Skip to main content

Regulation of Airway Nucleotides in Chronic Lung Diseases

  • Chapter
  • First Online:
Purinergic Regulation of Respiratory Diseases

Part of the book series: Subcellular Biochemistry ((SCBI,volume 55))

Abstract

The physiological relevance of the purinergic signaling network for airway defenses is emerging through cumulating reports of abnormal ATP and adenosine (ADO) levels in the airway secretions of patients with asthma, chronic pulmonary obstructive diseases, cystic fibrosis and idiopathic pulmonary fibrosis. The consequences for airway defenses range from abnormal clearance responses to the destruction of lung tissue by excessive inflammation. This chapter reviews the challenges of assessing airway purines in human subjects, and identifies the general trend in aberrant airway composition. Most diseases are associated with an accumulation of ATP and/or ADO in bronchoalveolar lavage, sputum or exhaled breadth condensate. Intriguing is the case of cystic fibrosis patients, which do not accumulate airway ADO, but its precursor, AMP. This observation launched the investigation of ectonucleotidases as target proteins for the correction of airway purine levels in chronic respiratory diseases. This chapter exposes the extensive rearrangement of the enzymatic network taking place in diseased airways, and identifies signaling pathways likely involved in the aberrant regulation of the airway purines.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Driver AG, Kukoly CA, Ali S, Mustafa SJ (1993) Adenosine in bronchoalveolar lavage fluid in asthma. Am Rev Respir Dis 148:91–97

    PubMed  CAS  Google Scholar 

  2. Factor P, Mutlu GM, Chen L, Mohameed J, Akhmedov AT, Meng FJ, Jilling T, Lewis ER, Johnson MD, Xu A, Kass D, Martino JM, Bellmeyer A, Albazi JS, Emala C, Lee HT, Dobbs LG, Matalon S (2007) Adenosine regulation of alveolar fluid clearance. Proc Natl Acad Sci 104:4083–4088

    Article  PubMed  CAS  Google Scholar 

  3. Esther CR Jr, Alexis NE, Clas ML, Lazarowski ER, Donaldson SH, Ribeiro CM, Moore CG, Davis SD, Boucher RC (2008) Extracellular purines are biomarkers of neutrophilic airway inflammation. Eur Respir J 31:949–956

    Article  PubMed  CAS  Google Scholar 

  4. Versluis M, van den Berge M, Timens W, Luijk B, Rutgers B, Lammers JW, Postma DS, Hylkema MN (2008) Allergen inhalation decreases adenosine receptor expression in sputum and blood of asthma patients. Allergy 63:1186–1194

    Article  PubMed  CAS  Google Scholar 

  5. Li Y, Wang W, Parker W, Clancy JP (2006) Adenosine regulation of cystic fibrosis transmembrane conductance regulator through prostenoids in airway epithelia. Am J Respir Cell Mol Biol 34:600–608

    Article  PubMed  CAS  Google Scholar 

  6. Haslam PL, Baughman RP (1999) Report of ERS task force: guidelines for measurement of acellular components and standardization of BAL. Eur Respir J 14:245–248

    Article  PubMed  CAS  Google Scholar 

  7. Chen Y, Shukla A, Namiki S, Insel PA, Junger WG (2004) A putative osmoreceptor system that controls neutrophil function through the release of ATP, its conversion to adenosine, and activation of A2 adenosine and P2 receptors. J Leukoc Biol 76:245–253

    Article  PubMed  CAS  Google Scholar 

  8. Aleu J, Martin-Satue M, Navarro P, Perez de Lara I, Bahima L, Marsal J, Solsona C (2003) Release of ATP induced by hypertonic solutions in Xenopus oocytes. J Physiol 547:209–219

    Article  PubMed  CAS  Google Scholar 

  9. Alexis NE, Hu SC, Zeman K, Alter T, Bennett WD (2001) Induced sputum derives from the central airways: confirmation using a radiolabelled aerosol bolus delivery technique. Am J Respir Crit Care Med 164:1964–1970

    PubMed  CAS  Google Scholar 

  10. Spanevello A, Confalonieri M, Sulotto F, Romano F, Balzano G, Migliori GB, Bianchi A, Michetti G (2000) Induced sputum cellularity. Reference values and distribution in normal volunteers. Am J Respir Crit Care Med 162:1172–1174

    PubMed  CAS  Google Scholar 

  11. Sutinen S, Riska H, Backman R, Sutinen SH, Froseth B (1995) Alveolar lavage fluid (ALF) of normal volunteer subjects: cytologic, immunocytochemical, and biochemical reference values. Respir Med 89:85–92

    Article  PubMed  CAS  Google Scholar 

  12. Huszar E, Vass G, Vizi E, Csoma Z, Barat E, Molnar Vilagos G, Herjavecz I, Horvath I (2002) Adenosine in exhaled breath condensate in healthy volunteers and in patients with asthma. Eur Respir J 20:1393–1398

    Article  PubMed  CAS  Google Scholar 

  13. Esther CR Jr, Jasin HM, Collins LB, Swenbery JA, Boysen G (2008) A mass spectrometric method to simultaneously measure a biomarker and dilution marker in exhaled breath condensate. Rapid Commun Mass Spectrom 22:701–705

    Article  PubMed  CAS  Google Scholar 

  14. Esther CR Jr, Boysen G, Olsen BM, Collins LB, Ghio AJ, Swenberg JW, Boucher RC (2009) Mass spectrometric analysis of biomarkers and dilution markers in exhaled breath condensate reveals elevated purines in asthma and cystic fibrosis. Am J Physiol 296:L987–993

    CAS  Google Scholar 

  15. Hunt J (2007) Exhaled breath condensate: an overview. Immunol Allergy Clin North Am 27:587–596

    Article  PubMed  Google Scholar 

  16. Fredholm BB, Irenius E, Kull B, Schulte G (2001) Comparison of the potency of adenosine as an agonist at human adenosine receptors expressed in Chinese hamster ovary cells. Biochem Pharmacol 61:443–448

    Article  PubMed  CAS  Google Scholar 

  17. Lazarowski ER, Tarran R, Grubb BR, van Heusden CA, Okada S, Boucher RC (2004) Nucleotide release provides a mechanism for airway surface liquid homeostasis. J Biol Chem 279:36855–36864

    Article  PubMed  CAS  Google Scholar 

  18. Cushley MJ, Tattersfield AE, Holgate ST (1983) Inhaled adenosine and guanosine on airway resistance in normal and asthmatic subjects. Br J Clin Pharmacol 15:161–165

    PubMed  CAS  Google Scholar 

  19. Mann JS, Holgate ST, Renwick AG, Cushley MJ (1986) Airway effects of purine nucleosides and nucleotides and release with bronchial provocation in asthma. J Appl Physiol 61:1667–1676

    PubMed  CAS  Google Scholar 

  20. Vizi E, Huszar E, Csoma Z, Boszormenyi-Nagy G, Barat E, Horvath I, Herjavecz I, Kollai M (2002) Plasma adenosine concentration increases during exercise: a possible contributing factor in exercise-induced bronchoconstriction in asthma. J Allergy Clin Immunol 109:446–448

    Article  PubMed  CAS  Google Scholar 

  21. Vass G, Huszar E, Augusztinovicz M, Baktai G, Barat E, Herjavecz I, Horvath I (2006) The effect of allergic rhinitis on adenosine concentration in exhaled breath condensate. Clin Exp Allergy 36:742–747

    Article  PubMed  CAS  Google Scholar 

  22. Csoma Z, Huszar E, Vizi E, Vass G, Szabo Z, Herjavecz I, Kollai M, Horvath I (2005) Adenosine level in exhaled breath increases during exercise-induced bronchoconstriction. Eur Respir J 25:873–878

    Article  PubMed  CAS  Google Scholar 

  23. Idzko M, Hammad H, van Nimwegen M, Kool M, Willart MAM, Muskens F, Hoogsteden HC, Luttmann W, Ferrari D, Di Virgilio F, Virchow JC, Lambrecht BN (2007) Extracellular ATP triggers and maintains asthmatic airway inflammation by activating dendritic cells. Nat Med 13:913–919

    Article  PubMed  CAS  Google Scholar 

  24. Loughlin CE, Esther CRJ, Lazarowski ER, Alexis NE, Peden DB (2010) Neutrophilic inflammation is associated with altered airway hydration in stable asthmatics. Respir Med 104:29–33

    Article  PubMed  Google Scholar 

  25. Oosterhoff Y, de Jong JW, Jansen MA, Koeter GH, Postma DS (1993) Airway responsiveness to adenosine 5'-monophosphate in chronic obstructive pulmonary disease is determined by smoking. Am Rev Respir Dis 147:553–558

    PubMed  CAS  Google Scholar 

  26. Gibson PG, Simpson JL (2009) The overlap syndrome of asthma and COPD: what are its features and how important is it? Thorax 64:728–735

    Article  PubMed  CAS  Google Scholar 

  27. Esther CR Jr, Lazaar A (2009) Airway adenosine is elevated in COPD and correlates with disease severity. Am J Respir Crit Care Med 179:A3764

    Google Scholar 

  28. Lázár Z, Huszár É, Kullmann T, Barta I, Antus B, Bikov A, Kollai M, Horváth I (2008) Adenosine triphosphate in exhaled breath condensate of healthy subjects and patients with chronic obstructive pulmonary disease. Inflamm Res 57:367–373

    Article  PubMed  Google Scholar 

  29. Lommatzsch M, Cicko S, Muller T, Lucattelli M, Bratke K, Stoll P, Grimm M, Durk T, Zissel G, Ferrari D, Di Virgilio F, Sorichter S, Lungarella G, Virchow JC, Idzko M (2010) Extracellular adenosine triphosphate and chronic obstructive pulmonary disease. Am J Respir Crit Care Med 181:928–934

    Article  PubMed  CAS  Google Scholar 

  30. Mortaz E, Braber S, Nazary M, Givi ME, Nijkamp FP, Folkerts G (2009) ATP in the pathogenesis of lung emphysema. Eur J Pharmacol 619:92–96

    Article  PubMed  CAS  Google Scholar 

  31. Chen Y, Yao Y, Sumi Y, Li A, To UK, Elkhal A, Inoue Y, Woehrle T, Zhang Q, Hauser C, Junger WG (2010) Purinergic signaling: a fundamental mechanism in neutrophil activation. Sci Signal 3:ra45

    Article  PubMed  Google Scholar 

  32. Lader AS, Prat AG, Jackson GRJ, Chervinsky KL, Lapey A, Kinane TB, Cantiello HF (2000) Increased circulating levels of plasma ATP in cystic fibrosis patients. Clin Physiol 20:348–353

    Article  PubMed  CAS  Google Scholar 

  33. Donaldson SH, Lazarowski ER, Picher M, Knowles MR, Stutts MJ, Boucher RC (2000) Basal nucleotide levels, release, and metabolism in normal and cystic fibrosis airways. Mol Med 6:969–982

    PubMed  CAS  Google Scholar 

  34. Lennon PF, Taylor CT, Stahl GL, Colgan SP (1998) Neutrophil-derived 5′-adenosine monophosphate promotes endothelial barrier function via CD73-mediated conversion to adenosine and endothelial A2B receptor activation. J Exp Med 188:1433–1443

    Article  PubMed  CAS  Google Scholar 

  35. Riteau N, Gasse P, Fauconnier L, Gombault A, Couegnat M, Fick L, Kanellopoulos J, Quesniaux VFJ, Marchand-Adam S, Crestani B, Ryffel B, Couillin I (2010) Extracellular ATP is a danger signal activating P2X7 receptor in lung inflammation and fibrosis. Am J Respir Crit Care Med 182(6):774–783

    Article  PubMed  CAS  Google Scholar 

  36. Harari S, Caminati A (2010) IPF: new insight on pathogenesis and treatment. Allergy 65:537–553

    Article  PubMed  CAS  Google Scholar 

  37. Fausther M, Pelletier J, Ribeiro CM, Sévigny J, Picher M (2010) Cystic fibrosis remodels the regulation of purinergic signaling by NTPDase1 (CD39) and NTPDase3. Am J Physiol 298:L804–L818

    CAS  Google Scholar 

  38. Picher M, Burch LH, Boucher RC (2004) Metabolism of P2 receptor agonists in human airways: implications for mucociliary clearance and cystic fibrosis. J Biol Chem 279:20234–20241

    Article  PubMed  CAS  Google Scholar 

  39. Picher M, Boucher RC (2000) Biochemical evidence for an ecto alkaline phosphodiesterase I in human airways. Am J Respir Cell Mol Biol 23:255–261

    PubMed  CAS  Google Scholar 

  40. Picher M, Boucher RC (2003) Human airway ecto-adenylate kinase. A mechanism to propagate ATP signaling on airway surfaces. J Biol Chem 278:11256–11264

