Skip to main content

Part of the book series: RILEM State of the Art Reports ((RILEM State Art Reports,volume 3))

Abstract

This chapter focuses on the causes and the mechanisms of debonding of cement-based material overlays. Additionally, it describes how debonding affects durability of the composite structure. Methods for monitoring are described. The debonding mechanism is discussed, and debonding modeling is described. The role of reinforcement in debonding is important and is discussed. Crack propagation and crack opening affects debonding and is described. There are special overlays including those bonded to steel and overlays that are anchored to the substrate with metal anchors and they are discussed. The effect of boundaries and joints is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Carter, A., Gurjar, S. and Wong, J., Debonding of highway bridge deck overlays, Concrete International, 24(7), 51–58, 2002.

    Google Scholar 

  2. Silfwerbrand, J., Improving concrete bond in repaired bridge decks, Concrete International, 12(9), 61–66, 1990.

    Google Scholar 

  3. Silfwerbrand, J. and Paulsson, J., Swedish experience: Better bonding of bridge deck overlays, Concrete International, 20(10), 56–61, 1998.

    Google Scholar 

  4. Saucier, F. and Pigeon, M., Durability of new-to old concrete bondings, in Proceedings of ACI International Conference on Evaluation and Rehabilitation of Concrete Structures and Innovations in Design (ACI SP-128), Hong Kong, December, pp. 689–705, 1991.

    Google Scholar 

  5. Langlois, M., Pigeon, M., Bissonnette B. and Allard D., Durability of pavement repairs: A field experiment, Concrete International, 16(8), 39–43, 1994.

    Google Scholar 

  6. Delatte, N.J., Wade, D.M. and Fowler, D.W., Laboratory and field testing of concrete bond development for expedited bonded concrete overlays, ACI Materials Journal, 97(3), 272–280, 2000.

    Google Scholar 

  7. Tschegg, K.E., Igruber, M., Srberg, C.H. and Münger, F., Factors influencing fracture behavior of old-new concrete bonds, ACI Materials Journal, 97(4), 447–453, 2000.

    Google Scholar 

  8. Vaysburd, A.M. and Emmons, P.H., How to make today’s repairs durable for tomorrow-corrosion protection in concrete repair, Construction and Building Materials, 14, 189–197, 2000.

    Article  Google Scholar 

  9. Emmons, P.H., Vaysburd, A.M. and Czarnecki, L., Durability of repair materials: Current practice and challenges, in Brittle Matrix Composites 6, Proceedings of an International Symposium, Warsaw, pp. 263–274, 2000.

    Google Scholar 

  10. Sabathier, V., Granju, J-L., Turatsinze, A. and Bissonnette B., Repair by cement-based thin overlays – Interlocking at the interface and modeling of debonding, in Industrial Floors’03, Proceedings of an International Colloquium, Esslingen, January, P. Seidler (Ed.), pp. 621– 626, 2003.

    Google Scholar 

  11. Walter, R., Stang, H., Olesen, J.F. and Gimsing, N.J., Debonding of FRC composite deck bridge, in Brittle Matrix Composites 7, Proceedings of an International Symposium, Warsaw, October, Woodhead Publishing, pp. 191–200, 2003.

    Google Scholar 

  12. Lupien, C., Chanvillard, G. Aïtcin, P-C. and Gagné, R., Réhabilitation d’une chaussée par resurfaçage mince adhérent en béton renforcé de fibres d’acier, in Proceedings of AIPCR, Comité C-7, Montréal, Canada, pp. 246–250, 1995.

    Google Scholar 

  13. Scott, M., Rezaizadeh, A., Delahaza, A., Santos, C.G., Moore, M., Graybeal, B. and Washer G., A comparison of non destructive evaluation methods for bridge deck assessment, NDT & E International, 36(4), 245–255, 2003.

    Article  Google Scholar 

  14. Clark, M.R., McCann, D.M. and Forde, M.C., Application of infrared thermography to the non-destructive testing of concrete and masonry bridges, NDT & E International, 36(4), 265–275, 2003.

    Article  Google Scholar 

  15. Lupien, C., Chanvillard, G. Aïtcin, P-C. and Gagné R., Réhabilitation d’une chaussée en béton avec une chape mince en béton renforcé de fibres d’acier, in Les techniques de transport au service de la qualité de vie,Exposé des communications du 25 congrès annuel de l’AQTR, Montréal, April, pp. 108-122, 1990.

    Google Scholar 

  16. Bungey, J.H., Sub-surface radar testing of concrete: A review, Construction and Building Materials, 18, 1–8, 2004.

    Article  Google Scholar 

  17. Dalhuisen, D.H., Stroeven, P., Moczko, A.T. and Peng, X., Modern testing methods for “in-situ” non-destructive examination of concrete structures, in Proceedings of The NOCMAT/3-Vietnam 3rd International Conference of Non-Conventional Materials and Technologies, Hanoi, Vietnam, March, K. Ghavami and Nguyen Tien Dich (Eds.), pp. 253-259, 2002.

    Google Scholar 

  18. Moczko, A.T., Pszonka, A. and Stroeven, P., Acoustic emission as a useful tool for reflecting cracking behaviour of concrete composites, in Proceedings of International Symposium NonDestructive Testing in Civil Engineering (NDT-CE), Berlin, September, G. Schickert and H. Wiggenhauser (Eds.), pp. 805–812, 1995.

    Google Scholar 

  19. Chausson, H. and Granju J.-L., Optimized design of fiber reinforcement thin bonded overlays, in Brittle Matrix Composites 5, Proceedings of an International Symposium, Warsaw, October, Woodhead Publishing, pp. 133–142, 1997.

    Google Scholar 

  20. Chowdhury, M.R. and Ray, J.C., Accelerometers for bridge load testing, NDT & E International, 36(4), 237–244, 2003.

    Article  Google Scholar 

  21. Farhat, H., Durabilité des réparations en béton de fibres: Effets du retrait et de la fatique, PhD Thesis, Université Paul Sabatier, Toulouse, France, 178 pp., 1999 [in French].

    Google Scholar 

  22. Basu, B., Identification of stiffness degradation in structures using wavelet analysis, Construction and Building Material, 19(9), 713–721, 2005.

    Article  Google Scholar 

  23. Granju, J-L., Debonding of thin cement-based overlays, Journal of Materials in Civil Engineering, 13(2), 114–120, 2001.

    Article  Google Scholar 

  24. Bernard, O., Comportement à long terme des éléments de structure formés de bétons d’âges différents, PhD Thesis No. 2283, Ecole Polythechnique Fédérale de Lausanne, Switzerland, 189 pp., 2000.

    Google Scholar 

  25. Bigwood, D.A. and Grocombe, A.D., Elastic analysis and engineering design formulae for bonded joints, International Journal of Adhesion and Adhesive, 9, 229–242, 1989.

    Article  Google Scholar 

  26. Fowler, D.W., Wheat, D.L., Choi, D.U. and Zalatimo, J., Stresses in PC overlays due to thermal changes, in Industrial Floors’03, Proceedings of an International colloquium, Ess-lingen, January, P. Seidler (Ed.), pp. 29–36, 2003.

    Google Scholar 

  27. Naciri, T., Ehrlacher, A. and Chabot, A., Interlaminar stress analysis with a new multiparticle modelisation of multilayered materials (M4), Composites Sciences and Technology, 58(3), 337–343, 1998.

    Article  Google Scholar 

  28. Caron, J.F., Diaz Diaz, A., Carreira, R.P., Chabot, A. and Ehrlacher, A., Multi-particle modelling for prediction of delamination in multi-layered materials, Composites Sciences and Technology, 66(6), 755–765, 2006.

    Article  Google Scholar 

  29. Granju, J.-L., Thin bonded overlays: About the role of fiber reinforcement on the limitation of their debonding, Advanced Cement Based Materials, 4(1), 21–27, 1997.

    Google Scholar 

  30. Balouch, S.U. and Granju, J.-L., Corrosion of different types of steel fibres in SFRC and testing of corrosion inhibitors, in Infrastructure Regeneration and Rehabilitation – Improving the Quality of Life through Better Construction. A Vision for the Next Millennium, Proceedings of an International Conference, Sheffield, June–July, Sheffield Academic Press, pp. 735–747, 1999.

    Google Scholar 

  31. Silfwerbrand, J., Shear Bond Strength in repaired concrete structures, Materials and Structures, 36(260), 419–424, 2003.

    Article  Google Scholar 

  32. Sabathier, V., Rechargements minces adhérents à base cimentaire renforcés de fibres métalliques. Conditions de leur durabilité, modélisation et calcul, PhD Thesis, Université Toulouse III, 190 pp., 2004.

    Google Scholar 

  33. Julio, E.N.B.S, Branco, F.A.B. and Silva, V.D., Concrete-to-concrete bond strength. Influence of the roughness of substrate surface, Construction and Building Materials, 18(9), 675–681, 2004.

    Article  Google Scholar 

  34. Turatsinze, A., Farhat, H. and Granju, J-L., Durability of metal-fibre reinforced concrete repairs: Drying shrinkage effects, in Proceedings of an International Symposium, Warsaw, October, Woodhead Publishing, pp. 296–305, 2000.

    Google Scholar 

  35. Granju, J.L., Sabathier, V., Turatsinze, A. and Toumi, A., Interface between an old concrete and a bonded overlay: Debonding mechanism, Interface Science Journal, 12(4), 381–388, 2004.

    Article  Google Scholar 

  36. Grzybowski, M. and Shah, P.S., Shrinkage cracking of fiber reinforced concrete, ACI Materials Journal, 87(2), 138–148, 1990.

    Google Scholar 

  37. Marosszeky, M., Stress performance in concrete repairs, in Proceedings of a RILEM International Conference on Rehabilitation of Concrete Structures, Melbourne, pp. 467–474, 1992.

    Google Scholar 

  38. Saucier, F. and Pigeon, M., Testing of superficial repairs for sidewalks in Canada, Concrete International, 18(5), 39–43, 1996.

    Google Scholar 

  39. Banthia, N., Yan, C. and Mindess, S., Restrained shrinkage cracking in fiber reinforced concrete: A novel test technique, Cement and Concrete Research, 26(1), 9–14, 1996.

    Article  Google Scholar 

  40. Mailvaganam, N., Springfield, J., Repette, W. and Taylor, D., Curling of concrete slabs on grade, Construction Technology Update, 44, 1–6, 2000.

    Google Scholar 

  41. Suprenant, B.A. and Malisch, R.W., Repairing curled slabs, Concrete Construction, 9, 58–65, 1999.

    Google Scholar 

  42. Suprenant, B.A., A look at the curling mechanism and the effect of moisture and shrinkage gradients on the amount of curling, Concrete International, 24(3), 56–61, 2002.

    Google Scholar 

  43. Sabathier, V., Granju, J-L., Bissonnette, B., Turatsinze, A. and Tamtsia, B., Cement-based thin bonded overlays: Numerical study of the influence of a bond defect, in Brittle Matrix Composites 7, Proceedings of an International Symposium, Warsaw, October, Woodhead Publishing, pp. 181-189, 2003.

    Google Scholar 

  44. Tran, Q.T., Toumi, A. and Turatsinze, A., Durability of an overlay-old concrete interface: The role of a metal fibre reinforcement, in Brittle Matix Composites 8, Proceedings of an International Symposium, Warsaw, October, Woodhead Publishing, pp. 409–419, 2006.

    Google Scholar 

  45. Tran, Q.T., Toumi, A. and Turatsinze, A., Thin bonded cement-based overlays: Numerical analysis of factors influencing their debonding under fatigue loading, Materials and Structures, 41(5), 951–967, 2008.

    Article  Google Scholar 

  46. Betterton, R.M., Knutson, M.J. and Marks, V.J., Fibrous portland cement concrete averlay research in Green County, Iowa, Transportation Research Record, No. 1040, TRB, National Research Council, Washington DC, pp. 1–7, 1985.

    Google Scholar 

  47. Paulsson, J. and Silfwerbrand, J., Durability of repaired bridge deck overlays, Concrete International, 20(2), 76–82, 1998.

    Google Scholar 

  48. Verhoeven, K., Thin overlays of steel fiber reinforced concrete and continuously reinforced concrete, state of the art in Belgium, in Proceedings of the 4th International Conference on Concrete Pavement Design and Rehabilitation, Purdue University, West Lafayette, IN, April, pp. 205–219, 1989.

    Google Scholar 

  49. Chanvillard, G., Aitcin, P.C. and Lupien, C., Field evaluation of steel-fibre reinforced concrete overlays with bonding mechanism, in Transportation Research Record 1226, TRB, Washington, pp. 48–56, 1990.

    Google Scholar 

  50. Chanvillard, G. and Aitcin, P.C., Thin bonded overlays of fiber-reinforced concrete as a method of rehabilitation of concrete roads, Canadian Journal of Civil Engineering, 17(4), 521–527, 1990.

    Article  Google Scholar 

  51. Belaghmas, A., Fissuration et décollement d’une couche de béton adhérente à un support, DEA memory, LMDC, Génie Civil INSA-UPS, Toulouse, 1993.

    Google Scholar 

  52. Granju, J.-L. and Chausson, H., Serviceability of fiber reinforced thin overlays relation between cracking and debonding, in ConChem, Proceedings of an International exhibition & Conference, Brussels, November, Verlag für chemische industrie, pp. 133–142, 1995.

    Google Scholar 

  53. Granju, J.-L. and Chausson, H., Fiber reinforced thin bonded overlays: The mechanism of their debonding in relation with their cracking, in Concrete repair, rehabilitation and protection, in Proceedings of an International Congress, Dundee, June, E. & FN. Spon, pp. 583–590, 1996.

    Google Scholar 

  54. Chausson, H., Durabilité des rechargements minces en béton: Relation entre leur décollement, leur fissuration et leur renforcement par des fibres, PhD Thesis, Université Paul Sabatier, Toulouse, France, 198 pp., 1997 [in French].

    Google Scholar 

  55. Turatsinze, A., Granju, J.L., Sabathier, V. and Farhat, H., Durability of bonded cement-based overlays: effect of metal fibre reinforcement, Materials and Structures, 38(277), 321–327, 2005.

    Article  Google Scholar 

  56. Habel, K., Brühwiler, E. and Bernard, O., The numerical investigation of delamination in hybrid reinforced concrete elements, in Proceedings of International PhD Symposium in Civil Engineering, Vienna, October, K. Bergmeister (Ed.), pp. 221–228, 2000.

    Google Scholar 

  57. Farhat, H., Turatsinze, A. and Granju, J-.L., Durabilité des rechargements minces adhérents soumis à la fatigue mécanique, in Proceedings (CD-rom) of 14ième Congrès Français de Mécanique, Toulouse, August–September, 1999.

    Google Scholar 

  58. Turatsinze, A., Farhat, H. and Granju, J.-L., Influence of autogenous cracking on the durability of repairs by cement-based overlays reinforced with metal fibres, Materials and Structures, 36(264), 2003, 673–677.

    Article  Google Scholar 

  59. Zhang, J., Stang, H. and Li, V.C., Crack bridging model for fibre reinforced concrete under fatigue tension, International Journal of Fatigue, 23(8), 655–670, 2001.

    Article  Google Scholar 

  60. Rossi, P. (sous la direction de), Le développement industriel des bétons de fibres métalliques, conclusions et reconclusions, Presse de l’école nationale des Ponts et Chaussées, 2002.

    Google Scholar 

  61. Gagné, R., Bissonnette, B., Lachemi, M. and Lemieux, M., Vézina, Analyse du comportement de resurfaçages adhérents utilisés pour réparer des dalles en béton armé, in 9e Colloque sur la progression de la recherche québécoise sur les ouvrages d’art, Québec, Mai, 11 pp.

    Google Scholar 

  62. Lemieux, M., Gagné, R., Bissonnette, B. and Lachemi, M., Behavior of overlaid reinforced-concrete slab panels under cyclic loading – Effect of interface location and overlay thickness, ACI Structural Journal, 102(3), 454–461, 2005.

    Google Scholar 

  63. Guindon, M.-A., Étude du comportement des resurfaçages adhérents – Mécanismes d’endommagement et influence des paramètres de conception, Mémoire de maîtrise, Université de Sherbrooke, Département de génie civil.

    Google Scholar 

  64. Walter, R., Stang., H, Gimsing, N. J. and Olesen, J.F., High performance composite decks using SCSFRC, in Proceedings Fourth International Workshop on High Performance Fiber Reinforced Cementitious Composites, Ann Arbor, June, pp. 495–504, 2003.

    Google Scholar 

  65. Walter, R., Li, V.C. and Stang, H., Comparison of FRC and ECC in a composite bridge deck, in 5th International PhD Symposium in Civil Engineering, Delft, the Netherlands, June, pp. 477– 484, 2004.

    Google Scholar 

  66. Li, V.C., Advances in ECC Research, ACI Special Publication on Concrete: Material Science to Applications, SP 206-23, pp. 373–400.

    Google Scholar 

  67. Benzerzour, M., Étude expérimentale et numérique du renforcement des tabliers de pont en béton armé par des resurfaçages adhérents, PhD Thesis, Université de Sherbrooke, Département de génie civil, Canada [in French].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Turatsinze, A., Beushausen, H., Gagné, R., Granju, JL., Silfwerbrand, J., Walter, R. (2011). Debonding. In: Bissonnette, B., Courard, L., Fowler, D., Granju, JL. (eds) Bonded Cement-Based Material Overlays for the Repair, the Lining or the Strengthening of Slabs or Pavements. RILEM State of the Art Reports, vol 3. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-1239-3_6

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-1239-3_6

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-007-1238-6

  • Online ISBN: 978-94-007-1239-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics