Skip to main content

The Photosynthetic Apparatus of Chlorophyll b- and d-Containing Oxyphotobacteria

  • Chapter
Photosynthesis in Algae

Part of the book series: Advances in Photosynthesis and Respiration ((AIPH,volume 14))

Summary

Although the vast majority of oxyphotobacteria harvest light with complex supramolecular structures, the phycobilisomes, three atypical prokaryotic genera share the property of using a mere intrinsic chlorophyll (Chl) a/b-protein complex: Prochloron, Prochlorothrix and Prochlorococcus. Some strains of the latter genus do contain some phycoerythrin, but at too low concentration for having a significant role in light harvesting. In the context of the endosymbiotic theory of the origin of chloroplasts, it was proposed that these three prokaryotic genera might belong to a separate clade among Cyanobacteria, the ‘prochlorophytes’, which would have had a recent common ancestor with green algae and higher plants. Phylogenetic analyses using diverse genes however strongly suggest that these genera are polyphyletic within the cyanobacterial radiation and on a different branch than the one bearing green plastids. With this idea in mind, it was interesting to re-examine to what extent the photosynthetic apparatus of these Chl b-containing oxyphotobacteria are truly similar to one another and whether they share some relationships with those of green plastids. This chapter shows that the main trait linking these prokaryotes is the similar nature of their antenna proteins, called Pcbs for ‘prochlorophy te chlorophyll b-binding’ proteins. These are different from the light-harvesting complex (Lhc) proteins found in eukaryotes, but closely resemble iron-stress induced (IsiA) proteins, used for light-harvesting by Photosystem I in some cyanobacteria when iron-starved. More than the mere occurrence of Chl b, this similar antenna system likely conditions most of the other apparent similarities between these three atypical organisms, including those at the ultrastructural level. Besides reviewing the recent literature about these ‘green oxyphotobacteria,’ we discuss a newcomer among atypical oxygenic prokaryotes, Acaryochloris marina, which contains Chl d as the main light-harvesting pigment and a Pcb-like antenna system. The insights that the study of these prokaryotes have brought into the more general fields of algal photosynthesis and evolution are underlined.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Akiyama M, Miyashita H, Kise H, Watanabe T, Miyadri S and Kobayashi M (2002) Detection of chlorophyll d’ and pheophytin a in a chlorophyll d-dominating oxygenic photosynthetic prokaryote Acaryochloris marina. Anal Sci 17: 205–208

    Google Scholar 

  • Alberte RS (1989) Physiological and cellular features of Prochloron. In: Lewin R and Cheng L (eds) Prochloron, a Microbial Enigma, pp 31-52. Chapman and Hall, New York

    Google Scholar 

  • Alberte RS, Cheng L and Lewin RA (1986) Photosynthetic characteristics of Prochloron sp.—ascidian symbioses. Mar Biol 90: 575–587

    CAS  Google Scholar 

  • Allen JF (1992) Protein phosphorylation in regulation of photosynthesis. Biochim Biophys Acta 1098: 275–335

    PubMed  CAS  Google Scholar 

  • Arudchandran A and Bullerjahn GS (1996) Expression of the petE gene encoding plastocyanin in the photosynthetic prokaryote, Prochlorothrix hollandica. Biochem Biophys Res Commun 226: 626–630

    PubMed  CAS  Google Scholar 

  • Arudchandran A, Seeburg D, Burkhart W and Bullerjahn GS (1994) Nucleotide sequence of the petE gene encoding plastocyanin from the photosynthetic prokaryote, Prochlorothrix hollandica. Biochim Biophys Acta 1188: 447–449

    PubMed  Google Scholar 

  • Babu CR, Arudchandran A, Hille R, Gross EL and Bullerjahn GS (1997) Reconstitution and characterization of a divergent plastocyanin from the photosynthetic prokaryote, Prochlorothrix hollandica, expressed in Escherichia coli. Biochem Biophys Res Commun 235: 631–635

    PubMed  CAS  Google Scholar 

  • Babu CR, Volkman BF and Bullerjahn GS (1999) NMR solution structure of plastocyanin from the photosynthetic prokaryote, Prochlorothrix hollandica. Biochemistry 38: 4988–4995

    PubMed  CAS  Google Scholar 

  • Barclay WR, Kennish JM, Goodrich VM and Fall R (1987) High levels of phenolic compounds in Prochloron species. Phytochem 26: 739–743

    CAS  Google Scholar 

  • Bazzaz MB (1981) New chlorophyll chromophores isolated from a chlorophyll-deficient mutant of maize. Photobiochem Photobiophys 2: 199–207

    CAS  Google Scholar 

  • Bazzaz MB and Brereton RG (1982) 4-vinyl-4-desetyl chlorophyll a: A new naturally occurring chlorophyll. FEBS Lett 138: 104–108

    CAS  Google Scholar 

  • Bhaya D, DuFresne A, Vaulot D and Grossman A (2002) Analysis of the hli gene family in marine and freshwater cyanobacteris. FEMS Microbiol Lett 215: 209–219

    PubMed  CAS  Google Scholar 

  • Bibby TS, Nield J and Barber J (2001a) A Photosystem II-like protein, induced under iron-stress, forms an antenna ring around the Photosystem I trimer in cyanobacteria. Nature: 412: 743–745

    PubMed  CAS  Google Scholar 

  • Bibby TS, Nield J, Partensky F and Barber J (2001b) Antenna ring around Photosystem I. Nature 413: 590

    Google Scholar 

  • Boekema ES, Hifney A, Yakushevska AE, Piotrowski M, Keegstra W, Berry S, Michel KP, Pistorius EK and Kruip J (2001) A giant chlorophyll-protein complex induced by iron deficiency in cyanobacteria. Nature 413: 745–748

    Google Scholar 

  • Bryant DA (ed) (1994) The Molecular Biology of Cyanobacteria. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Bullerjahn GS and Post AF (1993) The prochlorophytes: Are they more than just chlorophyll a/b-containing cyanobacteria? CRC Crit Rev Microbiol 19: 43–59

    Google Scholar 

  • Bullerjahn GS, Matthijs HC, Mur LR and Sherman LA (1987) Chlorophyll-protein composition of the thylakoid membrane from Prochlorothrix hollandica, a prokaryote containing chlorophyll b. Eur J Biochem 168: 295–300