    Article  PubMed  CAS  Google Scholar 

  41. Ribeiro CM, Paradiso AM, Schwab U, Perez-Vilar J, Jones L, O′Neal WK, Boucher RC (2005) Chronic airway infection/inflammation induces a Ca2+i-dependent hyperinflammatory response in human cystic fibrosis airway epithelia. J Biol Chem 280:17798–17806

    Article  PubMed  CAS  Google Scholar 

  42. Downey DG, Bell SC, Elborn JS (2009) Neutrophils in cystic fibrosis. Thorax 64:81–88

    Article  PubMed  CAS  Google Scholar 

  43. Corriden R, Chen Y, Inoue Y, Beldi G, Robson SC, Insel PA, Junger WG (2008) Ecto-nucleoside triphosphate diphosphohydrolase 1 (E-NTPDase1/CD39) regulates neutrophil chemotaxis by hydrolyzing released ATP to adenosine. J Biol Chem 283:28480–28486

    Article  PubMed  CAS  Google Scholar 

  44. Esther CR Jr, Alexis NE, Clas ML, Lazarowski ER, Donaldson SH, Pedrosa Ribeiro CM, Moore CG, Davis SD, Boucher RC (2008) Extracellular purines are biomarkers of neutrophilic airway inflammation. Eur Respir J 31:949–956

    Article  PubMed  CAS  Google Scholar 

  45. Resnick MB, Weller PF (1993) Mechanisms of eosinophil recruitment. Am J Respir Cell Mol Biol 8:349–355

    PubMed  CAS  Google Scholar 

  46. Bours MJL, Swennen ELR, Di Virgilio F, Cronstein BN, Dagnelie PC (2006) Adenosine 5′-triphosphate and adenosine as endogenous signaling molecules in immunity and inflammation. Pharmacol Ther 112:358–404

    Article  PubMed  CAS  Google Scholar 

  47. Ichinose M (2009) Differences of inflammatory mechanisms in asthma and COPD. Allergol Int 58:307–313

    Article  PubMed  CAS  Google Scholar 

  48. Zhou Y, Murthy JN, Zeng D, Belardinelli L, Blackburn MR (2010) Alterations in adenosine metabolism and signaling in patients with chronic obstructive pulmonary disease and idiopathic pulmonary fibrosis. PLoS ONE 5:e9224

    Article  PubMed  Google Scholar 

  49. Picher M, Alexis NE, Button B, Esther CR Jr, van Heusden C, Lazarowski ER, Boucher R (2006) Establishment of chronically-elevated adenosine and cytokine-adenosine amplification pathways on CF airway epithelia. Purinergic Signal 4:S111

    Google Scholar 

  50. Hirsh AJ, Stonebraker J, van Heusden CA, Lazarowski ER, Boucher RC, Picher M (2007) Adenosine deaminase 1 and concentrative nucleoside transporters 2 and 3 regulate adenosine on the apical surface of human airway epithelia: implications for inflammatory lung diseases. Biochemistry 46:10373–10383

    Article  PubMed  CAS  Google Scholar 

  51. Niedzwicki JG, Abernethy DR (1991) Structure-activity relationship of ligands of human plasma adenosine deaminase2. Biochem Pharmacol 41:1615–1624

    Article  PubMed  CAS  Google Scholar 

  52. Zavialov AV, Engstrom A (2005) Human ADA2 belongs to a new family of growth factors with adenosine deaminase activity. Biochem J 391:51–57

    Article  PubMed  CAS  Google Scholar 

  53. Thomé GR, Mazzanti CM, Ahmed M, Corrêa M, Spanevello RM, Maldonado PA, Luchese C, Cargnelutti D, Morsch VM, Duarte MM, Fiorenza AM, Nogueira CW, De Bona KS, Moretto MB, Da Luz SC, Mazzanti A, Schetinger M (2009) Activity of ectonucleotidases and adenosine deaminase in rats exposed to cigarette smoke. Inhal Toxicol 21:906–912

    Article  PubMed  Google Scholar 

  54. Kreda SM, Gynn MC, Fenstermacher DA, Boucher RC, Gabriel SE (2001) Expression and localization of epithelial aquaporins in the adult human lung. Am J Respir Cell Mol Biol 24:224–234

    PubMed  CAS  Google Scholar 

  55. Picher M, Burch LH, Hirsh AJ, Spychala J, Boucher RC (2003) Ecto 5′-nucleotidase and nonspecific alkaline phosphatase. Two AMP-hydrolyzing ectoenzymes with distinct roles in human airways. J Biol Chem 278:13468–13479

    Article  PubMed  CAS  Google Scholar 

  56. Nouwen EJ, Buyssens N, De Broe ME (1990) Heat-stable alkaline phosphatase as a marker for human and monkey type-I pneumocytes. Cell Tissue Res 260:321–335

    Article  PubMed  CAS  Google Scholar 

  57. Xie E, Yang ZQ, Li A (1996) Determination of placental alkaline phosphatase (PLAP) for detecting the damages of alveolar type I cells caused by smoke inhalation. Zhonghua Zheng Xing Shao Shang Wai Ke Za Zhi 12:427–430

    PubMed  CAS  Google Scholar 

  58. Nouwen EJ, Pollet DE, Eerdekens MW, Hendrix PG, Briers TW, De Broe ME (1986) Immunohistochemical localization of placental alkaline phosphatase, carcinoembryonic antigen, and cancer antigen 125 in normal and neoplastic human lung. Cancer Res 46:866–876

    PubMed  CAS  Google Scholar 

  59. DiAugustine RP (1974) Lung concentric laminar organelle. Hydrolase activity and compositional analysis. J Biol Chem 249:584–593

    PubMed  CAS  Google Scholar 

  60. Edelson JD, Shannon JM, Mason RJ (1988) Alkaline phosphatase: a marker of alveolar type II cell differentiation. Am Rev Respir Dis 138:1268–1275

    PubMed  CAS  Google Scholar 

  61. Kreda SM, Okada SF, van Heusden CA, O'Neal W, Gabriel S, Abdullah L, Davis CW, Boucher RC, Lazarowski ER (2007) Coordinated release of nucleotides and mucin from human airway epithelial Calu-3 cells. J Physiol 584:245–259

    Article  PubMed  CAS  Google Scholar 

  62. Kreda SM, Seminario-Vidal L, van Heusden CA, O'Neal W, Jones L, Boucher RC, Lazarowski ER (2010) Receptor-promoted exocytosis of airway epithelial mucin granules containing a spectrum of adenine nucleotides. J Physiol 588:2255–2267

    Article  PubMed  CAS  Google Scholar 

  63. Kishioka C, Okamoto K, Kim J, Rubin BK (2001) Regulation of secretion from mucous and serous cells in the excised ferret trachea. Respir Physiol 126:163–171

    Article  PubMed  CAS  Google Scholar 

  64. Di Virgilio F (2007) Purinergic signaling in the immune system. Purinergic Signal 3:1–3

    Article  PubMed  Google Scholar 

  65. Taylor AL, Schwiebert LM, Smith JJ, King C, Jones JR, Sorscher EJ, Schwiebert EM (1999) Epithelial P2X purinergic receptor channel expression and function. J Clin Invest 104:875–884

    Article  PubMed  CAS  Google Scholar 

  66. Davis CW, Lazarowski E (2008) Coupling of airway ciliary activity and mucin secretion to mechanical stresses by purinergic signaling. Respir Physiol Neurobiol 163:208–213

    Article  PubMed  CAS  Google Scholar 

  67. de Castro-Silva C, de Bruin VM, Cavalcante AG, Bittencourt LR, de Bruin PF (2009) Nocturnal hypoxia and sleep disturbances in cystic fibrosis. Pediatr Pulmonol 44:1143–1150

    Article  PubMed  Google Scholar 

  68. Van Linden A, Eltzschig HK (2007) Role of pulmonary adenosine during hypoxia: extracellular generation, signaling and metabolism by surface adenosine deaminase/CD26. Exp Opin Biol Ther 7:1437–1447

    Article  Google Scholar 

  69. Synnestvedt K, Furuta GT, Comerford KM, Louis N, Karhausen J, Eltzschig HK, Hansen KR, Thompson LF, Colgan SP (2002) Ecto-5'-nucleotidase (CD73) regulation by hypoxia-inducible factor-1 mediates permeability changes in intestinal epithelia. J Clin Invest 110:993–1002

    PubMed  CAS  Google Scholar 

  70. Haeberle HA, Dürrstein C, Rosenberger P, Hosakote YM, Kuhlicke J, Kempf VA, Garofalo RP, Eltzschig HK (2008) Oxygen-independent stabilization of hypoxia inducible factor (HIF)-1 during RSV infection. PLoS ONE 3:e3352

    Article  PubMed  Google Scholar 

  71. Kilani MM, Mohammed KA, Nasreen N, Tepper RS, Antony VB (2004) RSV causes HIF-1alpha stabilization via NO release in primary bronchial epithelial cells. Inflammation 28:245–251

    Article  PubMed  CAS  Google Scholar 

  72. Barnes PJ, Liew FY (1995) Nitric oxide and asthmatic inflammation. Immunol Today 16:128–130

    Article  PubMed  CAS  Google Scholar 

  73. Grasemann H, Ratjen F (1999) Cystic fibrosis lung disease: the role of nitric oxide. Ped Pulmonol 28:442–448

    Article  CAS  Google Scholar 

  74. Zheng S, Xu W, Bose S, Banerjee AK, Haque SJ, Erzurum SC (2004) Impaired nitric oxide synthase-2 signaling pathway in cystic fibrosis airway epithelium. Am J Physiol 287:L374–381

    CAS  Google Scholar 

  75. Eltzschig HK, Kohler D, Eckle T, Kong T, Robson SC, Colgan SP (2009) Central role of Sp1-regulated CD39 in hypoxia/ischemia protection. Blood 113:224–232

    Article  PubMed  CAS  Google Scholar 

  76. Cabrini G, Bezzerri V, Mancini I, Nicolis E, Dechecchi MC, Tamanini A, Lampronti I, Piccagli L, Bianchi N, Borgatti M, Gambari R (2010) Targeting transcription factor activity as a strategy to inhibit pro-inflammatory genes involved in cystic fibrosis: decoy oligonucleotides and low-molecular weight compounds. Curr Med Chem 17:4392–4404

    Article  PubMed  CAS  Google Scholar 

  77. Prabhakar NR, Kumar GK, Nanduri J (2009) Intermittent hypoxia-mediated plasticity of acute O2 sensing requires altered red-ox regulation by HIF-1 and HIF-2. Ann NY Acad Sci 1177:162–168

    Article  PubMed  CAS  Google Scholar 

  78. Rottner M, Freyssinet JM, Martinez MC (2009) Mechanisms of the noxious inflammatory cycle in cystic fibrosis. Respir Res 10:1–11

    Article  Google Scholar 

  79. Sen CK (2009) Wound healing essentials: let there be oxygen. Wound Repair Regen 17:1–18

    Article  PubMed  Google Scholar 

  80. Lee YC, Lee KS, Park SJ, Park HS, Lim JS, Park K-H, Im M-J, Choi I-W, Lee H-K, Kim U-H (2004) Blockade of airway hyperresponsiveness and inflammation in a murine model of asthma by a prodrug of cysteine, L-2-oxothiazolidine-4-carboxylic acid. FASEB J 18:1917–1919

    Article  PubMed  CAS  Google Scholar 

  81. van Son WJ, Wit F, van Balen OL, Tegzess AM, Ploeg RJ, Bakker WW (1997) Decreased expression of glomerular ecto-ATPase in kidney grafts with delayed graft function. Transplant Proc 29:352–354

    Article  PubMed  Google Scholar 

  82. Roush W (1995) New ways to avoid organ rejection buoy hopes. Science 270:234–235

    Article  PubMed  CAS  Google Scholar 

  83. Mui KW, van Son WJ, Tiebosch ATMG, van Goor H, Bakker WW (2003) Clinical relevance of immunohistochemical staining for ecto-AMPase and ecto-ATPase in chronic allograft nephropathy (CAN). Nephrol Dial Transplant 18:158–163

    Article  PubMed  CAS  Google Scholar 

  84. Poelstra K, Hardonk MJ, Koudstaal J, Bakker WW (1990) Intraglomerular platelet aggregation and experimental glomerulonephritis. Kidney Int 37:1500–1508

    Article  PubMed  CAS  Google Scholar 

  85. Robson SC, Kaczmarek E, Siegel JB, Candinas D, Koziak K, Millan M, Hancock WW, Bach FH (1997) Loss of ATP diphosphohydrolase activity with endothelial cell activation. J Exp Med 185:153–164

    Article  PubMed  CAS  Google Scholar 

  86. Park HS, Kim SR, Lee YC (2009) Impact of oxidative stress on lung diseases. Respirology 14:27–38

    Article  PubMed  Google Scholar 

  87. Reutershan J, Vollmer I, Stark S, Wagner R, Ngamsri K-C, Eltzschig HK (2009) Adenosine and inflammation: CD39 and CD73 are critical mediators in LPS-induced PMN trafficking into the lungs. FASEB J 23:473–482

    Article  PubMed  CAS  Google Scholar 

  88. Sakai S, Mantani N, Kogure T, Ochiai H, Shimada Y, Terasawa K (2002) Gene expression of cell surface antigens in the early phase of murine influenza pneumonia determined by a cDNA expression array technique. Mediators Inflamm 11:359–361

    Article  PubMed  CAS  Google Scholar 

  89. Makam M, Diaz D, Laval J, Gernez Y, Conrad CK, Dunn CE, Davies ZA, Moss RB, Herzenberg LA, Herzenberg LA, Tirouvanziam R (2009) Activation of critical, host-induced, metabolic and stress pathways marks neutrophil entry into cystic fibrosis lungs. Proc Natl Acad Sci 106:5779–2783

    Article  PubMed  CAS  Google Scholar 

  90. Wiendl HS, Schneider C, Ogilvie A (1998) Nucleotide metabolizing ectoenzymes are upregulated in A431 cells periodically treated with cytostatic ATP leading to partial resistance without preventing apoptosis. Biochim Biophys Acta 1404:282–298

    Article  PubMed  CAS  Google Scholar 

  91. Narravula S, Lennon PF, Mueller BU, Colgan SP (2000) Regulation of endothelial CD73 by adenosine: paracrine pathway for enhanced endothelial barrier function. J Immunol 165:5262–5268

    PubMed  CAS  Google Scholar 

  92. Hansen KR, Resta R, Webb CF, Thompson LF (1995) Isolation and characterization of the promoter of the human 5′-nucleotidase (CD73)-encoding gene. Gene 167:307–312

    Article  PubMed  CAS  Google Scholar 

  93. Liao H, Hyman MC, Baek AE, Fukase K, Pinsky DJ (2010) cAMP/CREB-mediated transcriptional regulation of ectonucleoside triphosphate diphosphohydrolase 1 (CD39) expression. J Biol Chem 285:14791–14805

    Article  PubMed  CAS  Google Scholar 

  94. Sanada S, Kitakaze M (2004) Ischemic preconditioning: emerging evidence, controversy, and translational trials. Int J Cardiol 97:263–276

    Article  PubMed  Google Scholar 

  95. Zhang QY, Han JY, Zhang H, Tan J (2010) Role of PKC in regulation of CD73 by lysophosphatidylcholine in human endothelial cells. Zhongguo Ying Yong Sheng Li Xue Za Zhi 26:102–104

    PubMed  Google Scholar 

  96. Siegfried G, Vrtovsnik F, Prie D, Amiel C, Friedlander G (1995) Parathyroid hormone stimulates ecto-5'-nucleotidase activity in renal epithelial cells: role of protein kinase-C. Endocrinology 136:1267–1275

    Article  PubMed  CAS  Google Scholar 

  97. Solan JL, Deftos LJ, Coding JW, Terkeltaub RA (1996) Expression of the nucleoside triphosphate pyrophosphohydrolase PC-1 is induced by basic fibroblast growth factor (bFGF) and modulated by activation of the protein kinase A and C pathways in osteoblast-like osteosarcoma cells. J Bone Miner Res 11:183–192

    Article  PubMed  CAS  Google Scholar 

  98. Miyamoto K, Horita T, Waki Y, Suzuki R, Yamamoto S, Moritani S (1997) Dual regulation of alkaline phosphatase activity by calcitonin in porcine kidney cells. Biol Pharm Bull 20:1300–1302

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Charles R. Esther Jr. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Esther, C.R., Alexis, N.E., Picher, M. (2011). Regulation of Airway Nucleotides in Chronic Lung Diseases. In: Picher, M., Boucher, R. (eds) Purinergic Regulation of Respiratory Diseases. Subcellular Biochemistry, vol 55. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-1217-1_4

Download citation

Publish with us

Policies and ethics