholar 

  • Huh K.M., Lee S.C., Cho Y.W., Lee J., Jeong J.H., Park K. Hydrotropic polymer micelle system for delivery of paclitaxel. J Control Release. 101:59–68 (2005).

    PubMed  CAS  Google Scholar 

  • Ibrahim H., Bindschaedler C., Doelker E., Buri P., Gurny R. Aqueous nanodispersions prepared by a salting-out process. Int. J. Pharm. 87:239–246 (1992).

    CAS  Google Scholar 

  • Janes K.A., Calvo P., Alonso M.J. Polysaccharide colloidal particles as delivery systems for macromolecules. Adv Drug Deliv Rev. 47:83–97 (2001).

    PubMed  CAS  Google Scholar 

  • Jeong J.H., Kim S.W., Park T.G. Molecular design of functional polymers for gene therapy. Prog. Polym. Sci. 32:1239–1274 (2007).

    CAS  Google Scholar 

  • Jie P., Venkatraman S.S., Min F., Freddy B.Y., Huat G.L. Micelle-like nanoparticles of star-branched PEO-PLA copolymers as chemotherapeutic carrier. J Control Release. 110:20–33 (2005).

    PubMed  CAS  Google Scholar 

  • Johnson B.K., Prud’homme R.K. Mechanism for rapid self-assembly of block copolymer nanoparticles. Phys Rev Lett. 91:118302 (2003).

    PubMed  Google Scholar 

  • Joralemon M.J., McRae S., Emrick T. PEGylated polymers for medicine: from conjugation to self-assembled systems. Chem Commun (Camb). 46:1377–1393 (2010).

    CAS  Google Scholar 

  • Kabanov A., Zhu J., Alakhov V. Pluronic block copolymers for gene delivery. Adv Genet. 53:231–261 (2005).

    PubMed  CAS  Google Scholar 

  • Kang N., Leroux J.-C. Triblock and star-block copolymer of N-(2-hydroxypropyl) methacrylamide or N-vinyl-2-pyrrolidone and D L-lactide: synthesis and self assembling properties in water. Polymer 45:8967–8980 (2004).

    CAS  Google Scholar 

  • Kim J.H., Emoto K., Iijima M, Nagasaki Y., Aoyagi T., Okano T., Sakurai Y., Kataoka K. Core-stabilized polymeric micelle as potential drug carrier: increased solubilization of Taxol. Polym Adv. Technol. 10:647–654 (1999).

    CAS  Google Scholar 

  • Koshy A., Das T. R., Kumar R. Effect of surfactants on drop breakage in turbulent liquid dispersions. Chem Eng Sci. 43:649–654 (1988).

    CAS  Google Scholar 

  • Labarre D., Vauthier C., Chauvierre C., Petri B., Müller R., Chehimi M.M. Interactions of blood proteins with poly(isobutylcyanoacrylate) nanoparticles decorated with a polysaccharidic brush. Biomaterials. 26:5075–84 (2005).

    PubMed  CAS  Google Scholar 

  • Lambert G., Fattal E., Pinto-Alphandary H., Gulik A., Couvreur P. Polyisobutylcyanoacrylate nanocapsules containing an aqueous core as a novel colloidal carrier for the delivery of oligonucleotides. Pharm Res. 17(6):707–714 (2000).

    PubMed  CAS  Google Scholar 

  • Lamprecht A., Ubrich N., Hombreiro Pérez M., Lehr C., Hoffman M., Maincent P. Biodegradable monodispersed nanoparticles prepared by pressure homogenization-emulsification. Int J Pharm. 184:97–105 (1999).

    PubMed  CAS  Google Scholar 

  • Lamprecht A., Ubrich N., Hombreiro Pérez M., Lehr C., Hoffman M., Maincent P. Influences of process parameters on nanoparticle preparation performed by a double emulsion pressure homogenization technique. Int J Pharm. 196:177–182 (2000).

    PubMed  CAS  Google Scholar 

  • Lee S.C., Kim C., Kwon I.C., Chung H., Jeong S.Y. Polymeric micelles of poly(2-ethyl-2-oxazoline)-block-poly(ε-caprolactone) copolymer as a carrier for paclitaxel. J Control Release 89:437–446 (2003).

    CAS  Google Scholar 

  • Legrand P., Lesieur S., Bochot A., Gref R., Raatjes W., Barratt G., Vauthier C. Influence of polymer behaviour in organic solution on the production of polylactide nanoparticles by nanoprecipitation. Int. J. Pharm. 344:33–43 (2007).

    PubMed  CAS  Google Scholar 

  • Lemarchand C., Couvreur P., Besnard M., Costantini D., Gref R. Novel polyester-polysaccharide nanoparticles. Pharm Res. 20:1284–1292 (2003).

    PubMed  CAS  Google Scholar 

  • Leroux J.C., Allemann E., Doelker E., Gurny R. New approach for the preparation of ­nanoparticles by an emulsification-diffusion method. Eur. J. Pharm. Biopharm. 41(1):14–18 (1995).

    CAS  Google Scholar 

  • Li S.D., Huang L. Pharmacokinetics and biodistribution of nanoparticles. Molecular pharmaceutics 5:496–504 (2008).

    PubMed  CAS  Google Scholar 

  • Li S.D., Huang L. Stealth nanoparticles: high density but sheddable PEG is a key for tumor targeting. J Control Release. 145:178–181 (2010).

    PubMed  CAS  Google Scholar 

  • Li T., Shi X.W., Du Y.M., Tang Y.F. Quaternized chitosan/alginate nanoparticles for protein delivery. J Biomed Mater Res A. 83:383–390 (2007).

    PubMed  Google Scholar 

  • Limayem I., Charcosset C., Fessi H. Purification of nanoparticle suspensions by a concentration/diafiltration process. Sep Purif Technol. 38:1–9 (2004).

    CAS  Google Scholar 

  • Lin Y.S., Renbutsu E., Morimoto M., Okamura Y., Tsuka T., Saimoto H., Okamoto Y., Minami S. Preparation of stable chitosan-carboxymethyl dextran nanoparticles. J Nanosci Nanotechnol. 9:2558–2565 (2009).

    PubMed  CAS  Google Scholar 

  • Lince F., Marchisio D.L., Barresi A.A. Strategies to control the particle size distribution of poly-epsilon-caprolactone nanoparticles for pharmaceutical applications. J Colloid Interface Sci. 322:505–515 (2008).

    PubMed  CAS  Google Scholar 

  • Lince F., Marchisio D.L., Barresi A.A. Smart mixers and reactors for the production of ­pharmaceutical nanoparticles: proof of concept. 13th European Conference on Mixing, London, 14–17 April 2009.

    Google Scholar 

  • Liu Y., Cheng C., Liu Y., Prud’homme R.K., Fox R.O. Mixing in a multi-inlet vortex mixer (MIVM) for flash nano-precipitation. Chem Eng Sci. 63:2829–2842 (2008).

    CAS  Google Scholar 

  • Lu Z,. Bei J., Wang S. A method for the preparation of polymeric nanocapsules without stabilizer. J Control Release. 61:107–112 (1999).

    PubMed  CAS  Google Scholar 

  • Mabille C., Leal-Calderon F., Bibette J., Schmitt V. Monodisperse fragmentation in emulsions: Mechanisms and kinetics. Europhys Lett. 61:708–714 (2003).

    CAS  Google Scholar 

  • Maksimenko O., Pavlov E., Toushov E., Molin A., Stukalov Y., Prudskova T., Feldman V., Kreuter J., Gelperina S. Radiation sterilisation of doxorubicin bound to poly(butyl cyanoacrylate) nanoparticles. Int J Pharm. 356:325–332 (2008).

    PubMed  CAS  Google Scholar 

  • Mao S., Bakowsky U., Jintapattanakit A., Kissel T. Self-assembled polyelectrolyte nanocomplexes between chitosan derivatives and insulin. J Pharm Sci. 95:1035–1048 (2006).

    PubMed  CAS  Google Scholar 

  • Masson V., Maurin F., Fessi H., Devissaguet J.P. Influence of sterilization processes on poly(ε-caprolactone) nanospheres. Biomaterials. 18:327–335 (1997).

    PubMed  CAS  Google Scholar 

  • Memisoglu-Bilensoy E., Hincal A.A. Sterile, injectable cyclodextrin nanoparticles: Effects of gamma irradiation and autoclaving. Int J Pharm. 311:203–208 (2006).

    PubMed  CAS  Google Scholar 

  • Moinard-Chécot D., Chevalier Y., Briançon S., Fessi H., Guinebretière S. Nanoparticles for drug delivery: review of the formulation and process difficulties illustrated by the emulsion-diffusion process. J. Nanosci. Nanotechnol. 6(9–10):2664–2681 (2006).

    PubMed  CAS  Google Scholar 

  • Moinard-Chécot D., Chevalier Y., Briançon S., Beney L., Fessi H. Mechanism of nanocapsules formation by the emulsion-diffusion process. J Colloid Interface Sci. 317:458–468 (2008).

    PubMed  Google Scholar 

  • Müller C.R., Bassani V.L., Pohlmann A.R., Michalowski C.B., Petrovick P.R., Guterres S.S. Preparation and characterization of spray-dried nanocapsules. Drug Dev. Ind. Pharm. 26:343–347 (2000).

    PubMed  Google Scholar 

  • Murakami H., Kobayashi M., Takeuchi H., Kawashima Y. Preparation of poly(DL-lactide-co-glycolide) nanoparticles by modified spontaneous emulsification solvent diffusion method. Int J Pharm. 187(2):143–152 (1999)

    PubMed  CAS  Google Scholar 

  • Murakami H., Kobayashi M., Takeuchi H., Kawashima Y. Further application of a modified spontaneous emulsification solvent diffusion method to various types of PLGA and PLA polymers for preparation of nanoparticles. Powder Technol. 107:137–143 (2000).

    CAS  Google Scholar 

  • Nah J.W., Jung T.R., Jeong Y.L., Jang M.K. Biodegradable nanoparticles of poly(DL-lactide-co-glycolide) encapsulating ciprofloxacin HCl having an extended-released property and manufacturing method thereof. World Patent 054042 (2008)

    Google Scholar 

  • Nemati F., Cavé G.N., Couvreur P. Lyophilization of substances with low water permeability by a modification of crystallized structures during Freezing. Proceedings of the 6th International Congress of Pharmaceutical Technology Assoc. Pharm. Galenique Ind., Chatenay Malabry, APGI, Paris Vol. 3, 1992, pp. 487–493.

    Google Scholar 

  • Nguyen C.A., Allemann E., Schwach G., Doelker E., Gurny R. Synthesis of a novel fluorescent poly (DL,-lactide) endcapped with 1-pyrenebutanol used for the preparation of nanoparticles. Eur J Pharm Sci. 20:217–222 (2003).

    PubMed  CAS  Google Scholar 

  • Niwa T., Takeuchi T., Hino T., Kunou N., Kawashima Y. Preparations of biodegradable nanospheres of water-soluble and insoluble drugs with d,llactide/glycolide copolymer by a novel spontaneous emulsification solvent diffusion method, and the drug release behavior. J. Control. Release. 25:89–98 (1993).

    CAS  Google Scholar 

  • Nobs L., Buchegger F., Gurny R., Allemann E. Current methods for attaching targeting ligands to liposomes and nanoparticles. J Pharm Sci. 93:1980–92 (2004a).

    PubMed  CAS  Google Scholar 

  • Nobs L., Buchegger F., Gurny R., Allemann E. Poly(lactic acid) nanoparticles labeled with biologically active Neutravidin for active targeting. Eur J Pharm Biopharm. 58:483–490 (2004b).

    PubMed  CAS  Google Scholar 

  • Oyarzun-Ampuero F.A., Brea J., Loza M.I., Torres D., Alonso M.J. Chitosan-hyaluronic acid nanoparticles loaded with heparin for the treatment of asthma. Int J Pharm. 381:122–129 (2009).

    PubMed  CAS  Google Scholar 

  • Park E.K., Kim S.Y., Lee S.B., Lee Y.M. Folate-conjugated methoxy poly(ethylene glycol)/poly(ε-caprolactone) amphiphilic block copolymeric micelles for tumor targeted drug delivery. J Control Release 109:158–168 (2005).

    PubMed  CAS  Google Scholar 

  • Patapoff T.W., Overcashier D.E. The importance of freezing on lyophilization cycle development. Biopharm. 3:16–21 (2002).

    Google Scholar 

  • Peltonen L., Anitta J., Hyvönen S., Kajalainen M., Hirvonen J. Improved entrapment efficiency of hydrophilic drug substance during nanoprecipitation of poly(l)lactide nanoparticles. AAPS Pharm Sci Tech. 5:1–6 (2004).

    Google Scholar 

  • Perez C., Sanchez A., Putnam D., Ting D., Langer R., Alonso M.J. Poly(lactic acid)-poly(ethylene glycol) nanoparticles as new carriers for the delivery of plasmid DNA. J Control Release. 75:211–224 (2001).

    PubMed  CAS  Google Scholar 

  • Petrelli F., Borgonovo K., Barni S. Targeted delivery for breast cancer therapy: the history of nanoparticle-albumin-bound paclitaxel. Expert Opin Pharmacother. 11:1413–1432 (2010).

    PubMed  CAS  Google Scholar 

  • Qiu L.Y., Bae Y.H. Polymer architecture and drug delivery. Pharm Res. 23(1):1–30 (2006).

    Google Scholar 

  • Quintanar-Guerrero D., Ganem-Quintanar A., Allemann E., Fessi H., Doelker E. Influence of the stabilizer coating layer on the purification and freeze-drying of poly(D,L-lactic acid) nanoparticles prepared by an emulsion-diffusion technique. J Microencapsul. 15:107–119 (1998).

    PubMed  CAS  Google Scholar 

  • Quintanar-Guerrero D., Allémann E., Fessi H., Doelker E. Pseudolatex preparation using a novel emulsion-diffusion process involving direct displacement of partially water-miscible solvents by distillation. Int. J. Pharm. 188:155–164 (1999).

    PubMed  CAS  Google Scholar 

  • Rajaonarivony M., Vauthier C., Couarraze G., Puisieux F., Couvreur P. Development of a new drug carrier made from alginate. J. Pharm. Sci. 82:912–918 (1993).

    PubMed  CAS  Google Scholar 

  • Rollot J., Couvreur P., Roblot-Treupel L., Puisieux F. Physicochemical and morphological characterization of polyisobutylcyanoacrylate nanocapsules. J Pharm Sci. 75:361–364 (1986).

    PubMed  CAS  Google Scholar 

  • Romberg B., Hennink W.E., Storm G. Sheddable coatings for long-circulating nanoparticles. Pharm Res. 25:55–71 (2008).

    PubMed  CAS  Google Scholar 

  • Sahoo S.K., Panyam J., Prabha S., Labhasetwar V. Residual polyvinyl alcohol associated with poly (DL,-lactidecoglycolide) nanoparticles affects their physical properties and cellular uptake. J Control Release. 82:105–114 (2002).

    Google Scholar 

  • Sani S.N., Das N.G., Das S.K. Effect of microfluidization parameters on the physical properties of PEG-PLGA nanoparticles prepared using high pressure microfluidization. J Microencapsul. 26:556–561 (2009).

    PubMed  CAS  Google Scholar 

  • Sarmento B., Ferreira D.C., Jorgensen L., van de Weert M. Probing insulin’s secondary structure after entrapment into alginate/chitosan nanoparticles. Eur J Pharm Biopharm. 65:10–17 (2007).

    PubMed  CAS  Google Scholar 

  • Schärtl W. Current directions in core-shell nanoparticle design. Nanoscale. 2:829–843 (2010).

    PubMed  Google Scholar 

  • Schatz C., Domard A., Viton C., Pichot C., Delair T. Versatile and efficient formation of colloids of biopolymer-based polyelectrolyte complexes. Biomacromolecules. 5:1882–1892 (2004).

    PubMed  CAS  Google Scholar 

  • Shegokar R., Singh K.K., Müller R.H. Production & stability of stavudine solid lipid nanoparticles-From lab to industrial scale. Int J Pharm. In Press 2010 Aug 18. [Epub ahead of print]

    Google Scholar 

  • Sintzel M.B., Merklia A., Tabatabay C., Gurny R. Influence of irradiation sterilization on polymers used as drug carriers : A review. Drug Dev Ind Pharm. 23:857–878 (1997).

    CAS  Google Scholar 

  • Stainemesse S., Orecchioni A.M., Nakache E., Puisieux F., Fessi H. Formation and stabilization of a biodegradable polymeric colloidal suspension of nanoparticles. Colloid and Polym. Sci. 273:505–511 (1995).

    Google Scholar 

  • Stork M., Tousain R.L., Wieringa J.A., Bosgra O.H. A MILP approach to the optimization of the operation procedure of a fed-batch emulsification process in a stirred vessel. Comp Chem Eng. 27:1681–1691 (2003).

    Google Scholar 

  • Stuart M.A., Huck W.T., Genzer J., Müller M., Ober C., Stamm M., Sukhorukov G.B., Szleifer I., Tsukruk V.V., Urban M., Winnik F., Zauscher S., Luzinov I., Minko S. Emerging applications of stimuli-responsive polymer materials. Nat Mater. 9:101–113 (2010).

    PubMed  Google Scholar 

  • Sun W., Mao S., Mei D., Kissel T. Self-assembled polyelectrolyte nanocomplexes between chitosan derivatives and enoxaparin. Eur J Pharm Biopharm. 69:417–425 (2008).

    PubMed  CAS  Google Scholar 

  • Sun X., Zhang N. Cationic polymer optimization for efficient gene delivery. Mini Rev Med Chem. 10:108–125 (2010).

    PubMed  CAS  Google Scholar 

  • Tewa-Tagne P., Briançon S., Fessi H. Preparation of redispersible dry nanocapsules by means of spray-drying: development and characterisation. Eur J Pharm Sci. 30:124–135 (2007).

    PubMed  CAS  Google Scholar 

  • Thioune O., Fessi H., Devissaguet J.P., Puisieux F. Preparation of pseudolatex by nanoprecipitation: Influence of the solvent nature on intrinsic viscosity and interaction constant. Int. J. Pharm. 146:233–238 (1997).

    CAS  Google Scholar 

  • Tishchenko G., Hilke R., Albrecht W., Schauer J., Luetzow K., Pientka Z., Bleha M. Ultrafiltration and microfiltration membranes in latex purification by diafiltration with suction. Sep Purif Technol. 30:57–68 (2003).

    CAS  Google Scholar 

  • Tokumitsu H., Ichikawa H., Fukumori Y., Hiratsuka J., Sakurai Y., Kobayashi T. Preparation of gadopentenate-loaded nanoparticles for gadolinium neutron capture therapy of cancer using a novel emulsion droplet coalescence technique. Proc. 2 nd world meeting APGI/APV, Paris, 25–28 Mai 1998. 641–642 (1998).

    Google Scholar 

  • Trivedi R., Kompella U.B. Nanomicellar formulations for sustained drug delivery: strategies and underlying principles. Nanomedicine (Lond) 5:485–505 (2010).

    CAS  Google Scholar 

  • Tuereli A.E., Penth B., Langguth P., Boumstuemmler B., Kraemer J. Preparation of drug nanoparticles using microjet reactor technology. Proceedings of the 2nd PharmaSciFair, 8–12 July 2009, Nice, France

    Google Scholar 

  • Urban K., Wagner G., Schaffner D., Röglin D., Ulrich J. Rotor-stator and disc systems for emulsufication processes. Chem Eng Technol 29:24–31 (2006).

    CAS  Google Scholar 

  • Vauthier C., Bouchemal K. Methods for the preparation and manufacture of polymeric nanoparticles. Pharm Res. 26:1025–1058 (2009).

    PubMed  CAS  Google Scholar 

  • Vauthier C., Couvreur P. Development of nanoparticles made of polysaccharides as novel drug carrier systems. In “Handbook of Pharmaceutical Controlled Release Technology”, D.L. Wise Ed., Marcel Dekker Inc. New-York, USA (2000) chap.21, pp. 413–429

    Google Scholar 

  • Vauthier C., Rajaonarivony M., Couarraze G., Couvreur P., Puisieux F. Characterization of alginate pregel by rheological investigation. Eur. J. Pharm. Biopharm. 40:218–222 (1994).

    CAS  Google Scholar 

  • Vauthier C., Cabane B., Labarre D. How to concentrate nanoparticles and avoid aggregation ? Eur J Pharm Biopharm. 69:466–475 (2008).

    PubMed  CAS  Google Scholar 

  • Vauthier C., Persson B., Lindner P, Cabane B. Protein adsorption and complement activation for di-block copolymer nanoparticles. Biomaterials. 32:1646–1656 (2011).10.1016/j.biomaterials.2010.10.02

    Google Scholar 

  • Vila A., Sánchez A., Tobío M., Calvo P., Alonso M.J. Design of biodegradable particles for protein delivery. J Control Release. 78:15–24 (2002).

    PubMed  CAS  Google Scholar 

  • Vitale S.A., Katz J.L. Liquid Droplet Dispersions Formed by Homogeneous Liquid-Liquid Nucleation: “The Ouzo Effect” Langmuir 19:4105–4110 (2003).

    CAS  Google Scholar 

  • Vonabourg A., Passirani C., Saulnier P., Benoit J.P. Parameters influencing the stealthiness of colloidal drug delivery systems. Biomaterials. 27:4356–4373 (2006).

    Google Scholar 

  • Walstra P. In Encyclopedia of Emulsion Technology, 1 Basic Theory; Becher, P., Ed.; Marcel Dekker Inc.: New York, 1983; Vol. 1, Chapter 2, pp 57–127.

    Google Scholar 

  • Wang N., Wu X.S. Preparation and characterization of agarose hydrogel nanoparticles for protein and peptide drug delivery. Pharm Dev Technol, 2:135–142 (1997).

    PubMed  CAS  Google Scholar 

  • Weber C., Drogoz A., David L., Domard A., Charles M.H., Verrier B., Delair T. Polysaccharide-based vaccine delivery systems: Macromolecular assembly, interactions with antigen presenting cells, and in vivo immunomonitoring. J Biomed Mater Res A. 93:1322–1334 (2010).

    PubMed  Google Scholar 

  • Woitiski C.B., Neufeld R.J., Ribeiro A.J., Veiga F. Colloidal carrier integrating biomaterials for oral insulin delivery: Influence of component formulation on physicochemical and biological parameters. Acta Biomater. 5:2475–2484 (2009a).

    PubMed  CAS  Google Scholar 

  • Woitiski C.B., Veiga F., Ribeiro A., Neufeld R. Design for optimization of nanoparticles integrating biomaterials for orally dosed insulin. Eur J Pharm Biopharm. 73:25–33 (2009b).

    PubMed  CAS  Google Scholar 

  • Xia W., Low P.S. Folate-targeted therapies for cancer. J Med Chem. 53:6811–6824 (2010).

    PubMed  CAS  Google Scholar 

  • Zheng W. A water-in-oil-in-oil-in-water (W/O/O/W) method for producing drug-releasing, double-walled microspheres. Int J Pharm. 374:90–95 (2009).

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christine Vauthier .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Vauthier, C., Bouchemal, K. (2011). Processing and Scale-up of Polymeric Nanoparticles. In: Prokop, A. (eds) Intracellular Delivery. Fundamental Biomedical Technologies, vol 5. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-1248-5_16

Download citation

Publish with us

Policies and ethics