    PubMed  CAS  Google Scholar 

  • Bullerjahn GS, Jensen TC, Sherman DM and Sherman LA (1990) Immunological characterization of the Prochlorothrix hollandica and Prochloron sp. chlorophyll a/b antenna proteins. FEMS Microbiol Lett 67: 99–106

    CAS  Google Scholar 

  • Burger-Wiersma T and Matthijs HCP (1990) The Biology of the Prochlorales. In: Codd GA, Dijkhuizen L and Tabita FR (eds) Advances in Autotrophic Microbiology and One-Carbon Metabolism, Vol 1, pp 1-24. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Burger-Wiersma T and Post AF (1989) Functional analysis of the photosynthetic apparatus of Prochlorothrix hollandica (Prochlorales), a chlorophyll b containing procaryote. Plant Physiol 91: 770–774

    PubMed  CAS  Google Scholar 

  • Burger-Wiersma T, Veenhuis M, Korthals HJ, van de Wiel CCM and Mur LR (1986) A new prokaryote containing chlorophylls a and b. Nature 320: 262–264

    CAS  Google Scholar 

  • Burger-Wiersma T, Stal LJ and Mur LR (1989) Prochlorothrix hollandica gen. nov., sp. nov., a filamentous oxygenic photoautotrophic prokaryote containing chlorophylls a and b: Assignment to Prochlorotrichaceae fam. nov. and Order Prochlorales Florenzano, Balloni and Materassi 1986, with emendation of the ordinal description. Int J Syst Bacteriol 39: 250–257

    Google Scholar 

  • Burnap RL, Troyan T and Sherman LA (1993) The highly abundant chlorophyll-protein complex of iron-deficient Synechococcus sp. PCC7942 (CP43) is encoded by the isiA gene. Plant Physiol 103: 893–902

    PubMed  CAS  Google Scholar 

  • Castenholz RW (2001) Phylum BX. Cyanobacteria. Oxygenic photosynthetic bacteria. In: Boone DR and Castenholz RW (eds) Bergey’s Manual of Systematic Bacteriology, 2nd Ed, Vol 1, pp 473-599. Springer-Verlag, New York

    Google Scholar 

  • Chen M, Quinnell R and Larkum AW (2002) The major lightharvesting protein of Acaryochloris marina. FEBS Lett 514: 142–152

    Google Scholar 

  • Chisholm SW, Olson RJ, Zettler ER, Waterbury J, Goericke R and Welschmeyer N (1988) A novel free-living prochlorophyte occurs at high cell concentrations in the oceanic euphotic zone. Nature 334: 340–343

    Google Scholar 

  • Chisholm SW, Frankel SL, Goericke R, Olson RJ, Palenik B, Waterbury JB, West-Johnsrud L and Zettler ER (1992) Prochlorococcus marinus nov. gen. nov. sp.: An oxyphototrophic marine prokaryote containing divinyl chlorophyll a and b. Arch Microbiol 157: 297–300

    CAS  Google Scholar 

  • Chitnis PR (1996) Update on photosynthetic electron transport. Photosystem I. Plant Physiol 111: 661–669

    PubMed  CAS  Google Scholar 

  • Chitnis PR, Xu Q, Chitnis VP and Nechushtai R (1995) function and organization of Photosystem I polypeptides. Photosynth Res 44: 23–40

    CAS  Google Scholar 

  • Christen G, Stevens G, Lukins PB, Renger G, Larkum AW (1999) Isolation and characterisation of oxygen evolving thylakoids from the marine prokaryote Prochloron didemni. FEBS Lett 449: 264–268

    PubMed  CAS  Google Scholar 

  • Clarke AK, Hurry VM, Gustafsson P and Öquist G (1993) Two functionally distinct forms of the Photosystem II reaction center D1 protein in the cyanobacterium Synechococcus sp. PCC7942. Proc Natl Acad Sci USA 90: 11985–11989

    PubMed  CAS  Google Scholar 

  • Colon-Lopez MS and Sherman LA (1998) Transcriptional and translational regulation of Photosystem I and II genes in lightdark-and continuous-light-grown cultures of the unicellular cyanobacterium Cyanothece sp. strain ATCC 51142. J Bact 180: 519–526

    PubMed  CAS  Google Scholar 

  • Cox G (1986) Comparison of Prochloron from different hosts. I Structural and ultrastructural characteristics. New Phytol 88: 427–438

    Google Scholar 

  • Delwiche CF and Palmer JD (1996) Rampant horizontal transfer and duplication of Rubisco genes in eubacteria and plastids. Mol Biol Evol 13: 873–882

    PubMed  CAS  Google Scholar 

  • Douglas S (1998) Plastid evolution: Origins, diversity, trends. Curr Op Gen Dev 8: 655–661

    CAS  Google Scholar 

  • Durnford DG, Deane JA, Tan S, McFadden GI, Gantt E and Green BR (1999) A phylogenetic assessment of the eukaryotic light-harvesting antenna proteins, with implications forplastids evolution. J Mol Evol 48: 59–68

    PubMed  CAS  Google Scholar 

  • Engle JM, Burkhart W, Sherman DM and Bullerjahn GS (1991) Purification and characterization of a surface-associated carotenoid-binding complex from the photosynthetic prokaryote, Prochlorothrix hollandica. Arch Microbiol 155: 453–458

    CAS  Google Scholar 

  • Ferris MJ and Palenik B (1998) Niche adaptation in ocean cyanobacteria. Nature 396: 226–228

    CAS  Google Scholar 

  • Flieger K, Oelmüller R and Herrmann RG (1993) Isolation and characterization of cDNA clones encoding a 18.8 kDa polypeptide, the product of the gene psaL, associated with Photosystem I reaction center from spinach. Plant Mol Biol 22: 703–709

    PubMed  CAS  Google Scholar 

  • Florenzano G, Balloni W and Materassi R (1986) Nomenclature of Prochloron didemni (Lewin 1977) sp. nov., nom. rev., Prochloron (Lewin 1976) gen. nov., nom. rev., Prochloraceae fam. nov., Prochlorales ord. nov., nom. rev. in the class Photobacteria Gibbons and Murray 1978. Int J Syst Bacteriol 36: 351–353

    Google Scholar 

  • Foss P, Lewin RA and Liaaen-Jensen S (1987) The carotenoids of Prochloron sp. (Prochlorophyta). Phycologia 26: 142–144

    CAS  Google Scholar 

  • Fredrick JF (1980) The alpha-1,4-glucans of Prochloron, a prokaryotic green marine alga. Phytochem 19: 2611–2613

    CAS  Google Scholar 

  • Fujita Y, Murakami A and Aizawa K (1994) Short-term adaptation of the photosynthetic apparatus: Homeostatic properties of thylakoids. In: Bryant DA (ed) The Molecular Biology of Cyanobacteria, pp 677-692. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Garcia-Fernandez JM, Hess WR, Houmard J and Partensky F (1998) Expression of the psbA gene in the marine oxyphotobacteria Prochlorococcus spp. Arch Biochem Biophys 359: 17–23

    PubMed  CAS  Google Scholar 

  • Garczarek L (2000) Caractérisation biochimique et génétique des complexes pigment-protéines chez le procaryote marin Prochlorococcus: origine évolutive et rôle dans l’adaptation de l’appareil photosynthétique aux conditions lumineuses. Thøse de Doctorat. Institut National Paris-Grignon, Paris

    Google Scholar 

  • Garczarek L, van der Staay GWM, Thomas JC and Partensky F (1998) Isolation and characterization of Photosystem I from two strains of the marine oxychlorobacterium Prochlorococcus. Photosynth Res 56: 131–141

    CAS  Google Scholar 

  • Garczarek L, Hess WR, Holtzendorff J, van der Staay GWM and Partensky F (2000) Multiplication of antenna genes as a major adaptation to low light in a marine prokaryote. Proc Natl Acad Sci USA 97: 4098–4101

    PubMed  CAS  Google Scholar 

  • Garczarek L, Partensky F, Irlbacher H, Holtzendorff J, Babin M, Mary I, Thomas JC and Hess WR (2001a) Differential expression of antenna and core genes in Prochlorococcus PCC9511 (Oxyphotobacteria) grown under light-dark cycles. Environ Microbiol 3: 168–175

    PubMed  CAS  Google Scholar 

  • Garczarek L, van der Staay GWM, Hess WR, Legall F and Partensky F (2001 b) Expression and phylogeny of the multiple antenna genes of the low-light adapted strain Prochlorococcus SSI20 (Oxyphotobacteria). Plant Mol Biol 46: 683–693

    PubMed  CAS  Google Scholar 

  • Geiss U, Vinnemeier J, Schoor A and Hagemann M (2001) The iron-regulated isiA gene of Fischerella muscicola strain PCC 73103 is linked to a likewise regulated gene encoding a Pcblike chlorophyll-binding protein. FEMS Microbiol Lett 197: 123–129

    PubMed  CAS  Google Scholar 

  • Giddings TH, Withers NW and Staehelin LA (1980) Supramolecular structure of stacked and unstacked regions of the photosynthetic membranes of Prochloron sp., a prokaryote. Proc Natl Acad Sci USA 77: 352–356

    PubMed  CAS  Google Scholar 

  • Goericke R and Repeta DJ (1992) The pigments of Prochlorococcus marinus: The presence of divinyl chlorophyll a and b in a marine prochlorophyte. Limnol Oceanogr 37: 425–433

    CAS  Google Scholar 

  • Goericke R and Repeta DJ (1993) Chlorophylls a and b and divinyl chlorophylls a and b in the open subtropical North Atlantic Ocean. Mar Ecol Prog Ser 101: 307–313

    CAS  Google Scholar 

  • Goericke R, Olson RJ and Shalapyonok A (2000) A novel niche for Prochlorococcus sp in low-light suboxic environments in the Arabian Sea and the Eastern Tropical North Pacific. Deep Sea Res Pt I Oceanog Res 47: 1183–1205

    Google Scholar 

  • Golbeck JH (1994) Photosystem I in cyanobacteria. In: Bryant DA (ed) The Molecular Biology of Cyanobacteria, pp 319-360. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Golden SS, Brusslan J and Haselkorn R (1986) Expression of a family of psbA genes encoding a Photosystem II polypcptide in the cyanobacterium Anacystis nidulans R2. EMBO J 5: 2789–2798

    PubMed  CAS  Google Scholar 

  • Golecki JR (1989) Ultrastructural studies on the membrane systems and cell inclusions of the filamentous prochlorophyte Prochlorothrix hollandica. Arch Microbiol 152: 77–82

    Google Scholar 

  • Goodwin TW and Britton G (1988) Distribution and analysis of carotenoids. In: Goodwin TW (ed) Plant pigment, pp 61-132. Academic Press, New York

    Google Scholar 

  • Green BR (1988) The chlorophyll-protein complexes of higher plant photosynthetic membranes, or just what green band is that? Photosynth Res 15: 3–32

    Google Scholar 

  • Green BR and Durnford DG (1996) The chlorophyll-carotenoid proteins of oxygenic photosynthesis. Ann Rev Plant Physiol Plant Mol Biol 47: 685–714

    CAS  Google Scholar 

  • Green BR and Pichersky E (1994) Hypothesis for the evolution of three-helix Chl a/b and Chl a/c light-harvesting antenna proteins from two-helix and four-helix ancestors. Photosynth Res 39: 149–162

    CAS  Google Scholar 

  • Greer KL and Golden SS (1991) Nucleotide sequence of psbB from Prochlorothrix hollandica. PlantMol Biol 17: 915–917

    CAS  Google Scholar 

  • Greer KL and Golden SS (1992) Conserved relationship between psbH and petBD genes: Presence of a shared upstream element in Prochlorothrix hollandica. Plant Mol Biol 19: 355–365

    PubMed  CAS  Google Scholar 

  • Grossman AR, Bhaya D, Apt KE and Kehoe DM (1995) Lightharvesting complexes in oxygenic photosynthesis: Diversity, control and evolution. Ann Rev Genet 29: 231–288

    PubMed  CAS  Google Scholar 

  • Guillard RRL, Murphy LS, Foss P and Liaaen-Jensen S (1985) Synechococcus spp. as likely zeaxanthin-dominant ultraphytoplankton in the North-Atlantic. Limnol Oceanogr 30: 412–414

    CAS  Google Scholar 

  • Helfrich M, Ross A, King GC, Turner AG and Larkum AW (1999) Identification of [8-vinyl]-protochlorophyllide a in phototrophic prokaryotes and algae: Chemical and spectroscopic properties. Biochim Biophys Acta 1410: 262–272

    PubMed  CAS  Google Scholar 

  • Hess WR, Weihe A, Loiseaux-de Goër S, Partensky F and Vaulot D (1995) Characterization of the single psbA gene of Prochlorococcus marinus CCMP1375 (Prochlorophyta). Plant Mol Biol 27: 1189–1196

    PubMed  CAS  Google Scholar 

  • Hess WR, Partensky F, van der Staay GW, Garcia-Fernandez JM, Börner T and Vaulot D (1996) Coexistence of phycoerythrin and a chlorophyll a/b antenna in a marine prokaryote. Proc Natl Acad Sci USA 93: 11126–11130

    PubMed  CAS  Google Scholar 

  • Hess WR, Steglich C, Lichtlé C and Partensky F (1999) Phycoerythrins of the oxyphotobacterium Prochlorococcus marinus are associated to the thylakoid membrane and are encoded by a single large gene cluster. Plant Mol Biol 40: 507–521

    PubMed  CAS  Google Scholar 

  • Hess WR, Rocap G, Ting C and Chisholm SW (2001) The photosynthetic apparatus of Prochlorococcus: Insights through comparative genomics. Photosynth Res 70: 53–71

    PubMed  CAS  Google Scholar 

  • Hiller RG and Larkum AWD (1985) The chlorophyll-protein complexes of Prochloron sp. (Prochlorophyta). Biochim Biophys Acta 806: 107–115

    CAS  Google Scholar 

  • Hoffmann L and Greuter W (1993) Validation of Prochloron didemni (Cyanophyta) and nomenclatural discussion of correlated names at the higher ranks. Taxon 42: 641–645

    Google Scholar 

  • Honda D, Yokota A and Sugiyama J (1999) Detection of seven major evolutionary lineages in cyanobacteria based on the 16S rRNA gene sequence analysis with new sequences of five marine Synechococcus strains. J Mol Evol 48: 723–739

    PubMed  CAS  Google Scholar 

  • Hu Q, Ishikawa T, Inoue Y, Miyashita H, Kurano N, Miyachi S, Iwaki M, Itoh S, Marquardt J and Mörschel E (1998a) Heterogeneity of chlorophyll d-binding Photosystem I reaction centers from the photosynthetic prokaryote Acaryochloris marina. In: Garab G (ed) Photosynthesis: Mechanisms and Effectsv Vol 1, pp 437-440. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Hu Q, Miyashita H, Iwasaki I, Kurano N, Miyachi S, Iwaki M and Itoh S (1998b) A Photosystem I reaction center driven by chlorophyll d in oxygenic photosynthesis. Proc Natl Acad of Sci USA 95: 13319–13323

    CAS  Google Scholar 

  • Jeffrey SW, Mantoura RFC and Wright SW (1997) Phytoplankton Pigments in Oceanography. UNESCO Publishing, Paris

    Google Scholar 

  • Johnson PW and Sieburth JM (1979) Chroococcoid cyanobacteria in the sea: A ubiquitous and diverse phototrophic biomass. Limnol Oceanogr 24: 928–935

    Google Scholar 

  • Kishino H, Miyata T and Hasegawa M (1990) Maximum likelihood inference of protein phylogeny and the origin of chloroplasts. J Mol Evol 31: 151–160

    CAS  Google Scholar 

  • Kashino Y, Lauber WM, Caroll JA, Wang Q, Whitmarsh J, Satoh K, Pakrasi HB (2002) Proteomic analysis of a highly active Photosystem II preparation from the cyanobacterium Synechocystis sp. PCC 6803 reveals the presence of novel polypepties. Biochemistry 41: 8004–8012

    PubMed  CAS  Google Scholar 

  • Larkum AWD and Howe CJ (1997) Molecular aspects of lightharvesting processes in algae. Adv Bot Res 27: 257–330

    CAS  Google Scholar 

  • Larkum AWD, Scaramuzzi C, Cox GC, Hiller RG and Turner AG (1994) Light-harvesting chlorophyll c-like pigment in Prochloron. Proc Natl Acad Sci USA 91: 679–683

    PubMed  CAS  Google Scholar 

  • La Roche J, van der Staay GW, Partensky F, Ducret A, Aebersold R, Li R, Golden SS, Hiller RG, Wrench PM, Larkum AW and Green BR (1996) Independent evolution of the prochlorophyte and green plant chlorophyll a/b light-harvesting proteins. Proc Natl Acad Sci USA 93: 15244–15248

    Google Scholar 

  • Laudenbach DE and Straus NA (1988) Characterization of a cyanobacterial iron stress-induced gene similar to psbC. J Bacteriol 170: 5018–5026

    PubMed  CAS  Google Scholar 

  • Leonhardt K and Straus NA (1992) An iron stress operon involved in photosynthetic electron transport in the marine cyanobacterium Synechococcus sp. PCC7002. J Gen Microbiol 138: 1613–1621

    PubMed  CAS  Google Scholar 

  • Lewin RA (1977) Prochloron, type genus of the Prochlorophyta. Phycologia 16: 217

    Google Scholar 

  • Lewin RA and Cheng L (1989) Prochloron, a Microbial Enigma. Chapman and Hall, London

    Google Scholar 

  • Lewin RA and Withers NW (1975) Extraordinary pigment composition of a prokaryotic alga. Nature 256: 735–737

    CAS  Google Scholar 

  • Lichtlé C, Thomas JC, Spilar A and Partensky F (1995) Immunological and ultrastructural characterization of the photosynthetic complexes of the prochlorophyte Prochlorococcus (Oxychlorobacteria). J Phycol 31: 934–941

    Google Scholar 

  • Lockhart PJ, Beanland TJ, Howe CJ and Larkum AW (1992a) Sequence of Prochloron didemni atpBE and the inference of chloroplast origins. Proc Natl Acad Sci USA 89: 2742–2746

    PubMed  CAS  Google Scholar 

  • Lockhart PJ, Penny D, Hendy MD, Howe CJ, Beanland TJ and Larkum AW (1992b) Controversy on chloroplast origins. FEBS Lett 301: 127–131

    PubMed  CAS  Google Scholar 

  • Lockhart PJ, Penny D, Hendy MD and Larkum ADW (1993) Is Prochlorothrix hollandica the best choice as a prokaryotic model for higher plant Chl a/b photosynthesis? Photosynth Res 37: 61–68

    CAS  Google Scholar 

  • Lokstein H, Steglich C and Hess WR (1999) Light-harvesting antenna function of phycoerythrin in Prochlorococcus marinus. Biochim Biophys Acta 1410: 97–98

    PubMed  CAS  Google Scholar 

  • Manning WM and Strain HH (1943) Chlorophyll d, a green pigment of red algae. J Biol Chem 151: 1–19

    CAS  Google Scholar 

  • Marquardt J and Morschel E(1999) The photosynthetic apparatus of Prochloron-like cyanobacteria. In: Argyroudi-Akoyunoglou JH and Senger H (eds) Chloroplast: From Molecular Biology to Biotechnology, Vol 1, pp 41-46. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Marquardt J, Senger H, Miyashita H, Miyachi S and Morschel E (1997) Isolation and characterization of biliprotein aggregates from Acaryochloris marina, a Prochloron-like prokaryote containing mainly chlorophyll d. FEBS Lett 410: 428–432

    PubMed  CAS  Google Scholar 

  • Marquardt J, Morschel E, Rhiel E and Westermann M (2000) Ultrastructure of Acaryochloris marina, an oxyphotobacterium containing mainly chlorophyll d. Arch Microbiol 174: 181–188

    PubMed  CAS  Google Scholar 

  • Matthijs HCP, Neuteboom AM and Mur LR (1988) Energy metabolism and cytochrome in the prochlorophyte Prochlorothrix hollandica. In: Mur LR and Burger-Wiersma T (eds) Proceedings of the VI International Symposium on Phototrophic Prokaryotes, Amsterdam, pp 109. Laboratory for Microbiology, University of Amsterdam, Amsterdam

    Google Scholar 

  • Matthijs HCP, van der Staay GWM, van Amerongen H, van Grondelle R and Garab G (1989) Structural organization of chlorophyll b in the prochlorophyte Prochlorothrix hollandica. Biochim Biophys Acta 975: 185–187

    CAS  Google Scholar 

  • Matthijs HCP, van der Staay GWM and Mur LR (1994) Prochlorophytes: The ‘other’ cyanobacteria? In: Bryant DA (ed) The Molecular Biology of Cyanobacteria, pp 49-64. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • McKay R, Salgado D, Bonen I, Stackebrandt E and Doolittle W (1982) The 5S ribosomal RNAs of Paracoccus denitrifians and Prochloron. Nucl Acids Res 10: 2963

    Google Scholar 

  • Miller KR, Jacob JS, Burger-Wiersma T and Matthijs HC (1988) Supramolecular structure of the thylakoid membrane of Prochlorothrix hollandica: A chlorophyll b-containing prokaryote. J Cell Sci 91: 577–586

    PubMed  Google Scholar 

  • Mimuro M, Akimoto S, Yamazaki I, Miyashita H and Miyachi S (1999) Fluorescence properties of chlorophyll d-dominating prokaryotic alga, Acaryochloris marina: Studies using timeresolved fluorescence spectroscopy on intact cells. Biochim Biophys Acta 1412: 37–46

    PubMed  CAS  Google Scholar 

  • Miyashita H, Ikemoto H, Kurano N, Adachi K, Chihara M and Miyachi S (1996) Chlorophyll d as a major pigment. Nature 383: 402

    Google Scholar 

  • Miyashita H, Adachi K, Kurano N, Ikemoto H, Chihara M and Miyachi S (1997) Pigment composition of a novel oxygenic photosynthetic prokaryote containing chlorophyll d as the major chlorophyll. Plant Cell Physiol 38: 274–281

    CAS  Google Scholar 

  • Moore LR (1997) Physiological ecology of Prochlorococcus: A comparison of isolates from diverse oceanographie regimes. PhD Thesis. Massachusetts Institute of Technology, Cambridge

    Google Scholar 

  • Moore LR and Chisholm SW (1999) Photophysiology of the marine cyanobacterium Prochlorococcus: Ecotypic differences among cultured isolates. Limnol Oceanogr 44: 628–638

    Google Scholar 

  • Moore LR, Goericke R and Chisholm SW (1995) Comparative physiology of Synechococcus and Prochlorococcus: Influence of light and temperature on growth, pigments, fluorescence and absorptive properties. Mar Ecol Prog Ser 116: 259–275

    Google Scholar 

  • Moore LR, Rocap G and Chisholm SW (1998) Physiology and molecular phylogeny of coexisting prochlorococcus ecotypes. Nature 393: 464–467

    PubMed  CAS  Google Scholar 

  • Moore LR, Post AF, Rocap G and Chisholm SW (2002) Utilization of different nitrogen sources by the marine cyanobacteria Prochlorococcus and Synechococcus. Limnol Oceanogr 47: 989–996

    CAS  Google Scholar 

  • Mor TS, Post AF and Ohad I (1993) The manganese stabilising protein (MSP) of Prochlorothrix hollandica is a hydrophobic membrane-bound protein. Biochim Biophys Acta: 206-212

    Google Scholar 

  • Morden CW and Golden SS (1989a) psbA genes indicate common ancestry of prochlorophytes and chloroplasts. Nature 337: 382–385

    PubMed  CAS  Google Scholar 

  • Morden CW and Golden SS (1989b) psbA genes indicate common ancestry of prochlorophytes and chloroplasts: Corrigendum. Nature 339: 400

    Google Scholar 

  • Morel A, Ahn Y-W, Partensky F, Vaulot D and Claustre H (1993) Prochlorococcus and Synechococcus: A comparative study of their size, pigmentation and related optical properties. J Mar Res 51: 617–649

    CAS  Google Scholar 

  • Muhlenhoff U, Haehnel W, Witt H and Herrmann RG (1993) Genes encoding eleven subunits of Photosystem I from the thermophilic cyanobacterium Synechococcus sp. Gene 127: 71–78

    PubMed  CAS  Google Scholar 

  • Mullineaux CW (1999) The thylakoid membranes of cyanobacteria: Structure, dynamics and function. Aust J Plant Physiol 26: 671–677

    CAS  Google Scholar 

  • Mullineaux CW, Tobin MJ and Jones GR (1997) Mobility of photosynthetic complexes in thylakoid membranes. Nature 390: 421–424

    CAS  Google Scholar 

  • Murakami A and Fujita Y (1991) Regulation of photosystem stoichiometry in the photosynthetic system of the cyanophyte Synechocystis PCC6714 in response to light intensity. Plant Cell Physiol 32: 223–230

    CAS  Google Scholar 

  • Nelissen B, van de Peer Y, Wilmotte A and De Wachter R (1995) An early origin of plastids within the cyanobacterial divergence is suggested by evolutionary trees based on complete 16S rRNA sequences. Mol Biol Evol 12: 1166–1173

    PubMed  CAS  Google Scholar 

  • Newcomb EH and Pugh TD (1975) Blue-green algae associated with ascidians of the Great Barrier Reef. Nature 253: 533–534

    Google Scholar 

  • Omata T, Okada M and Murata N (1985) Separation and partial characterization of membranes from Prochloron sp. Plant Cell Physiol 26: 579–584

    CAS  Google Scholar 

  • Omata T, Price GD, Badger MR, Okamura M, Gohta S and Ogawa T (1999) Identification of an ATP-binding cassette transporter involved in bicarbonate uptake in the cyanobacterium Synechococcus sp. strain PCC 7942. Proc Natl Acad Sci USA 96: 13571–13576

    PubMed  CAS  Google Scholar 

  • Paerl HW, Lewin RA and Cheng L (1984) Variations in chlorophyll and carotenoid pigmentation among Prochloron (Prochlorophyta) symbionts in diverse marine ascidians. Bot Mar 27: 257–264

    CAS  Google Scholar 

  • Palenik B and Haselkom R (1992) Multiple evolutionary origins of prochlorophytes, the chlorophyll b-containing prokaryotes. Nature 355: 265–267

    PubMed  CAS  Google Scholar 

  • Park YI, Sandstrom S, Gustafsson P and Öquist G (1999) Expression of the isiA gene is essential for the survival of the cyanobacterium Synechococcus sp. PCC7942 by protecting Photosystem II from excess light under iron limitation. Mol Microbiol 32: 123–129

    PubMed  CAS  Google Scholar 

  • Partensky F, Hoepffner N, Li WKW, Ulloa O and Vaulot D (1993) Photoacclimation of Prochlorococcussp (Prochlorophyta) strains isolated from the North Atlantic and the Mediterranean Sea. Plant Physiol 101: 295–296

    Google Scholar 

  • Partensky F, La Roche J, Wyman K and Falkowski PG (1997) The divinyl-chlorophyll a/b-protein complexes of two strains of the oxyphototrophic marine prokaryote Prochlorococcus— Characterization and response to changes in growth irradiance. Photosynth Res 51: 209–222

    CAS  Google Scholar 

  • Partensky F, Blanchot J and Vaulot D (1999a) Differential distribution and ecology of Prochlorococcus and Synechococcus in oceanic waters: A review. In: Charpy L and Larkum AWD (eds) Marine Cyanobacteria, pp 457-475. Institut Océanographique, Monaco

    Google Scholar 

  • Partensky F, Hess WR and Vaulot D (1999b) Prochlorococcus, a marine photosynthetic prokaryote of global significance. Microbiol Mol Biol Rev 63: 106–127

    PubMed  CAS  Google Scholar 

  • Penno S, Campbell L and Hess WR (2000) Presence of phycoerythrin in two strains of Prochlorococcus (Cyanobacteria) isolated from the subtropical north Pacific Ocean. J Phycol 36: 723–729

    CAS  Google Scholar 

  • Pichard SL, Campbell L and Paul JH (1997) Diversity of the ribulose bisphosphate carboxylase/oxygenase form I gene (rbcL) in natural phytoplankton communities. Appl Environ Microbiol 63: 3600–3606

    PubMed  CAS  Google Scholar 

  • Pinevich AV, Matthijs HCP, Gavrilova OV, Averina SG and Velichko NV (1996) New ultrastructural aspects of membranes and cell inclusions in Prochlorothrix hollandica (Prochlorales, Cyanobacteria). Microbios 87: 217–225

    CAS  Google Scholar 

  • Pinevich AV, Matthijs HCP, Averina SG and Gavrilova OV (1997) Picocyanophyte (cyanobacterium) from the boreal inland water accumulates phycoerythrin as a major biliprotein. Algol Stud 87: 99–108

    Google Scholar 

  • Pinevich AV, Skulberg OM, Matthijs HCP, Schubert H, Willen E, Gavrilova OV and Velichko N (1999) Characterization of a novel chlorophyll b-containing Prochlorothrix species (Prochlorophyta) and its photosynthetic apparatus. Microbios 100: 159–174

    CAS  Google Scholar 

  • Pinevich AB, Velichko NB and Bazanova AV (2000) Prochlorophytes twenty years on. Russ J Plant Physiol 47: 639–643

    CAS  Google Scholar 

  • Post AF and Bullerjahn GS (1994) The photosynthetic machinery in Prochlorophytes: Structural properties and ecological significance. FEMS Microbiol Rev 13: 393–414

    CAS  Google Scholar 

  • Post AF, Gal A, Ohad I, Milbauer KM and Bullerjahn GS (1992) Characterization of light-activated reversible phosphorylation of a chlorophyll a/b antenna apoprotein in the photosynthetic prokaryote Prochlorothrix hollandica. Biochim Biophys Acta 1100: 75–82

    CAS  Google Scholar 

  • Post AF, Ohad I, Warner KM and Bullerjahn GS (1993) Energy distribution between Photosy stems I and II in the photosynthetic prokaryote Prochlorothrix hollandica involves a chlorophyll a/b antenna which associates with Photosystem I. Biochim Biophys Acta 1144: 374–384

    CAS  Google Scholar 

  • Reith M (1996) The evolution of plastids and the photosynthetic apparatus. In: Ort DR and Yocum CF (eds) Oxygenic Photosynthesis: The Light Reactions, pp 643-657. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Rippka R, Deruelles J, Waterbury JB, Herdmann M and Stanier RY (1979) Generic assignments, strain histories and properties of pure cultures of cyanobacteria. J Gen Microbiol 111: 1–61

    Google Scholar 

  • Rippka R, Coursin T, Hess W, Lichtlé C, Scanlan DJ, Palinska KA, Iteman I, Partensky F, Houmard J and Herdman M (2000) Prochlorococcus marinus Chisholm et al. 1992 subsp. pastoris subsp. nov. strain PCC9511, the first axenic chlorophyll a 2/b 2 containing cyanobacterium (Oxyphotobacteria). Int J Syst Evol Microbiol 50: 1833–1847

    PubMed  CAS  Google Scholar 

  • Sandmann G (1985) Consequences of iron deficiency on photosynthetic and respiratory electron transport in blue-green algae. Photosynth Res 6: 261–271

    CAS  Google Scholar 

  • Sareina M, Tobin MJ and Mullineaux CW (2001) Diffusion of phycobilisomes on the thylakoid membranes of the cyanobacterium Synechococcus 7942: Effects of phycobilisome size, temperature and membrane lipid composition. J Biol Chem 276: 46830–46834

    Google Scholar 

  • Satoh S, Ikeuchi M, Mimuro M and Tanaka A (2001) Chlorophyll b expressed in cyanobacteria functions as a light-harvesting antenna in Photosystem I through flexibility of the proteins. J Biol Chcm 276: 4293–297

    CAS  Google Scholar 

  • Scanlan DJ, Hess WR, Partensky F, Scanlan J and Vaulot D (1996) High degree of genetic variation in Prochlorococcus (Prochlorophyta) revealed by RFLP analysis. Eur J Phycol 31: 1–9

    Google Scholar 

  • Serieller HV, Naver H and Moller BL (1997) Molecular aspects of Photosystem I. Physiol Plant 100: 842–851

    Google Scholar 

  • Schiller H, Senger H, Miyashita H, Miyachi S and Dau H (1997) Light-harvesting in Acaryochloris marina—spectroscopic characterization of a chlorophyll d-dominated photosynthetic antenna system. FEBS Lett 410: 433–436

    PubMed  CAS  Google Scholar 

  • Schreiber U, Gademann R, Ralph PJ and Larkum AWD (1997) Assessment of photosynthetic performance of Prochloron in Lissoclinum patella in hospite by chlorophyll fluorescence measurements. Plant Cell Physiol 38: 945–951

    CAS  Google Scholar 

  • Schulz-Baldes M and Lewin R (1976) Fine structure of Synechocystis didemni (Cyanophyta: Chroococcales). Phycologia 15: 1–6

    Google Scholar 

  • Schuster G, Owens GC, Cohen Y and Ohad I (1984) Thylakoid polypeptide composition and light-independent phosphorylation of the chlorophyll a/b-protein in Prochloron, a prokaryote exhibiting oxygenic photosynthesis. Biochim Biophys Acta 767: 596–605

    CAS  Google Scholar 

  • Schyns G, Rippka R, Namane A, Campbell D, Herdman M and Houmard J (1997) Prochlorothrix hollandica PCC9006: Genomic properties of an axenic representative of the chlorophyll a/b-containing oxyphotobacteria. Res Microbiol 148: 345–354

    PubMed  CAS  Google Scholar 

  • Seewaldt E and Stackebrandt E (1982) Partial sequence of 16S ribosomal RNA and the phylogeny of Prochloron. Nature 295: 618–620

    CAS  Google Scholar 

  • Shen JR and Inoue Y (1993) Binding and functional properties of two new extrinsic components, cytochrome c-550 and a 12kDa protein, in cyanobacterial Photosystem II. Biochemistry 32: 1825–1832

    PubMed  CAS  Google Scholar 

  • Shen JR, Ikeuchi M and Inoue Y (1997) Analysis of the psbU gene cncoding the 12-kDa extrinsic protein of Photosystem II and studies on its role by deletion mutagenesis in Synechocystis sp. PCC6803. JBiol Chem 272: 17821–17826

    CAS  Google Scholar 

  • Shimada A, Kanai S, Lewin RA and Maruyama T (1999) Molecular phylogenetic relationship between Synechocystis trididemni and Prochloron didemni. In: Charpy L and Larkum AWD (eds) Marine Cyanobacteria, pp 117-120. Institut Océanographique, Monaco

    Google Scholar 

  • Siefermann-Harms D (1985) Carotenoids in photosynthesis. I. Location in photosynthetic membranes and light-harvesting function. Biochim Biophys Acta 811: 325–355

    CAS  Google Scholar 

  • Staehelin LA and van der Staay GWM (1996) Structure, composition, functional organization and dynamic properties of thylakoid membranes. In: Ort DR and Yocum F (eds) Oxygenic Photosynthesis: The Light Reactions, pp 11-30. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Stiller JW and Hall BD (1997) The origin of red algae: Implications for plasmid evolution. Proc Natl Acad Sci USA 94: 4520–4525

    PubMed  CAS  Google Scholar 

  • Swift H (1989) The cytology of Prochloron. In: Lewin R and Cheng L (eds) Prochloron, a microbial enigma, pp 71-81. Chapman and Hall, New York

    Google Scholar 

  • Swift H and Leser GP (1989) Cytochemical studies on prochlorophytes: Localization of DNA and ribulose 1,5biphosphate carboxylase-oxygenase. J Phycol 25: 751–761

    Google Scholar 

  • Tanaka A, Ito H, Tanaka R, Tanaka NK, Yoshida K and Okada K (1998) Chlorophyll a oxygenase (CAO) is involved in chlorophyll b formation from chlorophyll a. Proc Natl Acad Sci USA 95: 12719–12723

    PubMed  CAS  Google Scholar 

  • Thorne SW, Newcomb EH and Osmond CB (1977) Identification of chlorophyll b in extracts of prokaryotic algae by fluorescence spectroscopy. Proc Acad Nat Sci Philadelphia 74: 575–578

    CAS  Google Scholar 

  • Ting C, Rocap G, King J and Chisholm SW (1998) Characterization of phycoerythrin genes in the chlorophyll a 2/b 2containing procaryote, Prochlorococcus sp. MIT9303. In: Garab G (ed) Photosynthesis: Mechanisms and Effects, Vol 1, pp 225-228. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Ting CS, Rocap G, King J and Chisholm SW (2001) Phyeobiliprotein genes of the marine photosynthetic prokaryote Prochlorococcus: Evidence for rapid evolution of genetic heterogeneity. Microbiology 147: 3171–3182

    PubMed  CAS  Google Scholar 

  • Tomitani A, Okada K, Miyashita H, Matthijs HCP, Ohno T and Tanaka A (1999) Chlorophyll b and phycobilins in the common ancestor of cyanobacteria and chloroplasts. Nature 400: 159–162

    PubMed  CAS  Google Scholar 

  • Trissl H-W and Wilhelm C (1993) Why do thylakoids form grana stacks? Trends Biochem Sci 18: 415–419

    PubMed  CAS  Google Scholar 

  • Turner S, Burger-Wiersma T, Giovannoni SJ, Mur LR and Pace NR (1989) The relationship of a prochlorophyte Prochlorothrix hollandica to green chloroplasts. Nature 337: 380–382

    PubMed  CAS  Google Scholar 

  • Turner S, Pryer KM, Miao VPW and Palmer JD (1999) Investigating deep phylogenetic relationships among cyanobacteria and plastids by small subunit rRNA sequence analysis. J Euk Microbiol 46: 327–338

    PubMed  CAS  Google Scholar 

  • Urbach E, Robertson DL and Chisholm SW (1992) multiple evolutionary origins of prochlorophytes within the cyanobacterial radiation. Nature 355: 267–270

    PubMed  CAS  Google Scholar 

  • Urbach E, Scanlan DJ, Distel DL, Waterbury JB and Chisholm SW (1998) Rapid diversification of marine picophytoplankton with dissimilar light-harvesting structures inferred from sequences of Prochlorococcus and Synechococcus (Cyanobacteria). J Mol Evol 46: 188–201

    PubMed  CAS  Google Scholar 

  • van der Staay GWM and Partensky F (1999) The 21 kDa protein associated with Photosystem I in Prochlorococcus marinus is the PsaF protein (AJ131438)(PGR99-067). Plant Physiol 120: 339

    Google Scholar 

  • van der Staay GWM and Staehelin LA (1994) Biochemical characterization of protein composition and protein phosphorylation patterns in stacked and unstacked thylakoid membranes of the prochlorophyte Prochlorothrix hollandica. J Biol Chem 269: 24834–24844

    PubMed  Google Scholar 

  • van der Staay GWM, Matthijs HCP and Muur LR (1989) Phosphorylation and dephosphorylation of membrane proteins from the prochlorophyte Prochlorothrix hollandica in fixed redox states. Biochim Biophys Acta 975: 317–324

    Google Scholar 

  • van der Staay GWM, Brouwer A, Baard RL, van Mourik F and Matthijs HCP (1992) Separation of Photosystems I and II from the oxychlorobacterium (prochlorophyte) Prochlorothrix hollandica and association of chlorophyll b binding antennae with Photosystem II. Biochim Biophys Acta 1102: 220–228

    Google Scholar 

  • van der Staay GWM, Boekema EJ, Dekker JP and Matthijs HCP (1993) Characterization of trimeric Photosystem I particles from the prochlorophyte Prochlorothrix hollandica by electron microscopy and image analysis. Biochim Biophys Acta 1142: 189–193

    Google Scholar 

  • van der Staay GWM, Moon-van der Staay SY, Garczarek L and Partensky F (1998a) Characterization of the Photosystem I subunits Psal and PsaL from two strains of the marine oxyphototrophic prokaryote Prochlorococcus. Photosynth Res 57: 183–191

    Google Scholar 

  • van der Staay GWM, Yurkova N and Green BR (1998b) The 38 kDa chlorophyll a/b protein of the prokaryote Prochlorothrix hollandica is encoded by a divergent pcb gene. Plant Mol Biol 36: 709–716

    PubMed  Google Scholar 

  • van der Staay GWM, Moon-van der Staay SY, Garczarek L and Partensky F (2000) Rapid evolutionary divergence of Photosystem I core subunits PsaA and PsaB in the marine prokaryote Prochlorococcus. Photosynth Res 65: 131–139

    PubMed  Google Scholar 

  • Veldhuis MJW and Kraay GW (1990) Vertical distribution and pigment composition of a picoplanktonic prochlorophyte in the subtropical North-Atlantic: A combined study of HPLCanalysis of pigments and flow cytometry. Mar Ecol Prog Ser 68: 121–127

    CAS  Google Scholar 

  • West NJ and Scanlan DJ (1999) Niche-partitioning of Prochlorococcus populations in a stratified water column in the eastern north Atlantic occan. Appl Environ Microbiol 65: 2585–2591

    PubMed  CAS  Google Scholar 

  • Whatley JM (1977) The fine structure of Prochloron. New Phytol 79: 309–313

    Google Scholar 

  • Wilmotte A (1994) Molecular evolution and taxonomy of Cyanobacteria. In: Bryant DA (ed) The Molecular Biology of Cyanobacteria, pp 1-25. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Withers NW, Alberte RS, Lewin RA and Thornber JP (1978) Photosynthetic unit size, carotenoids and chlorophyll-protein composition of Prochloron sp., a prokaryotic green alga. Proc Natl Acad Sci USA 75: 2301–2305

    PubMed  CAS  Google Scholar 

  • Wood AM (1979) Chlorophyll a:b ratios in marine planktonic algae. J Phycol 15: 330–3

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frédéric Partensky .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Partensky, F., Garczarek, L. (2003). The Photosynthetic Apparatus of Chlorophyll b- and d-Containing Oxyphotobacteria. In: Larkum, A.W.D., Douglas, S.E., Raven, J.A. (eds) Photosynthesis in Algae. Advances in Photosynthesis and Respiration, vol 14. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-1038-2_3

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-1038-2_3

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-3772-3

  • Online ISBN: 978-94-007-1038-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics