Skip to main content

Taste and Olfactory Stimuli and Behavior in Fishes

  • Chapter
The Senses of Fish

Abstract

When searching for food different fish species use the same sensory mechanisms differentially. At one extreme there are omnivorous fishes such as catfish and carp that, in addition to vision, use the taste system to excite and release reflex responses and the olfactory system to excite and discriminate chemical stimuli. On the other extreme are predatory fishes that detect prey visually and, if not conditioned differentially at fry and fingerling stages, do not use chemosensory information for food finding at all. Depending on the mechanisms that they use to detect and collect food, the fishes that have been studied to date occupy the following ecological niches. (1) Bullhead catfish (Ameiurus melas) type omnivorous niche: bullhead catfishes use chemical and tactile senses to release appetitive and consummatory phases of feeding behavior. They also detect prey by the passive electric sense. (2) Channel catfish (tctalurus punctatus) type omnivorous niche: channel catfish use vision for prédation and, in addition, chemical and tactile senses. (3) Carp (Cyprinus carpio) and goldfish (Carrasius auratus) type omnivorous niche: carp use visual and chemical senses for food collection, they have taste-controlled reflex snapping/biting mechanisms and, in addition, they use oral food sorting to separate edible from inedible objects. (4) Rainbow trout (Oncorhyncus mykiss) type visual hunters niche: farmraised rainbow trout use vision and/or olfaction to get excited and search for food. (5) Exclusively visual hunters niche: in nature, European hue hen (Hucho hucho) and walleye (Stizostedion vitreum) consume exclusively living prey such as fish and crustaceans that they locate by vision.

Physiologically functional olfactory (Cooper and Hasler, 1976; Shoji et al., 1994) and taste organs (Marui et al., 1983) do not necessarily indicate that a predatory fish uses either olfaction or taste to find food. In nature, visual hunters such as huchen and walleye do not get excited by taste and olfactory stimuli, they neither bite/snap after taste stimulation nor do they use olfaction to discriminate chemical stimuli. In most predatory fishes the taste system is used solely during oral food evaluation. At fry and early fingerling stages, huchen and walleye can learn to eat non-living foods such as minced liver and industrial starter feed. Juvenile walleye were conditioned in a first step to eat non-living food, to respond to olfactory stimuli in a second step and, in a third step, to discriminate amino acids. Thus, early learning influences the functional expression of the nerve networks that enable the use of olfactory information in the control of feeding in predatory fish.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Barahone-Fernandez H.M. and Metailler R. (1977) Experiences de conditionement d’alevins de bar (Pisces, Dicentrarchus labrax) a differents alimets composes. Aquaculture 10(2): 53–63.

    Article  Google Scholar 

  • Caprio J. (1978) Olfaction and taste in the channel catfish: an electrophysiological study of the responses to amino acids and derivatives. J. Comp. Physiol. A 123: 357–371.

    Article  Google Scholar 

  • Caprio J., Byrd R. P. Jr. (1984) Electrophysiological evidence for acidic, basic, and neutral amino acid olfactory receptor sites in the catfish. J. Gen. Physiol. 84: 403–422.

    Article  PubMed  CAS  Google Scholar 

  • Cooper J. C., Hasler A.D. (1976) Electrophysiological studies of morpholine-imprinted coho salmon Onchorhynchus kisutch and rainbow trout Salmo gairdneri. J. Fish. Res. Bd. Can. 33: 688–694.

    Article  Google Scholar 

  • Doty R. W., Bosma J. F. (1956) An electromyographic analysis of reflex deglutition. J. Neurophysiol. 19: 44–60.

    PubMed  CAS  Google Scholar 

  • Fergusson J.C. (1980) Fluxes of dissolved amino acids between sea water and Echinaster. Comp. Biochem. Physiol. 65 A: 291–295.

    Article  Google Scholar 

  • Finger T.E. (1988) Sensorimotor mapping and oropharyngeal reflexes in goldfish, Carassius auratus. Brain Behav. Evol. 31: 17–24.

    Article  PubMed  CAS  Google Scholar 

  • Finger T.E. (1987) Gustatory nuclei and pathways in the central nervous system. In: Finger T. E., Silver W. L. (Eds.), Neurobiology of Taste & Smell. John Wiley & Sons, New York. pp. 331–353.

    Google Scholar 

  • Finger T.E. (1976) Gustatory pathways in the bullhead catfish. I. Connections of the anterior ganglion. J. Comp. Neurol. 165: 513–526.

    Article  PubMed  CAS  Google Scholar 

  • Finger T.E. (1978) Gustatory pathways in the bullhead catfish. II. Facial lobe connections. J.Comp. Neurol. 180: 691–706.

    Article  PubMed  CAS  Google Scholar 

  • Finger T.E., Kanwal, J.S. (1992) Ascending general visceral pathways within the brainstems of two teleost fishes: Ictalurus punctatus and Carassius auratus. J. Comp. Neurol. 320: 509–520.

    Article  PubMed  CAS  Google Scholar 

  • Finger T.E., Dunwiddie T.V. (1992) Evoked responses from an in vitro slice preparation of a primary gustatory nucleus: The vagal lobe of goldfish. Brain Res. 580: 27–34.

    Article  PubMed  CAS  Google Scholar 

  • Fraenkel G.S., Gunn D.L. (1940) The Orientation of Animals, Claredon Press, Oxford.

    Google Scholar 

  • Jones K.A. (1989) The palatability of amino acids and related compounds to rainbow trout, Salmo gairdneri, Richardson. J. Fish Biol. 34: 149–160.

    Article  CAS  Google Scholar 

  • Goehler L.E., Finger, T.E. (1992) Functional organization of vagal reflex systems in the brain stem of the goldfish, Carassius auratus. J. Comp. Neurol. 319: 463–478.

    Article  PubMed  CAS  Google Scholar 

  • Holland K.N., Teeter J.H. (1981) Behavioral and cardiac reflex assays of the chemosensory acuity of channel catfish to amino acids. Physiol. Behav. 27: 699–707.

    Article  PubMed  CAS  Google Scholar 

  • Hoyk Z., Lago-Schaaf T., Zippel H.P, Fuzesi G., Halasz N. (1993) Fast regeneration of the olfactory nerve in goldfish: Fine structure and behavior. J. Hirnforsch. 34(4): 461–465.

    PubMed  CAS  Google Scholar 

  • Kalinoski D.L., Bryant B.P, Shaulsky G., Brand J.G., Harpaz S. (1989) Specific L-arginine taste receptor sites in the catfish, Ictalurus punctatus: biochemical and neurophysiological characterization. Brain Res. 488: 163–173.

    Article  PubMed  CAS  Google Scholar 

  • Kanwal J.S., Finger T.E. (1991) Central representation and projections of gustatory systems, in: Hara, T.J. (Ed.) Fish Chemoreception (Fish and Fisheries Series 6), Anonymous London, Glasgow, New York, Tokyo, Melbourne, Madras: pp. 79–102.

    Google Scholar 

  • Lamb C.F, Finger TE. (1995) Gustatory control of feeding behavior in goldfish. Physiol. Behav. 57: 483–488.

    Article  PubMed  CAS  Google Scholar 

  • Lewis W.M., Heidinger R.C. (1981) Tank culture of stripped bass. Illinois stripped bass project F-26-R.

    Google Scholar 

  • Marui T., Caprio J. (1992) Teleost gustation. In: Hara T.J. (Ed.), Fish Chemoreception. Chapman&Hall, London, Glasgow, New York, Tokyo, Melbourne, Madras, pp. 171–192.

    Chapter  Google Scholar 

  • Marui T., Evans R.E., Zielinski B.S., Hara T.J. (1983) Gustatory responses of the rainbow trout (Salmo gairdneri) palate to amino acids and derivatives. J. Comp. Physiol. A 153: 423–433.

    Article  Google Scholar 

  • Meyer-Rochow V.B. (1981) Fish tongues — surface fine structures and ecological consideration. Zool. J. of the Linnean Society 71: 413–426.

    Article  Google Scholar 

  • Moore P., Atema J. A. (1988) Model of a Temporal Filter in Chemoreception to Extract Directional Information from a Turbulent Odor Plume. Biol. Bull. 174: 355–363.

    Article  Google Scholar 

  • Moore P.A., Gerhardt G.A., Atema J. (1989) High resolution spatio-temporal analysis of aquatic chemical signals using microelectrochemical electrodes. Chem. Senses 14: 829–840.

    Article  CAS  Google Scholar 

  • Peters R.C, van Wijland E. (1974) Electro-orientation in the passive electric catfish Ictalurus nebulosus LeS. J. Comp. Physiol. 92: 273–280.

    Article  Google Scholar 

  • Rekowski C. von, Zippel. H.P. (1993) In goldfish the qualitative discriminative ability for odors rapidly returns after bilateral nerve axotomy and lateral olfactory tract transection. Brain Res. 618: 338–340.

    Article  Google Scholar 

  • Sibbing F.A. (1982) Pharyngeal mastication and food transport in the carp (Cyprinus carpio L.): a cinematographic and electromyographic study. J. Morph. 172: 223–258.

    Article  Google Scholar 

  • Sibbing F.A. (1991) Food capture and oral processing. In: Winfield I. J., Nelson J. S. (Eds.), Cyprinid fishes: Systematics, Biology and Exploitation. Chapman&Hall, London, pp. 377–412.

    Chapter  Google Scholar 

  • Sibbing F.A., Osse J.W.M., Terlouw A. (1986) Food handling in the carp (pyprinus carpio): its movement patterns, mechanisms and limitations. J. ZooL (Lond.) 210(A): 161–203.

    Google Scholar 

  • Sibbing F.A., Uribe R. (1985) Regional specializations in the oropharyngeal wall and food processing in the carp (Cyprinus carpio, L). Neth. J. Zool. 35: 377–422.

    Article  Google Scholar 

  • Shoji T., Fujita K., Ban M., Hiroi O., Ueda H., Kurihara K. (1994) Olfactory responses of chum salmon to amino acids are independent of large differences in salt concentrations between fresh and sea water. Chem. Senses 19: 609–615.

    Article  PubMed  CAS  Google Scholar 

  • Stenovec M., Valentinčič T. (2001) Catfish possessing a small portion of regenerated olfactory organ can discriminate amino acids. AChemS Abstract book.

    Google Scholar 

  • Valentinčič T., Caprio J. (1994) Chemical and visual control of feeding and escape behaviors in the channel catfish Ictalurus punctatus. Physiol. Behav. 55(5): 845–855.

    Article  PubMed  Google Scholar 

  • Valentinčič T., Caprio J. (1997) Visual and chemical release of feeding behavior in adult rainbow trout. Chem. Senses 22(4): 375–382.

    Article  PubMed  Google Scholar 

  • Valentinčič T., Caprio J. (1994) Consummatory feeding behavior in intact and anosmic channel catfish Ictalurus punctatus to amino acids. Physiol. Behav. 55(5): 857–863.

    Article  PubMed  Google Scholar 

  • Valentinčič T., Lamb C. F., Caprio J. (1999) Expression of a reflex snapping/biting response to amino acids prior to the first exogenous feeding in salmonid alevins. Physiol. Behav. 67(4): 567–572.

    Article  PubMed  Google Scholar 

  • Valentinčič T., Wegert S., Caprio J. (1994) Learned olfactory discrimination versus innate taste responses to amino acids in channel catfish, Ictalurus punctatus. Physiol. Behav. 55(5): 865–873.

    Article  PubMed  Google Scholar 

  • Valentinčič T., Metelko J., Ota D., Pirc V., Blejec A. (2000) Olfactory discrimination of amino acids in brown bullhead catfish. Chemical senses 25: 21–29.

    Article  PubMed  Google Scholar 

  • Valentinčič T., Kralj J., Stenovec M., Koce A., Caprio J. (2000) The behavioral detection of binary mixtures of amino acids and their individual components by catfish. J. Exp. Biol. 203: 3307–3317.

    PubMed  Google Scholar 

  • Zippel H.P, Voigt R., Knaust M., Luan Y. (1993) Spontaneous behavior, training and discrimination training in goldfish using chemosensory stimuli. J. Comp. Physiol. 172: 81–90.

    Article  Google Scholar 

  • Zippel H.P, Largo-Schaaf T., Caprio J. (1993) Ciliated olfactory receptor neurons in goldfish (Carassius auratus) partially survive axotomy, rapidly regenerate and respond to amino acids. J. Comp. Physiol. A 173: 537–547.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Valentinčič, T. (2004). Taste and Olfactory Stimuli and Behavior in Fishes. In: von der Emde, G., Mogdans, J., Kapoor, B.G. (eds) The Senses of Fish. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-1060-3_4

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-1060-3_4

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-3779-2

  • Online ISBN: 978-94-007-1060-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics