Skip to main content

The Role of the Myofibroblast in Fibrosis and Cancer Progression

  • Chapter
  • First Online:
Tumor-Associated Fibroblasts and their Matrix

Part of the book series: The Tumor Microenvironment ((TTME,volume 4))

Abstract

The discovery of the myofibroblast (Gabbiani et al., Experientia 27:549–550, 1971; Tomasek et al., Nat Rev Mol Cell Biol 3:349–363, 2002) has opened a new perspective in the understanding of phenomena such as connective tissue remodeling and epithelial–mesenchymal interactions that play crucial roles in normal and pathological processes including organ shaping during development, tension production in pulmonary alveoli, wound contraction , tissue deformation during fibrotic diseases and, more recently, epithelial tumor invasion or metastasis formation. The myofibroblast has been shown to: (1) produce mechanical force, thanks to the neo-expression of a-smooth muscle actin (α-SMA), the actin isoform typical of vascular smooth muscle cells (SMCs) (Hinz et al., J Cell Biol 157:657–663, 2002) and the formation of specialized junctional complexes with the extracellular matrix (ECM) (Dugina et al., J Cell Sci 114:3285–3296, 2001; Goffin et al., J Cell Biol 172:259–268, 2006), and (2) synthesize collagen type I and III (Tomasek et al., Nat Rev Mol Cell Biol 3:349–363, 2002); all these changes take place under the stimulation of local mechanical forces and of transforming growth factor b1 (TGFβ1), produced by infiltrated macrophages or local cells, in conjunction with the ectodomain A (ED-A) sequence of cellular fibronectin (FN) (Tomasek et al., Nat Rev Mol Cell Biol 3:349–363, 2002). Thus, the myofibroblast appears as a major player in connective tissue rearrangement.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aarabi S, Bhatt KA, Shi Y, Paterno J, Chang EI, Loh SA, Holmes JW, Longaker MT, Yee H, Gurtner GC (2007) Mechanical load initiates hypertrophic scar formation through decreased cellular apoptosis. Faseb J 21:3250–3261

    PubMed  CAS  Google Scholar 

  • Abe R, Donnelly SC, Peng T, Bucala R, Metz CN (2001) Peripheral blood fibrocytes: differentiation pathway and migration to wound sites. J Immunol 166:7556–7562

    PubMed  CAS  Google Scholar 

  • Aggarwal BB, Gehlot P (2009) Inflammation and cancer: how friendly is the relationship for cancer patients? Curr Opin Pharmacol 9:351–369

    PubMed  CAS  Google Scholar 

  • Akhurst RJ, Derynck R (2001) TGF-beta signaling in cancer—a double-edged sword. Trends Cell Biol 11:S44–51

    PubMed  CAS  Google Scholar 

  • Albini A, Sporn MB (2007) The tumour microenvironment as a target for chemoprevention. Nat Rev Cancer 7:139–147

    PubMed  CAS  Google Scholar 

  • Amann T, Bataille F, Spruss T, Muhlbauer M, Gabele E, Scholmerich J, Kiefer P, Bosserhoff AK, Hellerbrand C (2009) Activated hepatic stellate cells promote tumorigenicity of hepatocellular carcinoma. Cancer Sci 100:646–653

    PubMed  CAS  Google Scholar 

  • Andersen ES, Christensen PB, Weis N (2009) Transient elastography for liver fibrosis diagnosis. Eur J Intern Med 20:339–342

    PubMed  Google Scholar 

  • Anderson JM, Rodriguez A, Chang DT (2008) Foreign body reaction to biomaterials. Semin Immunol 20:86–100

    PubMed  CAS  Google Scholar 

  • Andersson-Sjoland A, de Alba CG, Nihlberg K, Becerril C, Ramirez R, Pardo A, Westergren-Thorsson G, Selman M (2008) Fibrocytes are a potential source of lung fibroblasts in idiopathic pulmonary fibrosis. Int J Biochem Cell Biol 40:2129–2140

    PubMed  Google Scholar 

  • Annes JP, Chen Y, Munger JS, Rifkin DB (2004) Integrin {alpha}V{beta}6-mediated activation of latent TGF-{beta} requires the latent TGF-{beta} binding protein-1. J Cell Biol 165:723–734

    PubMed  CAS  Google Scholar 

  • Ariyan S, Enriquez R, Krizek TJ (1978) Wound contraction and fibrocontractive disorders. Arch Surg 113:1034–1046

    PubMed  CAS  Google Scholar 

  • Armulik A, Abramsson A, Betsholtz C (2005) Endothelial/pericyte interactions. Circ Res 97:512–523

    PubMed  CAS  Google Scholar 

  • Atiyeh BS, Costagliola M, Hayek SN (2005) Keloid or hypertrophic scar: the controversy: review of the literature. Ann Plast Surg 54:676–680

    PubMed  CAS  Google Scholar 

  • Bataller R, Brenner DA (2005) Liver fibrosis. J Clin Invest 115:209–218

    PubMed  CAS  Google Scholar 

  • Baudino TA, Carver W, Giles W, Borg TK (2006) Cardiac fibroblasts: friend or foe? Am J Physiol Heart Circ Physiol 291:H1015–1026

    PubMed  CAS  Google Scholar 

  • Beacham DA, Cukierman E (2005) Stromagenesis: the changing face of fibroblastic microenvironments during tumor progression. Semin Cancer Biol 15:329–341

    PubMed  Google Scholar 

  • Bedard K, Krause KH (2007) The NOX family of ROS-generating NADPH oxidases: physiology and pathophysiology. Physiol Rev 87:245–313

    PubMed  CAS  Google Scholar 

  • Begley LA, Kasina S, MacDonald J, Macoska JA (2008) The inflammatory microenvironment of the aging prostate facilitates cellular proliferation and hypertrophy. Cytokine 43:194–199

    PubMed  CAS  Google Scholar 

  • Bellini A, Mattoli S (2007) The role of the fibrocyte, a bone marrow-derived mesenchymal progenitor, in reactive and reparative fibroses. Lab Invest 87:858–870

    PubMed  CAS  Google Scholar 

  • Benzonana G, Skalli O, Gabbiani G (1988) Correlation between the distribution of smooth muscle or non muscle myosins and alpha-smooth muscle actin in normal and pathological soft tissues. Cell Motil Cytoskeleton 11:260–274

    PubMed  CAS  Google Scholar 

  • Berasain C, Castillo J, Perugorria MJ, Latasa MU, Prieto J, Avila MA (2009) Inflammation and liver cancer: new molecular links. Ann N Y Acad Sci 1155:206–221

    PubMed  CAS  Google Scholar 

  • Bernstein AM, Twining SS, Warejcka DJ, Tall E, Masur SK (2007) Urokinase receptor cleavage: a crucial step in fibroblast-to-myofibroblast differentiation. Mol Biol Cell 18:2716–2727

    PubMed  CAS  Google Scholar 

  • Bershadsky AD, Balaban NQ, Geiger B (2003) Adhesion-dependent cell mechanosensitivity. Annu Rev Cell Dev Biol 19:677–695

    PubMed  CAS  Google Scholar 

  • Bhowmick NA, Moses HL (2005) Tumor–stroma interactions. Curr Opin Genet Dev 15:97–101

    PubMed  CAS  Google Scholar 

  • Bianco P, Riminucci M, Gronthos S, Robey PG (2001) Bone marrow stromal stem cells: nature, biology, and potential applications. Stem Cells 19:180–192

    PubMed  CAS  Google Scholar 

  • Bierie B, Moses HL (2006) Tumour microenvironment: TGFbeta: the molecular Jekyll and Hyde of cancer. Nat Rev Cancer 6:506–520

    PubMed  CAS  Google Scholar 

  • Bissell DM (2001) Chronic liver injury, TGF-beta, and cancer. Exp Mol Med 33:179–190

    PubMed  CAS  Google Scholar 

  • Bochaton-Piallat ML, Gabbiani G (2006) Smooth muscle cell: a key cell for plaque vulnerability regulation? Circ Res 98:448–449

    PubMed  CAS  Google Scholar 

  • Bogatkevich GS, Tourkina E, Abrams CS, Harley RA, Silver RM, Ludwicka-Bradley A (2003) Contractile activity and smooth muscle alpha-actin organization in thrombin-induced human lung myofibroblasts. Am J Physiol Lung Cell Mol Physiol 285:L334–343

    PubMed  CAS  Google Scholar 

  • Bonanno E, Ercoli L, Missori P, Rocchi G, Spagnoli LG (1994) Homogeneous stromal cell population from normal human adult bone marrow expressing alpha-smooth muscle actin filaments. Lab Invest 71:308–315

    PubMed  CAS  Google Scholar 

  • Boyd NF, Lockwood GA, Byng JW, Tritchler DL, Yaffe MJ (1998) Mammographic densities and breast cancer risk. Cancer Epidemiol Biomarkers Prev 7:1133–1144

    PubMed  CAS  Google Scholar 

  • Boyd NF, Guo H, Martin LJ, Sun L, Stone J, Fishell E, Jong RA, Hislop G, Chiarelli A, Minkin S, Yaffe MJ (2007) Mammographic density and the risk and detection of breast cancer. N Engl J Med 356:227–236

    PubMed  CAS  Google Scholar 

  • Brittan M et al (2002) Bone marrow derivation of pericryptal myofibroblasts in the mouse and human small intestine and colon. Gut 50:752–757

    PubMed  CAS  Google Scholar 

  • Brittan M et al (2005) A regenerative role for bone marrow following experimental colitis: contribution to neovasculogenesis and myofibroblasts. Gastroenterology 128:1984–1995

    PubMed  Google Scholar 

  • Brown RD, Ambler SK, Mitchell MD, Long CS (2005) The cardiac fibroblast: therapeutic target in myocardial remodeling and failure. Annu Rev Pharmacol Toxicol 45:657–687

    PubMed  CAS  Google Scholar 

  • Bucala R, Spiegel LA, Chesney J, Hogan M, Cerami A (1994) Circulating fibrocytes define a new leukocyte subpopulation that mediates tissue repair. Mol Med 1:71–81

    PubMed  CAS  Google Scholar 

  • Butcher DT, Alliston T, Weaver VM (2009) A tense situation: forcing tumour progression. Nat Rev Cancer 9:108–122

    PubMed  CAS  Google Scholar 

  • Cai D, Marty-Roix R, Hsu HP, Spector M (2001) Lapine and canine bone marrow stromal cells contain smooth muscle actin and contract a collagen-glycosaminoglycan matrix. Tissue Eng 7:829–841

    PubMed  CAS  Google Scholar 

  • Caplan AI (2007) Adult mesenchymal stem cells for tissue engineering versus regenerative medicine. J Cell Physiol 213:341–347

    PubMed  CAS  Google Scholar 

  • Carlson MA, Longaker MT, Thompson JS (2003) Wound splinting regulates granulation tissue survival. J Surg Res 110:304–309

    PubMed  Google Scholar 

  • Chambers RC, Leoni P, Kaminski N, Laurent GJ, Heller RA (2003) Global expression profiling of fibroblast responses to transforming growth factor-beta1 reveals the induction of inhibitor of differentiation-1 and provides evidence of smooth muscle cell phenotypic switching. Am J Pathol 162:533–546

    PubMed  CAS  Google Scholar 

  • Chaponnier C, Goethals M, Janmey PA, Gabbiani F, Gabbiani G, Vandekerckhove J (1995) The specific NH2-terminal sequence Ac-EEED of alpha-smooth muscle actin plays a role in polymerization in vitro and in vivo. J Cell Biol 130:887–895

    PubMed  CAS  Google Scholar 

  • Charbord P, Lerat H, Newton I, Tamayo E, Gown AM, Singer JW, Herve P (1990) The cytoskeleton of stromal cells from human bone marrow cultures resembles that of cultured smooth muscle cells. Exp Hematol 18:276–282

    PubMed  CAS  Google Scholar 

  • Chiappara G, Gagliardo R, Siena A, Bonsignore MR, Bousquet J, Bonsignore G, Vignola AM (2001) Airway remodelling in the pathogenesis of asthma. Curr Opin Allergy Clin Immunol 1:85–93

    PubMed  CAS  Google Scholar 

  • Chilosi M, Poletti V, Zamo A, Lestani M, Montagna L, Piccoli P, Pedron S, Bertaso M, Scarpa A, Murer B, Cancellieri A, Maestro R, Semenzato G, Doglioni C (2003) Aberrant Wnt/beta-catenin pathway activation in idiopathic pulmonary fibrosis. Am J Pathol 162:1495–1502

    PubMed  CAS  Google Scholar 

  • Christen T, Verin V, Bochaton-Piallat M, Popowski Y, Ramaekers F, Debruyne P, Camenzind E, van Eys G, Gabbiani G (2001) Mechanisms of neointima formation and remodeling in the porcine coronary artery. Circulation 103:882–888

    PubMed  CAS  Google Scholar 

  • Clement S, Hinz B, Dugina V, Gabbiani G, Chaponnier C (2005) The N-terminal Ac-EEED sequence plays a role in {alpha}-smooth-muscle actin incorporation into stress fibers. J Cell Sci 118:1395–1404

    PubMed  CAS  Google Scholar 

  • Coleman DJ, Sharpe DT, Naylor IL, Chander CL, Cross SE (1993) The role of the contractile fibroblast in the capsules around tissue expanders and implants. Br J Plast Surg 46:547–556

    PubMed  CAS  Google Scholar 

  • Colombelli J, Besser A, Kress H, Reynaud EG, Girard P, Caussinus E, Haselmann U, Small JV, Schwarz US, Stelzer EH (2009) Mechanosensing in actin stress fibers revealed by a close correlation between force and protein localization. J Cell Sci 122:1665–1679

    PubMed  CAS  Google Scholar 

  • Comut AA, Shortkroff S, Zhang X, Spector M (2000) Association of fibroblast orientation around titanium in vitro with expression of a muscle actin. Biomaterials 21:1887–1896

    CAS  Google Scholar 

  • Cucoranu I, Clempus R, Dikalova A, Phelan PJ, Ariyan S, Dikalov S, Sorescu D (2005) NAD(P)H oxidase 4 mediates transforming growth factor-beta1-induced differentiation of cardiac fibroblasts into myofibroblasts. Circ Res 97:900–907

    PubMed  CAS  Google Scholar 

  • Dagouassat M, Suffee N, Hlawaty H, Haddad O, Charni F, Laguillier C, Vassy R, Martin L, Schischmanoff PO, Gattegno L, Oudar O, Sutton A, Charnaux N (2009) Monocyte chemoattractant protein-1 (MCP-1)/CCL2 secreted by hepatic myofibroblasts promotes migration and invasion of human hepatoma cells. Int J Cancer 126(5):1095–1108

    Google Scholar 

  • Daniels CE, Jett JR (2005) Does interstitial lung disease predispose to lung cancer? Curr Opin Pulm Med 11:431–437

    PubMed  Google Scholar 

  • Darby I, Skalli O, Gabbiani G (1990) Alpha-smooth muscle actin is transiently expressed by myofibroblasts during experimental wound healing. Lab Invest 63:21–29

    PubMed  CAS  Google Scholar 

  • De Wever O, Mareel M (2002) Role of myofibroblasts at the invasion front. Biol Chem 383:55–67

    PubMed  Google Scholar 

  • De Wever O, Mareel M (2003) Role of tissue stroma in cancer cell invasion. J Pathol 200:429–447

    PubMed  Google Scholar 

  • De Wever O, Nguyen QD, Van Hoorde L, Bracke M, Bruyneel E, Gespach C, Mareel M (2004) Tenascin-C and SF/HGF produced by myofibroblasts in vitro provide convergent pro-invasive signals to human colon cancer cells through RhoA and Rac. Faseb J 18:1016–1018

    PubMed  Google Scholar 

  • De Wever O, Demetter P, Mareel M, Bracke M (2008) Stromal myofibroblasts are drivers of invasive cancer growth. Int J Cancer 123:2229–2238

    PubMed  Google Scholar 

  • Desmouliere A (2007) Hepatic stellate cells: the only cells involved in liver fibrogenesis? A dogma challenged. Gastroenterology 132:2059–2062

    PubMed  Google Scholar 

  • Desmouliere A, Rubbia-Brandt L, Abdiu A, Walz T, Macieira-Coelho A, Gabbiani G (1992) Alpha-smooth muscle actin is expressed in a subpopulation of cultured and cloned fibroblasts and is modulated by gamma-interferon. Exp Cell Res 201:64–73

    PubMed  CAS  Google Scholar 

  • Desmouliere A, Geinoz A, Gabbiani F, Gabbiani G (1993) Transforming growth factor-beta 1 induces alpha-smooth muscle actin expression in granulation tissue myofibroblasts and in quiescent and growing cultured fibroblasts. J Cell Biol 122:103–111

    PubMed  CAS  Google Scholar 

  • Desmouliere A, Redard M, Darby I, Gabbiani G (1995) Apoptosis mediates the decrease in cellularity during the transition between granulation tissue and scar. Am J Pathol 146:56–66

    PubMed  CAS  Google Scholar 

  • Desmouliere A, Darby IA, Gabbiani G (2003) Normal and pathologic soft tissue remodeling: role of the myofibroblast, with special emphasis on liver and kidney fibrosis. Lab Invest 83:1689–1707

    PubMed  Google Scholar 

  • Desmouliere A, Guyot C, Gabbiani G (2004) The stroma reaction myofibroblast: a key player in the control of tumor cell behavior. Int J Dev Biol 48:509–517

    PubMed  CAS  Google Scholar 

  • Desmouliere A, Chaponnier C, Gabbiani G (2005) Tissue repair, contraction, and the myofibroblast. Wound Repair Regen 13:7–12

    PubMed  Google Scholar 

  • di Bonzo LV et al (2008) Human mesenchymal stem cells as a two-edged sword in hepatic regenerative medicine: engraftment and hepatocyte differentiation versus profibrogenic potential. Gut 57:223–231

    PubMed  Google Scholar 

  • Direkze NC, Forbes SJ, Brittan M, Hunt T, Jeffery R, Preston SL, Poulsom R, Hodivala-Dilke K, Alison MR, Wright NA (2003) Multiple organ engraftment by bone-marrow-derived myofibroblasts and fibroblasts in bone-marrow-transplanted mice. Stem Cells 21:514–520

    PubMed  Google Scholar 

  • Direkze NC, Hodivala-Dilke K, Jeffery R, Hunt T, Poulsom R, Oukrif D, Alison MR, Wright NA (2004) Bone marrow contribution to tumor-associated myofibroblasts and fibroblasts. Cancer Res 64:8492–8495

    PubMed  CAS  Google Scholar 

  • Dolberg DS, Hollingsworth R, Hertle M, Bissell MJ (1985) Wounding and its role in RSV-mediated tumor formation. Science 230:676–678

    PubMed  CAS  Google Scholar 

  • Dubuisson L, Monvoisin A, Nielsen BS, Le Bail B, Bioulac-Sage P, Rosenbaum J (2000) Expression and cellular localization of the urokinase-type plasminogen activator and its receptor in human hepatocellular carcinoma. J Pathol 190:190–195

    PubMed  CAS  Google Scholar 

  • Dubuisson L, Lepreux S, Bioulac-Sage P, Balabaud C, Costa AM, Rosenbaum J, Desmouliere A (2001) Expression and cellular localization of fibrillin-1 in normal and pathological human liver. J Hepatol 34:514–522

    PubMed  CAS  Google Scholar 

  • Dugina V, Fontao L, Chaponnier C, Vasiliev J, Gabbiani G (2001) Focal adhesion features during myofibroblastic differentiation are controlled by intracellular and extracellular factors. J Cell Sci 114:3285–3296

    PubMed  CAS  Google Scholar 

  • Dvorak HF (1986) Tumors: wounds that do not heal. Similarities between tumor stroma generation and wound healing. N Engl J Med 315:1650–1659

    PubMed  CAS  Google Scholar 

  • Eyden B (2007) The myofibroblast: a study of normal, reactive and neoplastic tissues, with an emphasis on ultrastructure. J Submicrosc Cytol Pathol:7–166

    Google Scholar 

  • Eyden B (2008) The myofibroblast: phenotypic characterization as a prerequisite to understanding its functions in translational medicine. J Cell Mol Med 12:22–37

    PubMed  CAS  Google Scholar 

  • Faouzi S, Le Bail B, Neaud V, Boussarie L, Saric J, Bioulac-Sage P, Balabaud C, Rosenbaum J (1999a) Myofibroblasts are responsible for collagen synthesis in the stroma of human hepatocellular carcinoma: an in vivo and in vitro study. J Hepatol 30:275–284

    CAS  Google Scholar 

  • Faouzi S, Lepreux S, Bedin C, Dubuisson L, Balabaud C, Bioulac-Sage P, Desmouliere A, Rosenbaum J (1999b) Activation of cultured rat hepatic stellate cells by tumoral hepatocytes. Lab Invest 79:485–493

    CAS  Google Scholar 

  • Farazi PA, DePinho RA (2006) Hepatocellular carcinoma pathogenesis: from genes to environment. Nat Rev Cancer 6:674–687

    PubMed  CAS  Google Scholar 

  • Fathke C, Wilson L, Hutter J, Kapoor V, Smith A, Hocking A, Isik F (2004) Contribution of bone marrow-derived cells to skin: collagen deposition and wound repair. Stem Cells 22:812–822

    PubMed  Google Scholar 

  • Feng XH, Derynck R (2005) Specificity and versatility in tgf-beta signaling through Smads. Annu Rev Cell Dev Biol 21:659–693

    PubMed  CAS  Google Scholar 

  • Ffrench-Constant C, Van de Water L, Dvorak HF, Hynes RO (1989) Reappearance of an embryonic pattern of fibronectin splicing during wound healing in the adult rat. J Cell Biol 109:903–914

    PubMed  CAS  Google Scholar 

  • Forbes SJ, Russo FP, Rey V, Burra P, Rugge M, Wright NA, Alison MR (2004) A significant proportion of myofibroblasts are of bone marrow origin in human liver fibrosis. Gastroenterology 126:955–963

    PubMed  Google Scholar 

  • Frank ED, Warren L (1981) Aortic smooth muscle cells contain vimentin instead of desmin. Proc Natl Acad Sci U S A 78:3020–3024

    PubMed  CAS  Google Scholar 

  • Frid MG, Brunetti JA, Burke DL, Carpenter TC, Davie NJ, Reeves JT, Roedersheimer MT, van Rooijen N, Stenmark KR (2006) Hypoxia-induced pulmonary vascular remodeling requires recruitment of circulating mesenchymal precursors of a monocyte/macrophage lineage. Am J Pathol 168:659–669

    PubMed  CAS  Google Scholar 

  • Friedman SL (2004a) Mechanisms of disease: mechanisms of hepatic fibrosis and therapeutic implications. Nat Clin Pract Gastroenterol Hepatol 1:98–105

    Google Scholar 

  • Friedman SL (2004b) Stellate cells: a moving target in hepatic fibrogenesis. Hepatology 40:1041–1043

    CAS  Google Scholar 

  • Fujita J, Mori M, Kawada H, Ieda Y, Tsuma M, Matsuzaki Y, Kawaguchi H, Yagi T, Yuasa S, Endo J, Hotta T, Ogawa S, Okano H, Yozu R, Ando K, Fukuda K (2007) Administration of granulocyte colony-stimulating factor after myocardial infarction enhances the recruitment of hematopoietic stem cell-derived myofibroblasts and contributes to cardiac repair. Stem Cells 25:2750–2759

    PubMed  CAS  Google Scholar 

  • Gabbiani G (2003) The myofibroblast in wound healing and fibrocontractive diseases. J Pathol 200:500–503

    PubMed  CAS  Google Scholar 

  • Gabbiani G, Ryan GB, Majno G (1971) Presence of modified fibroblasts in granulation tissue and their possible role in wound contraction. Experientia 27:549–550

    PubMed  CAS  Google Scholar 

  • Gabbiani G, Schmid E, Winter S, Chaponnier C, de Ckhastonay C, Vandekerckhove J, Weber K, Franke WW (1981) Vascular smooth muscle cells differ from other smooth muscle cells: predominance of vimentin filaments and a specific alpha-type actin. Proc Natl Acad Sci U S A 78:298–302

    PubMed  CAS  Google Scholar 

  • Gallucci RM, Lee EG, Tomasek JJ (2006) IL-6 modulates alpha-smooth muscle actin expression in dermal fibroblasts from IL-6-deficient mice. J Invest Dermatol 126:561–568

    PubMed  CAS  Google Scholar 

  • Garra BS (2007) Imaging and estimation of tissue elasticity by ultrasound. Ultrasound Q 23:255–268

    PubMed  Google Scholar 

  • Georges PC, Hui JJ, Gombos Z, McCormick ME, Wang AY, Uemura M, Mick R, Janmey PA, Furth EE, Wells RG (2007) Increased stiffness of the rat liver precedes matrix deposition: implications for fibrosis. Am J Physiol Gastrointest Liver Physiol 293:G1147–1154

    PubMed  CAS  Google Scholar 

  • Gharaee-Kermani M, Hu B, Thannickal VJ, Phan SH, Gyetko MR (2007) Current and emerging drugs for idiopathic pulmonary fibrosis. Expert Opin Emerg Drugs 12:627–646

    PubMed  CAS  Google Scholar 

  • Giannouli CC, Kletsas D (2006) TGF-beta regulates differentially the proliferation of fetal and adult human skin fibroblasts via the activation of PKA and the autocrine action of FGF-2. Cell Signal 18:1417–1429

    PubMed  CAS  Google Scholar 

  • Glaser KJ, Felmlee JP, Manduca A, Kannan Mariappan Y, Ehman RL (2006) Stiffness-weighted magnetic resonance imaging. Magn Reson Med 55:59–67

    PubMed  Google Scholar 

  • Goffin JM, Pittet P, Csucs G, Lussi JW, Meister JJ, Hinz B (2006) Focal adhesion size controls tension-dependent recruitment of alpha-smooth muscle actin to stress fibers. J Cell Biol 172:259–268

    PubMed  CAS  Google Scholar 

  • Goldberg MT, Han YP, Yan C, Shaw MC, Garner WL (2007) TNF-alpha suppresses alpha-smooth muscle actin expression in human dermal fibroblasts: an implication for abnormal wound healing. J Invest Dermatol 127:2645–2655

    PubMed  CAS  Google Scholar 

  • Gonda TA, Varro A, Wang TC, Tycko B (2010) Molecular biology of cancer-associated fibroblasts: can these cells be targeted in anti-cancer therapy? Semin Cell Dev Biol 21:2–10

    PubMed  CAS  Google Scholar 

  • Grainger DJ (2007) TGF-beta and atherosclerosis in man. Cardiovasc Res 74:213–222

    PubMed  CAS  Google Scholar 

  • Gressner AM, Weiskirchen R (2006) Modern pathogenetic concepts of liver fibrosis suggest stellate cells and TGF-beta as major players and therapeutic targets. J Cell Mol Med 10:76–99

    PubMed  CAS  Google Scholar 

  • Griffith B, Pendyala S, Hecker L, Lee PJ, Natarajan V, Thannickal VJ (2009) NOX enzymes and pulmonary disease. Antioxid Redox Signal 11:2505–2516

    PubMed  CAS  Google Scholar 

  • Grinnell F, Zhu M, Carlson MA, Abrams JM (1999) Release of mechanical tension triggers apoptosis of human fibroblasts in a model of regressing granulation tissue. Exp Cell Res 248:608–619

    PubMed  CAS  Google Scholar 

  • Gupta PB, Chaffer CL, Weinberg RA (2009) Cancer stem cells: mirage or reality? Nat Med 15:1010–1012

    PubMed  CAS  Google Scholar 

  • Gurtner GC, Werner S, Barrandon Y, Longaker MT (2008) Wound repair and regeneration. Nature 453:314–321

    PubMed  CAS  Google Scholar 

  • Guyot C, Combe C, Balabaud C, Bioulac-Sage P, Desmoulière A (2007) Fibrogenic cell fate during fibrotic tissue remodelling observed in rat and human cultured liver slices. J Hepatol 46:142–150

    PubMed  CAS  Google Scholar 

  • Guyot C, Lepreux S, Combe C, Doudnikoff E, Bioulac-Sage P, Balabaud C, Desmouliere A (2006) Hepatic fibrosis and cirrhosis: the (myo)fibroblastic cell subpopulations involved. Int J Biochem Cell Biol 38:135–151

    PubMed  CAS  Google Scholar 

  • Hall B, Dembinski J, Sasser AK, Studeny M, Andreeff M, Marini F (2007) Mesenchymal stem cells in cancer: tumor-associated fibroblasts and cell-based delivery vehicles. Int J Hematol 86:8–16

    PubMed  CAS  Google Scholar 

  • Hao H, Gabbiani G, Camenzind E, Bacchetta M, Virmani R, Bochaton-Piallat ML (2006) Phenotypic modulation of intima and media smooth muscle cells in fatal cases of coronary artery lesion. Arterioscler Thromb Vasc Biol 26:326–332

    PubMed  CAS  Google Scholar 

  • Hashimoto N, Jin H, Liu T, Chensue SW, Phan SH (2004) Bone marrow-derived progenitor cells in pulmonary fibrosis. J Clin Invest 113:243–252

    PubMed  CAS  Google Scholar 

  • Haudek SB, Xia Y, Huebener P, Lee JM, Carlson S, Crawford JR, Pilling D, Gomer RH, Trial J, Frangogiannis NG, Entman ML (2006) Bone marrow-derived fibroblast precursors mediate ischemic cardiomyopathy in mice. Proc Natl Acad Sci U S A 103:18284–18289

    PubMed  CAS  Google Scholar 

  • Hawinkels LJ, Verspaget HW, van der Reijden JJ, van der Zon JM, Verheijen JH, Hommes DW, Lamers CB, Sier CF (2009) Active TGF-beta1 correlates with myofibroblasts and malignancy in the colorectal adenoma-carcinoma sequence. Cancer Sci 100:663–670

    PubMed  CAS  Google Scholar 

  • He Q, Wan C, Li G (2007) Concise review: multipotent mesenchymal stromal cells in blood. Stem Cells 25:69–77

    PubMed  CAS  Google Scholar 

  • Hecker L, Vittal R, Jones T, Jagirdar R, Luckhardt TR, Horowitz JC, Pennathur S, Martinez FJ, Thannickal VJ (2009) NADPH oxidase-4 mediates myofibroblast activation and fibrogenic responses to lung injury. Nat Med 15:1077–1081

    PubMed  CAS  Google Scholar 

  • Heldin CH, Rubin K, Pietras K, Ostman A (2004) High interstitial fluid pressure—an obstacle in cancer therapy. Nat Rev Cancer 4:806–813

    PubMed  CAS  Google Scholar 

  • Henderson NC, Mackinnon AC, Farnworth SL, Poirier F, Russo FP, Iredale JP, Haslett C, Simpson KJ, Sethi T (2006) Galectin-3 regulates myofibroblast activation and hepatic fibrosis. Proc Natl Acad Sci U S A 103:5060–5065

    PubMed  CAS  Google Scholar 

  • Hervy M, Hoffman L, Beckerle MC (2006) From the membrane to the nucleus and back again: bifunctional focal adhesion proteins. Curr Opin Cell Biol 18:524–532

    PubMed  CAS  Google Scholar 

  • Hill R, Song Y, Cardiff RD, Van Dyke T (2005) Selective evolution of stromal mesenchyme with p53 loss in response to epithelial tumorigenesis. Cell 123:1001–1011

    PubMed  CAS  Google Scholar 

  • Hinz B (2007) Formation and function of the myofibroblast during tissue repair. J Invest Dermatol 127:526–537

    PubMed  CAS  Google Scholar 

  • Hinz B (2009a) The myofibroblast—friend or foe in regenerative medicine? In: Ralphs CAJ (ed) Regenerative medicine and biomaterials for the repair of connective tissues. Woodhead, Cambridge (in press)

    Google Scholar 

  • Hinz B (2009b) The myofibroblast: paradigm for a mechanically active cell. J Biomech 43(1):146–155

    Google Scholar 

  • Hinz B (2009c) Tissue stiffness, latent TGF-beta1 activation, and mechanical signal transduction: implications for the pathogenesis and treatment of fibrosis. Curr Rheumatol Rep 11:120–126

    CAS  Google Scholar 

  • Hinz B, Celetta G, Tomasek JJ, Gabbiani G, Chaponnier C (2001a) Alpha-smooth muscle actin expression upregulates fibroblast contractile activity. Mol Biol Cell 12:2730–2741

    CAS  Google Scholar 

  • Hinz B, Mastrangelo D, Iselin CE, Chaponnier C, Gabbiani G (2001b) Mechanical tension controls granulation tissue contractile activity and myofibroblast differentiation. Am J Pathol 159:1009–1020

    CAS  Google Scholar 

  • Hinz B, Gabbiani G, Chaponnier C (2002) The NH2-terminal peptide of alpha-smooth muscle actin inhibits force generation by the myofibroblast in vitro and in vivo. J Cell Biol 157:657–663

    PubMed  CAS  Google Scholar 

  • Hinz B, Pittet P, Smith-Clerc J, Chaponnier C, Meister JJ (2004) Myofibroblast development is characterized by specific cell–cell adherens junctions. Mol Biol Cell 15:4310–4320

    PubMed  CAS  Google Scholar 

  • Hinz B, Phan SH, Thannickal VJ, Galli A, Bochaton-Piallat ML, Gabbiani G (2007) The myofibroblast: one function, multiple origins. Am J Pathol 170:1807–1816

    PubMed  CAS  Google Scholar 

  • Horowitz JC, Thannickal VJ (2006) Idiopathic pulmonary fibrosis: new concepts in pathogenesis and implications for drug therapy. Treat Respir Med 5:325–342

    PubMed  Google Scholar 

  • Hughes CC (2008) Endothelial–stromal interactions in angiogenesis. Curr Opin Hematol 15:204–209

    PubMed  Google Scholar 

  • Hung SC, Deng WP, Yang WK, Liu RS, Lee CC, Su TC, Lin RJ, Yang DM, Chang CW, Chen WH, Wei HJ, Gelovani JG (2005) Mesenchymal stem cell targeting of microscopic tumors and tumor stroma development monitored by noninvasive in vivo positron emission tomography imaging. Clin Cancer Res 11:7749–7756

    PubMed  CAS  Google Scholar 

  • Ingber DE (2003) Tensegrity II. How structural networks influence cellular information processing networks. J Cell Sci 116:1397–1408

    PubMed  CAS  Google Scholar 

  • Iredale JP (2007) Models of liver fibrosis: exploring the dynamic nature of inflammation and repair in a solid organ. J Clin Invest 117:539–548

    PubMed  CAS  Google Scholar 

  • Ishii G, Sangai T, Oda T, Aoyagi Y, Hasebe T, Kanomata N, Endoh Y, Okumura C, Okuhara Y, Magae J, Emura M, Ochiya T, Ochiai A (2003) Bone-marrow-derived myofibroblasts contribute to the cancer-induced stromal reaction. Biochem Biophys Res Commun 309:232–240

    PubMed  CAS  Google Scholar 

  • Ishii G, Sangai T, Sugiyama K, Ito T, Hasebe T, Endoh Y, Magae J, Ochiai A (2005) In vivo characterization of bone marrow-derived fibroblasts recruited into fibrotic lesions. Stem Cells 23:699–706

    PubMed  CAS  Google Scholar 

  • Iwano M, Plieth D, Danoff TM, Xue C, Okada H, Neilson EG (2002) Evidence that fibroblasts derive from epithelium during tissue fibrosis. J Clin Invest 110:341–350

    PubMed  CAS  Google Scholar 

  • Jain R, Shaul PW, Borok Z, Willis BC (2007) Endothelin-1 induces alveolar epithelial–mesenchymal transition through endothelin type A receptor-mediated production of TGF-beta1. Am J Respir Cell Mol Biol 37:38–47

    PubMed  CAS  Google Scholar 

  • Jan YY, Yeh TS, Yeh JN, Yang HR, Chen MF (2004) Expression of epidermal growth factor receptor, apomucins, matrix metalloproteinases, and p53 in rat and human cholangiocarcinoma: appraisal of an animal model of cholangiocarcinoma. Ann Surg 240:89–94

    PubMed  Google Scholar 

  • Janmey PA, Winer JP, Murray ME, Wen Q (2009) The hard life of soft cells. Cell Motil Cytoskeleton 66:597–605

    PubMed  Google Scholar 

  • Jenkins G (2008) The role of proteases in transforming growth factor-beta activation. Int J Biochem Cell Biol 40:1068–1078

    PubMed  CAS  Google Scholar 

  • Jenkins RG, Su X, Su G, Scotton CJ, Camerer E, Laurent GJ, Davis GE, Chambers RC, Matthay MA, Sheppard D (2006) Ligation of protease-activated receptor 1 enhances alpha(v)beta6 integrin-dependent TGF-beta activation and promotes acute lung injury. J Clin Invest 116:1606–1614

    PubMed  CAS  Google Scholar 

  • Johnson CP, Tang HY, Carag C, Speicher DW, Discher DE (2007) Forced unfolding of proteins within cells. Science 317:663–666

    PubMed  CAS  Google Scholar 

  • Kalluri R, Zeisberg M (2006) Fibroblasts in cancer. Nat Rev Cancer 6:392–401

    PubMed  CAS  Google Scholar 

  • Kanangat S, Postlethwaite AE, Higgins GC, Hasty KA (2006) Novel functions of intracellular IL-1ra in human dermal fibroblasts: implications in the pathogenesis of fibrosis. J Invest Dermatol 126:756–765

    PubMed  CAS  Google Scholar 

  • Kang HR, Lee CG, Homer RJ, Elias JA (2007) Semaphorin 7A plays a critical role in TGF-beta1-induced pulmonary fibrosis. J Exp Med 204:1083–1093

    PubMed  CAS  Google Scholar 

  • Kaplan RN, Riba RD, Zacharoulis S, Bramley AH, Vincent L, Costa C, MacDonald DD, Jin DK, Shido K, Kerns SA, Zhu Z, Hicklin D, Wu Y, Port JL, Altorki N, Port ER, Ruggero D, Shmelkov SV, Jensen KK, Rafii S, Lyden D (2005) VEGFR1-positive haematopoietic bone marrow progenitors initiate the pre-metastatic niche. Nature 438:820–827

    PubMed  CAS  Google Scholar 

  • Kaplan RN, Psaila B, Lyden D (2006) Bone marrow cells in the ‘pre-metastatic niche’: within bone and beyond. Cancer Metastasis Rev 25:521–529

    PubMed  Google Scholar 

  • Karnoub AE, Dash AB, Vo AP, Sullivan A, Brooks MW, Bell GW, Richardson AL, Polyak K, Tubo R, Weinberg RA (2007) Mesenchymal stem cells within tumour stroma promote breast cancer metastasis. Nature 449:557–563

    PubMed  CAS  Google Scholar 

  • Khakoo AY, Pati S, Anderson SA, Reid W, Elshal MF, Rovira II, Nguyen AT, Malide D, Combs CA, Hall G, Zhang J, Raffeld M, Rogers TB, Stetler-Stevenson W, Frank JA, Reitz M, Finkel T (2006) Human mesenchymal stem cells exert potent antitumorigenic effects in a model of Kaposi’s sarcoma. J Exp Med 203:1235–1247

    PubMed  CAS  Google Scholar 

  • Khaled W, Reichling S, Bruhns OT, Boese H, Baumann M, Monkman G, Egersdoerfer S, Klein D, Tunayar A, Freimuth H, Lorenz A, Pessavento A, Ermert H (2004) Palpation imaging using a haptic system for virtual reality applications in medicine. Stud Health Technol Inform 98:147–153

    PubMed  CAS  Google Scholar 

  • Khaled W, Reichling S, Bruhns OT, Ermert H (2006) Ultrasonic strain imaging and reconstructive elastography for biological tissue. Ultrasonics 44 Suppl 1:e199–202

    Google Scholar 

  • Khan SA, Toledano MB, Taylor-Robinson SD (2008) Epidemiology, risk factors, and pathogenesis of cholangiocarcinoma. HPB (Oxford) 10:77–82

    CAS  Google Scholar 

  • Kim KK, Kugler MC, Wolters PJ, Robillard L, Galvez MG, Brumwell AN, Sheppard D, Chapman HA (2006) Alveolar epithelial cell mesenchymal transition develops in vivo during pulmonary fibrosis and is regulated by the extracellular matrix. Proc Natl Acad Sci U S A 103:13180–13185

    PubMed  CAS  Google Scholar 

  • Kinner B, Gerstenfeld LC, Einhorn TA, Spector M (2002a) Expression of smooth muscle actin in connective tissue cells participating in fracture healing in a murine model. Bone 30:738–745

    CAS  Google Scholar 

  • Kinner B, Zaleskas JM, Spector M (2002b) Regulation of smooth muscle actin expression and contraction in adult human mesenchymal stem cells. Exp Cell Res 278:72–83

    CAS  Google Scholar 

  • Kisseleva T, Uchinami H, Feirt N, Quintana-Bustamante O, Segovia JC, Schwabe RF, Brenner DA (2006) Bone marrow-derived fibrocytes participate in pathogenesis of liver fibrosis. J Hepatol 45:429–438

    PubMed  CAS  Google Scholar 

  • Kizu A, Medici D, Kalluri R (2009) Endothelial–mesenchymal transition as a novel mechanism for generating myofibroblasts during diabetic nephropathy. Am J Pathol 175(4):1371–1373

    PubMed  CAS  Google Scholar 

  • Klein EA, Yin L, Kothapalli D, Castagnino P, Byfield FJ, Xu T, Levental I, Hawthorne E, Janmey PA, Assoian RK (2009) Cell-cycle control by physiological matrix elasticity and in vivo tissue stiffening. Curr Biol 19:1511–1518

    PubMed  CAS  Google Scholar 

  • Komarova S, Kawakami Y, Stoff-Khalili MA, Curiel DT, Pereboeva L (2006) Mesenchymal progenitor cells as cellular vehicles for delivery of oncolytic adenoviruses. Mol Cancer Ther 5:755–766

    PubMed  CAS  Google Scholar 

  • Kulasekaran P, Scavone CA, Rogers DS, Arenberg DA, Thannickal VJ, Horowitz JC (2009) Endothelin-1 and transforming growth factor-beta1 independently induce fibroblast resistance to apoptosis via AKT activation. Am J Respir Cell Mol Biol 41:484–493

    PubMed  CAS  Google Scholar 

  • Kumar S, Weaver VM (2009) Mechanics, malignancy, and metastasis: the force journey of a tumor cell. Cancer Metastasis Rev 28:113–127

    PubMed  Google Scholar 

  • Lan, HY (2003) Tubular epithelial-myofibroblast transdifferentiation mechanisms in proximal tubule cells. Curr Opin Nephrol Hypertens 12:25–29

    PubMed  CAS  Google Scholar 

  • Larson DM, Fujiwara K, Alexander RW, Gimbrone MA Jr (1984) Myosin in cultured vascular smooth muscle cells: immunofluorescence and immunochemical studies of alterations in antigenic expression. J Cell Biol 99:1582–1589

    PubMed  CAS  Google Scholar 

  • Le Bail B, Faouzi S, Boussarie L, Guirouilh J, Blanc JF, Carles J, Bioulac-Sage P, Balabaud C, Rosenbaum J (1999) Osteonectin/SPARC is overexpressed in human hepatocellular carcinoma. J Pathol 189:46–52

    PubMed  CAS  Google Scholar 

  • Leask A, Abraham DJ (2004) TGF-beta signaling and the fibrotic response. Faseb J 18:816–827

    PubMed  CAS  Google Scholar 

  • Lenga Y, Koh A, Perera AS, McCulloch CA, Sodek J, Zohar R (2008) Osteopontin expression is required for myofibroblast differentiation. Circ Res 102:319–327

    PubMed  CAS  Google Scholar 

  • Li AG, Quinn MJ, Siddiqui Y, Wood MD, Federiuk IF, Duman HM, Ward WK (2007a) Elevation of transforming growth factor beta (TGFbeta) and its downstream mediators in subcutaneous foreign body capsule tissue. J Biomed Mater Res A 82:498–508

    Google Scholar 

  • Li Z, Dranoff JA, Chan EP, Uemura M, Sevigny J, Wells RG (2007b) Transforming growth factor-beta and substrate stiffness regulate portal fibroblast activation in culture. Hepatology 46:1246–1256

    CAS  Google Scholar 

  • Li J, Qu X, Bertram JF (2009) Endothelial-myofibroblast transition contributes to the early development of diabetic renal interstitial fibrosis in streptozotocin-induced diabetic mice. Am J Pathol 175(4):1380–1388

    Google Scholar 

  • Lindahl GE, Chambers RC, Papakrivopoulou J, Dawson SJ, Jacobsen MC, Bishop JE, Laurent GJ (2002) Activation of fibroblast procollagen alpha 1(I) transcription by mechanical strain is transforming growth factor-beta-dependent and involves increased binding of CCAAT-binding factor (CBF/NF-Y) at the proximal promoter. J Biol Chem 277:6153–6161

    PubMed  CAS  Google Scholar 

  • Liu K, He X, Lei XZ, Zhao LS, Tang H, Liu L, Lei BJ (2003) Pathomorphological study on location and distribution of Kupffer cells in hepatocellular carcinoma. World J Gastroenterol 9:1946–1949

    PubMed  Google Scholar 

  • Liu T, Dhanasekaran SM, Jin H, Hu B, Tomlins SA, Chinnaiyan AM, Phan SH (2004) FIZZ1 stimulation of myofibroblast differentiation. Am J Pathol 164:1315–1326

    PubMed  CAS  Google Scholar 

  • Malmstrom J, Lindberg H, Lindberg C, Bratt C, Wieslander E, Delander EL, Sarnstrand B, Burns JS, Mose-Larsen P, Fey S, Marko-Varga G (2004) Transforming growth factor-beta 1 specifically induce proteins involved in the myofibroblast contractile apparatus. Mol Cell Proteomics 3:466–477

    PubMed  Google Scholar 

  • Mattoli S, Bellini A, Schmidt M (2009) The role of a human hematopoietic mesenchymal progenitor in wound healing and fibrotic diseases and implications for therapy. Curr Stem Cell Res 4:266–280

    CAS  Google Scholar 

  • Menon LG, Picinich S, Koneru R, Gao H, Lin SY, Koneru M, Mayer-Kuckuk P, Glod J, Banerjee D (2007) Differential gene expression associated with migration of mesenchymal stem cells to conditioned medium from tumor cells or bone marrow cells. Stem Cells 25:520–528

    PubMed  CAS  Google Scholar 

  • Metz CN (2003) Fibrocytes: a unique cell population implicated in wound healing. Cell Mol Life Sci 60:1342–1350

    PubMed  CAS  Google Scholar 

  • Micera A, Vigneti E, Pickholtz D, Reich R, Pappo O, Bonini S, Maquart FX, Aloe L, Levi-Schaffer F (2001) Nerve growth factor displays stimulatory effects on human skin and lung fibroblasts, demonstrating a direct role for this factor in tissue repair. Proc Natl Acad Sci U S A 98:6162–6167

    PubMed  CAS  Google Scholar 

  • Minguell JJ, Erices A, Conget P (2001) Mesenchymal stem cells. Exp Biol Med (Maywood) 226:507–520

    CAS  Google Scholar 

  • Mishra PJ, Mishra PJ, Humeniuk R, Medina DJ, Alexe G, Mesirov JP, Ganesan S, Glod JW, Banerjee D (2008) Carcinoma-associated fibroblast-like differentiation of human mesenchymal stem cells. Cancer Res 68:4331–4339

    PubMed  CAS  Google Scholar 

  • Mishra PJ, Glod JW, Banerjee D (2009) Mesenchymal stem cells: flip side of the coin. Cancer Res 69:1255–1258

    PubMed  CAS  Google Scholar 

  • Moeller A, Gilpin SE, Ask K, Cox G, Cook D, Gauldie J, Margetts PJ, Farkas L, Dobranowski J, Boylan C, O’Byrne PM, Strieter RM, Kolb M (2009) Circulating fibrocytes are an indicator of poor prognosis in idiopathic pulmonary fibrosis. Am J Respir Crit Care Med 179:588–594

    PubMed  Google Scholar 

  • Mollmann H et al (2006) Bone marrow-derived cells contribute to infarct remodelling. Cardiovasc Res 71:661–671

    PubMed  Google Scholar 

  • Monvoisin A, Neaud V, De Ledinghen V, Dubuisson L, Balabaud C, Bioulac-Sage P, Desmouliere A, Rosenbaum J (1999) Direct evidence that hepatocyte growth factor-induced invasion of hepatocellular carcinoma cells is mediated by urokinase. J Hepatol 30:511–518

    PubMed  CAS  Google Scholar 

  • Monvoisin A, Bisson C, Si-Tayeb K, Balabaud C, Desmouliere A, Rosenbaum J (2002) Involvement of matrix metalloproteinase type-3 in hepatocyte growth factor-induced invasion of human hepatocellular carcinoma cells. Int J Cancer 97:157–162

    PubMed  CAS  Google Scholar 

  • Moreels M, Vandenabeele F, Dumont D, Robben J, Lambrichts I (2008) Alpha-smooth muscle actin (alpha-SMA) and nestin expression in reactive astrocytes in multiple sclerosis lesions: potential regulatory role of transforming growth factor-beta 1 (TGF-beta1). Neuropathol Appl Neurobiol 34:532–546

    PubMed  CAS  Google Scholar 

  • Mori L, Bellini A, Stacey MA, Schmidt M, Mattoli S (2005) Fibrocytes contribute to the myofibroblast population in wounded skin and originate from the bone marrow. Exp Cell Res 304:81–90

    PubMed  CAS  Google Scholar 

  • Mori R, Shaw TJ, Martin P (2008) Molecular mechanisms linking wound inflammation and fibrosis: knockdown of osteopontin leads to rapid repair and reduced scarring. J Exp Med 205:43–51

    PubMed  CAS  Google Scholar 

  • Munger JS, Huang X, Kawakatsu H, Griffiths MJ, Dalton SL, Wu J, Pittet JF, Kaminski N, Garat C, Matthay MA, Rifkin DB, Sheppard D (1999) The integrin alpha v beta 6 binds and activates latent TGF beta 1: a mechanism for regulating pulmonary inflammation and fibrosis. Cell 96:319–328

    PubMed  CAS  Google Scholar 

  • Naugle JE, Olson ER, Zhang X, Mase SE, Pilati CF, Maron MB, Folkesson HG, Horne WI, Doane KJ, Meszaros JG (2006) Type VI collagen induces cardiac myofibroblast differentiation: implications for postinfarction remodeling. Am J Physiol Heart Circ Physiol 290:H323–330

    PubMed  CAS  Google Scholar 

  • Neaud V, Faouzi S, Guirouilh J, Le Bail B, Balabaud C, Bioulac-Sage P, Rosenbaum J (1997) Human hepatic myofibroblasts increase invasiveness of hepatocellular carcinoma cells: evidence for a role of hepatocyte growth factor. Hepatology 26:1458–1466

    PubMed  CAS  Google Scholar 

  • Neaud V, Hisaka T, Monvoisin A, Bedin C, Balabaud C, Foster DC, Desmouliere A, Kisiel W, Rosenbaum J (2000) Paradoxical pro-invasive effect of the serine proteinase inhibitor tissue factor pathway inhibitor-2 on human hepatocellular carcinoma cells. J Biol Chem 275:35565–35569

    PubMed  CAS  Google Scholar 

  • Ng CP, Hinz B, Swartz MA (2005) Interstitial fluid flow induces myofibroblast differentiation and collagen alignment in vitro. J Cell Sci 118:4731–4739

    PubMed  CAS  Google Scholar 

  • Nielsen JD, Moeslund M, Wandall HH, Dabelsteen S (2008) Influences of tumor stroma on the malignant phenotype. J Oral Pathol Med 37:412–416

    PubMed  Google Scholar 

  • Ninichuk V et al (2006) Multipotent mesenchymal stem cells reduce interstitial fibrosis but do not delay progression of chronic kidney disease in collagen4A3-deficient mice. Kidney Int 70:121–129

    PubMed  CAS  Google Scholar 

  • Noel A, Jost M, Maquoi E (2008) Matrix metalloproteinases at cancer tumor-host interface. Semin Cell Dev Biol 19:52–60

    PubMed  CAS  Google Scholar 

  • Okamura N, Yoshida M, Shibuya A, Sugiura H, Okayasu I, Ohbu M (2005) Cellular and stromal characteristics in the scirrhous hepatocellular carcinoma: comparison with hepatocellular carcinomas and intrahepatic cholangiocarcinomas. Pathol Int 55:724–731

    PubMed  CAS  Google Scholar 

  • Orimo A, Weinberg RA (2007) Heterogeneity of stromal fibroblasts in tumors. Cancer Biol Ther 6:618–619

    PubMed  CAS  Google Scholar 

  • Ostman A, Augsten M (2009) Cancer-associated fibroblasts and tumor growth–bystanders turning into key players. Curr Opin Genet Dev 19:67–73

    PubMed  Google Scholar 

  • Pardali K, Moustakas A (2007) Actions of TGF-beta as tumor suppressor and pro-metastatic factor in human cancer. Biochim Biophys Acta 1775:21–62

    PubMed  CAS  Google Scholar 

  • Paszek MJ, Zahir N, Johnson KR, Lakins JN, Rozenberg GI, Gefen A, Reinhart-King CA, Margulies SS, Dembo M, Boettiger D, Hammer DA, Weaver VM (2005) Tensional homeostasis and the malignant phenotype. Cancer Cell 8:241–254

    PubMed  CAS  Google Scholar 

  • Peled A, Zipori D, Abramsky O, Ovadia H, Shezen E (1991) Expression of alpha-smooth muscle actin in murine bone marrow stromal cells. Blood 78:304–309

    PubMed  CAS  Google Scholar 

  • Peterson LJ, Rajfur Z, Maddox AS, Freel CD, Chen Y, Edlund M, Otey C, Burridge K (2004) Simultaneous stretching and contraction of stress fibers in vivo. Mol Biol Cell 15:3497–3508

    PubMed  CAS  Google Scholar 

  • Phan, SH (2002) The myofibroblast in pulmonary fibrosis. Chest 122:286S–289S

    PubMed  Google Scholar 

  • Phillips RJ, Burdick MD, Hong K, Lutz MA, Murray LA, Xue YY, Belperio JA, Keane MP, Strieter RM (2004) Circulating fibrocytes traffic to the lungs in response to CXCL12 and mediate fibrosis. J Clin Invest 114:438–446

    PubMed  CAS  Google Scholar 

  • Pietras K, Sjoblom T, Rubin K, Heldin CH, Ostman A (2003) PDGF receptors as cancer drug targets. Cancer Cell 3:439–443

    PubMed  CAS  Google Scholar 

  • Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, Moorman MA, Simonetti DW, Craig S, Marshak DR (1999) Multilineage potential of adult human mesenchymal stem cells. Science 284:143–147

    PubMed  CAS  Google Scholar 

  • Potenta S, Zeisberg E, Kalluri R (2008) The role of endothelial-to-mesenchymal transition in cancer progression. Br J Cancer 99:1375–1379

    PubMed  CAS  Google Scholar 

  • Qi W, Chen X, Poronnik P, Pollock CA (2006) The renal cortical fibroblast in renal tubulointerstitial fibrosis. Int J Biochem Cell Biol 38:1–5

    PubMed  CAS  Google Scholar 

  • Quan TE, Cowper SE, Bucala R (2006) The role of circulating fibrocytes in fibrosis. Curr Rheumatol Rep 8:145–150

    PubMed  CAS  Google Scholar 

  • Radisky DC, Przybylo JA (2008) Matrix metalloproteinase-induced fibrosis and malignancy in breast and lung. Proc Am Thorac Soc 5:316–322

    PubMed  CAS  Google Scholar 

  • Radisky DC, Kenny PA, Bissell MJ (2007) Fibrosis and cancer: do myofibroblasts come also from epithelial cells via EMT? J Cell Biochem 101:830–839

    PubMed  CAS  Google Scholar 

  • Rajkumar VS, Shiwen X, Bostrom M, Leoni P, Muddle J, Ivarsson M, Gerdin B, Denton CP, Bou-Gharios G, Black CM, Abraham DJ (2006) Platelet-derived growth factor-beta receptor activation is essential for fibroblast and pericyte recruitment during cutaneous wound healing. Am J Pathol 169:2254–2265

    PubMed  CAS  Google Scholar 

  • Ramadori G, Saile B (2004) Portal tract fibrogenesis in the liver. Lab Invest 84:153–159

    PubMed  Google Scholar 

  • Rocks N, Paulissen G, El Hour M, Quesada F, Crahay C, Gueders M, Foidart JM, Noel A, Cataldo D (2008a) Emerging roles of ADAM and ADAMTS metalloproteinases in cancer. Biochimie 90:369–379

    CAS  Google Scholar 

  • Rocks N, Paulissen G, Quesada-Calvo F, Munaut C, Gonzalez ML, Gueders M, Hacha J, Gilles C, Foidart JM, Noel A, Cataldo DD (2008b) ADAMTS-1 metalloproteinase promotes tumor development through the induction of a stromal reaction in vivo. Cancer Res 68:9541–9550

    CAS  Google Scholar 

  • Ronnov-Jessen L, Petersen OW (1993) Induction of alpha-smooth muscle actin by transforming growth factor-beta 1 in quiescent human breast gland fibroblasts. Implications for myofibroblast generation in breast neoplasia. Lab Invest 68:696–707

    PubMed  CAS  Google Scholar 

  • Rosenkranz S (2004) TGF-beta1 and angiotensin networking in cardiac remodeling. Cardiovasc Res 63:423–432

    PubMed  CAS  Google Scholar 

  • Roufosse CA, Direkze NC, Otto WR, Wright NA (2004) Circulating mesenchymal stem cells. Int J Biochem Cell Biol 36:585–597

    PubMed  CAS  Google Scholar 

  • Ruiz-Ortega M, Rodriguez-Vita J, Sanchez-Lopez E, Carvajal G, Egido J (2007) TGF-beta signaling in vascular fibrosis. Cardiovasc Res 74:196–206

    PubMed  CAS  Google Scholar 

  • Saika S, Ikeda K, Yamanaka O, Flanders KC, Okada Y, Miyamoto T, Kitano A, Ooshima A, Nakajima Y, Ohnishi Y, Kao WW (2006) Loss of tumor necrosis factor alpha potentiates transforming growth factor beta-mediated pathogenic tissue response during wound healing. Am J Pathol 168:1848–1860

    PubMed  CAS  Google Scholar 

  • Saile B, Matthes N, Neubauer K, Eisenbach C, El-Armouche H, Dudas J, Ramadori G (2002) Rat liver myofibroblasts and hepatic stellate cells differ in CD95-mediated apoptosis and response to TNF-alpha. Am J Physiol Gastrointest Liver Physiol 283:G435–444

    PubMed  CAS  Google Scholar 

  • Saile B, DiRocco P, Dudas J, El-Armouche H, Sebb H, Eisenbach C, Neubauer K, Ramadori G (2004) IGF-I induces DNA synthesis and apoptosis in rat liver hepatic stellate cells (HSC) but DNA synthesis and proliferation in rat liver myofibroblasts (rMF). Lab Invest 84:1037–1049

    PubMed  CAS  Google Scholar 

  • Sakai N, Wada T, Yokoyama H, Lipp M, Ueha S, Matsushima K, Kaneko S (2006) Secondary lymphoid tissue chemokine (SLC/CCL21)/CCR7 signaling regulates fibrocytes in renal fibrosis. Proc Natl Acad Sci U S A 103:14098–14103

    PubMed  CAS  Google Scholar 

  • Sartore S, Chiavegato A, Faggin E, Franch R, Puato M, Ausoni S, Pauletto P (2001) Contribution of adventitial fibroblasts to neointima formation and vascular remodeling: from innocent bystander to active participant. Circ Res 89:1111–1121

    PubMed  CAS  Google Scholar 

  • Sasaki M et al (2008) Mesenchymal stem cells are recruited into wounded skin and contribute to wound repair by transdifferentiation into multiple skin cell type. J Immunol 180:2581–2587

    PubMed  CAS  Google Scholar 

  • Sata M et al (2002) Hematopoietic stem cells differentiate into vascular cells that participate in the pathogenesis of atherosclerosis. Nat Med 8:403–409

    PubMed  CAS  Google Scholar 

  • Schafer M, Werner S (2008) Cancer as an overhealing wound: an old hypothesis revisited. Nat Rev Mol Cell Biol 9:628–638

    PubMed  CAS  Google Scholar 

  • Schmidt M, Sun G, Stacey MA, Mori L, Mattoli S (2003) Identification of circulating fibrocytes as precursors of bronchial myofibroblasts in asthma. J Immunol 171:380–389

    PubMed  CAS  Google Scholar 

  • Schurch W, Seemayer TA, Hinz B, Gabbiani G (2007) Myofibroblast. In: Mills SE (ed) Histology for Pathologists. Lippincott-Williams & Wilkins, Philadelphia, pp 123–164

    Google Scholar 

  • Scotton CJ, Chambers RC (2007) Molecular targets in pulmonary fibrosis: the myofibroblast in focus. Chest 132:1311–1321

    PubMed  Google Scholar 

  • Serini G, Bochaton-Piallat ML, Ropraz P, Geinoz A, Borsi L, Zardi L, Gabbiani G (1998) The fibronectin domain ED-A is crucial for myofibroblastic phenotype induction by transforming growth factor-beta1. J Cell Biol 142:873–881

    PubMed  CAS  Google Scholar 

  • Shah M, Foreman DM, Ferguson MW (1995) Neutralisation of TGF-beta 1 and TGF-beta 2 or exogenous addition of TGF-beta 3 to cutaneous rat wounds reduces scarring. J Cell Sci 108:985–1002

    PubMed  CAS  Google Scholar 

  • Shen WL, Gao PJ, Che ZQ, Ji KD, Yin M, Yan C, Berk BC, Zhu DL (2006) NAD(P)H oxidase-derived reactive oxygen species regulate angiotensin-II induced adventitial fibroblast phenotypic differentiation. Biochem Biophys Res Commun 339:337–343

    PubMed  CAS  Google Scholar 

  • Shephard P, Martin G, Smola-Hess S, Brunner G, Krieg T, Smola H (2004) Myofibroblast differentiation is induced in keratinocyte-fibroblast co-cultures and is antagonistically regulated by endogenous transforming growth factor-beta and interleukin-1. Am J Pathol 164:2055–2066

    PubMed  CAS  Google Scholar 

  • Sheppard D (2005) Integrin-mediated activation of latent transforming growth factor beta. Cancer Metastasis Rev 24:395–402

    PubMed  CAS  Google Scholar 

  • Shi-Wen X, Renzoni EA, Kennedy L, Howat S, Chen Y, Pearson JD, Bou-Gharios G, Dashwood MR, du Bois RM, Black CM, Denton CP, Abraham DJ, Leask A (2007) Endogenous endothelin-1 signaling contributes to type I collagen and CCN2 overexpression in fibrotic fibroblasts. Matrix Biol 26:625–632

    PubMed  Google Scholar 

  • Shi-Wen X, Leask A, Abraham D (2008) Regulation and function of connective tissue growth factor/CCN2 in tissue repair, scarring and fibrosis. Cytokine Growth Factor Rev 19:133–144

    PubMed  Google Scholar 

  • Shibata T, Ochiai A, Gotoh M, Machinami R, Hirohashi S (1996) Simultaneous expression of cadherin-11 in signet-ring cell carcinoma and stromal cells of diffuse-type gastric cancer. Cancer Lett 99:147–153

    PubMed  CAS  Google Scholar 

  • Siegel PM, Massague J (2003) Cytostatic and apoptotic actions of TGF-beta in homeostasis and cancer. Nat Rev Cancer 3:807–821

    PubMed  CAS  Google Scholar 

  • Siggelkow W, Faridi A, Spiritus K, Klinge U, Rath W, Klosterhalfen B (2003) Histological analysis of silicone breast implant capsules and correlation with capsular contracture. Biomaterials 24:1101–1109

    PubMed  CAS  Google Scholar 

  • Silver J, Miller JH (2004) Regeneration beyond the glial scar. Nat Rev Neurosci 5:146–156

    PubMed  CAS  Google Scholar 

  • Simmons PJ, Torok-Storb B (1991) Identification of stromal cell precursors in human bone marrow by a novel monoclonal antibody, STRO-1. Blood 78:55–62

    PubMed  CAS  Google Scholar 

  • Skalli O, Ropraz P, Trzeciak A, Benzonana G, Gillessen D, Gabbiani G (1986) A monoclonal antibody against alpha-smooth muscle actin: a new probe for smooth muscle differentiation. J Cell Biol 103:2787–2796

    PubMed  CAS  Google Scholar 

  • Strehlow D, Korn JH (1998) Biology of the scleroderma fibroblast. Curr Opin Rheumatol 10:572–578

    PubMed  CAS  Google Scholar 

  • Strutz F, Zeisberg M, Renziehausen A, Raschke B, Becker V, van Kooten C, Muller G (2001) TGF-beta 1 induces proliferation in human renal fibroblasts via induction of basic fibroblast growth factor (FGF-2). Kidney Int 59:579–592

    PubMed  CAS  Google Scholar 

  • Studeny M, Marini FC, Champlin RE, Zompetta C, Fidler IJ, Andreeff M (2002) Bone marrow-derived mesenchymal stem cells as vehicles for interferon-beta delivery into tumors. Cancer Res 62:3603–3608

    PubMed  CAS  Google Scholar 

  • Studeny M, Marini FC, Dembinski JL, Zompetta C, Cabreira-Hansen M, Bekele BN, Champlin RE, Andreeff M (2004) Mesenchymal stem cells: potential precursors for tumor stroma and targeted-delivery vehicles for anticancer agents. J Natl Cancer Inst 96:1593–1603

    PubMed  CAS  Google Scholar 

  • Sugimoto H, Mundel TM, Kieran MW, Kalluri R (2006) Identification of fibroblast heterogeneity in the tumor microenvironment. Cancer Biol Ther 5:1640–1646

    PubMed  CAS  Google Scholar 

  • Sundberg C, Ivarsson M, Gerdin B, Rubin K (1996) Pericytes as collagen-producing cells in excessive dermal scarring. Lab Invest 74:452–466

    PubMed  CAS  Google Scholar 

  • Suska F, Emanuelsson L, Johansson A, Tengvall P, Thomsen P (2008) Fibrous capsule formation around titanium and copper. J Biomed Mater Res A 85:888–896

    PubMed  Google Scholar 

  • Taipale J, Saharinen J, Keski-Oja J (1998) Extracellular matrix-associated transforming growth factor-beta: role in cancer cell growth and invasion. Adv Cancer Res 75:87–134

    PubMed  CAS  Google Scholar 

  • Tamaoki M, Imanaka-Yoshida K, Yokoyama K, Nishioka T, Inada H, Hiroe M, Sakakura T, Yoshida T (2005) Tenascin-C regulates recruitment of myofibroblasts during tissue repair after myocardial injury. Am J Pathol 167:71–80

    PubMed  CAS  Google Scholar 

  • Tamariz E, Grinnell F (2002) Modulation of Fibroblast Morphology and Adhesion during Collagen Matrix Remodeling. Mol Biol Cell 13:3915–3929

    PubMed  CAS  Google Scholar 

  • Taras D, Blanc JF, Rullier A, Dugot-Senant N, Laurendeau I, Bieche I, Pines M, Rosenbaum J (2006) Halofuginone suppresses the lung metastasis of chemically induced hepatocellular carcinoma in rats through MMP inhibition. Neoplasia 8:312–318

    PubMed  CAS  Google Scholar 

  • Taras D, Blanc JF, Rullier A, Dugot-Senant N, Laurendeau I, Vidaud M, Rosenbaum J (2007) Pravastatin reduces lung metastasis of rat hepatocellular carcinoma via a coordinated decrease of MMP expression and activity. J Hepatol 46:69–76

    PubMed  CAS  Google Scholar 

  • ten Dijke P, Arthur HM (2007) Extracellular control of TGFbeta signalling in vascular development and disease. Nat Rev Mol Cell Biol 8:857–869

    PubMed  Google Scholar 

  • Tenney RM, Discher DE (2009) Stem cells, microenvironment mechanics, and growth factor activation. Curr Opin Cell Biol 21:630–635

    PubMed  CAS  Google Scholar 

  • Terada T, Makimoto K, Terayama N, Suzuki Y, Nakanuma Y (1996a) Alpha-smooth muscle actin-positive stromal cells in cholangiocarcinomas, hepatocellular carcinomas and metastatic liver carcinomas. J Hepatol 24:706–712

    CAS  Google Scholar 

  • Terada T, Okada Y, Nakanuma Y (1996b) Expression of immunoreactive matrix metalloproteinases and tissue inhibitors of matrix metalloproteinases in human normal livers and primary liver tumors. Hepatology 23:1341–1344

    CAS  Google Scholar 

  • Terada T, Matsunaga Y (2000) Increased mast cells in hepatocellular carcinoma and intrahepatic cholangiocarcinoma. J Hepatol 33:961–966

    PubMed  CAS  Google Scholar 

  • Thannickal VJ, Toews GB, White ES, Lynch JP 3rd, Martinez FJ (2004) Mechanisms of pulmonary fibrosis. Annu Rev Med 55:395–417

    PubMed  CAS  Google Scholar 

  • Thiery JP (2002) Epithelial–mesenchymal transitions in tumour progression. Nat Rev Cancer 2:442–454

    PubMed  CAS  Google Scholar 

  • Tomasek JJ, Vaughan MB, Haaksma CJ (1999) Cellular structure and biology of Dupuytren’s disease. Hand Clin 15:21–34

    PubMed  CAS  Google Scholar 

  • Tomasek JJ, Gabbiani G, Hinz B, Chaponnier C, Brown RA (2002) Myofibroblasts and mechano-regulation of connective tissue remodelling. Nat Rev Mol Cell Biol 3:349–363

    PubMed  CAS  Google Scholar 

  • Tomita K, van Bokhoven A, van Leenders GJ, Ruijter ET, Jansen CF, Bussemakers MJ, Schalken JA (2000) Cadherin switching in human prostate cancer progression. Cancer Res 60:3650–3654

    PubMed  CAS  Google Scholar 

  • Trojanowska M, Varga J (2007) Molecular pathways as novel therapeutic targets in systemic sclerosis. Curr Opin Rheumatol 19:568–573

    PubMed  CAS  Google Scholar 

  • Uhal BD, Kim JK, Li X, Molina-Molina M (2007) Angiotensin-TGF-beta 1 crosstalk in human idiopathic pulmonary fibrosis: autocrine mechanisms in myofibroblasts and macrophages. Curr Pharm Des 13:1247–1256

    PubMed  CAS  Google Scholar 

  • van Amerongen MJ et al (2008) Bone marrow-derived myofibroblasts contribute functionally to scar formation after myocardial infarction. J Pathol 214:377–386

    PubMed  Google Scholar 

  • van der Loop FT, Schaart G, Timmer ED, Ramaekers FC, van Eys GJ (1996) Smoothelin, a novel cytoskeletal protein specific for smooth muscle cells. J Cell Biol 134:401–411

    PubMed  CAS  Google Scholar 

  • van Zijl F, Mair M, Csiszar A, Schneller D, Zulehner G, Huber H, Eferl R, Beug H, Dolznig H, Mikulits W (2009) Hepatic tumor–stroma crosstalk guides epithelial to mesenchymal transition at the tumor edge. Oncogene 28(45):4022–4033

    PubMed  CAS  Google Scholar 

  • Varcoe RL, Mikhail M, Guiffre AK, Pennings G, Vicaretti M, Hawthorne WJ, Fletcher JP, Medbury HJ (2006) The role of the fibrocyte in intimal hyperplasia. J Thromb Haemost 4:1125–1133

    PubMed  CAS  Google Scholar 

  • Varga J, Abraham D (2007) Systemic sclerosis: a prototypic multisystem fibrotic disorder. J Clin Invest 117:557–567

    PubMed  CAS  Google Scholar 

  • Varga J, Pasche B (2009) Transforming growth factor beta as a therapeutic target in systemic sclerosis. Nat Rev Rheumatol 5:200–206

    PubMed  CAS  Google Scholar 

  • Verona EV, Elkahloun AG, Yang J, Bandyopadhyay A, Yeh IT, Sun LZ (2007) Transforming growth factor-beta signaling in prostate stromal cells supports prostate carcinoma growth by up-regulating stromal genes related to tissue remodeling. Cancer Res 67:5737–5746

    PubMed  CAS  Google Scholar 

  • Wada T, Sakai N, Matsushima K, Kaneko S (2007) Fibrocytes: a new insight into kidney fibrosis. Kidney Int 72:269–273

    PubMed  CAS  Google Scholar 

  • Wakefield LM, Stuelten C (2007) Keeping order in the neighborhood: new roles for TGFbeta in maintaining epithelial homeostasis. Cancer Cell 12:293–295

    PubMed  CAS  Google Scholar 

  • Wang Q, Breinan HA, Hsu HP, Spector M (2000) Healing of defects in canine articular cartilage: distribution of nonvascular alpha-smooth muscle actin-containing cells. Wound Repair Regen 8:145–158

    PubMed  CAS  Google Scholar 

  • Wang J, Su M, Fan J, Seth A, McCulloch CA (2002) Transcriptional regulation of a contractile gene by mechanical forces applied through integrins in osteoblasts. J Biol Chem 277:22889–22895

    PubMed  CAS  Google Scholar 

  • Wang J, Chen H, Seth A, McCulloch CA (2003) Mechanical force regulation of myofibroblast differentiation in cardiac fibroblasts. Am J Physiol Heart Circ Physiol 285:H1871–1881

    PubMed  CAS  Google Scholar 

  • Wang D, Park JS, Chu JS, Krakowski A, Luo K, Chen DJ, Li S (2004) Proteomic profiling of bone marrow mesenchymal stem cells upon transforming growth factor beta1 stimulation. J Biol Chem 279:43725–43734

    PubMed  CAS  Google Scholar 

  • Wells RG (2005) The role of matrix stiffness in hepatic stellate cell activation and liver fibrosis. J Clin Gastroenterol 39:S158–161

    PubMed  CAS  Google Scholar 

  • Wells RG, Discher DE (2008) Matrix Elasticity, Cytoskeletal Tension, and TGF-β: the Insoluble and Soluble Meet. Sci Signal 1:pe13

    PubMed  Google Scholar 

  • Werner S, Grose R (2003) Regulation of wound healing by growth factors and cytokines. Physiol Rev 83:835–870

    PubMed  CAS  Google Scholar 

  • Winer JP, Janmey PA, McCormick ME, Funaki M (2009) Bone marrow-derived human mesenchymal stem cells become quiescent on soft substrates but remain responsive to chemical or mechanical stimuli. Tissue Eng Part A 15:147–154

    PubMed  CAS  Google Scholar 

  • Wipff PJ, Hinz B (2008) Integrins and the activation of latent transforming growth factor beta1—an intimate relationship. Eur J Cell Biol 87:601–615

    PubMed  CAS  Google Scholar 

  • Wipff PJ, Rifkin DB, Meister JJ, Hinz B (2007) Myofibroblast contraction activates latent TGF-beta1 from the extracellular matrix. J Cell Biol 179:1311–1323

    PubMed  CAS  Google Scholar 

  • Wolfe JN (1976) Risk for breast cancer development determined by mammographic parenchymal pattern. Cancer 37:2486–2492

    PubMed  CAS  Google Scholar 

  • Wynn TA (2007) Common and unique mechanisms regulate fibrosis in various fibroproliferative diseases. J Clin Invest 117:524–529

    PubMed  CAS  Google Scholar 

  • Wynn TA (2008) Cellular and molecular mechanisms of fibrosis. J Pathol 214:199–210

    PubMed  CAS  Google Scholar 

  • Yamaguchi Y et al (2005) Bone marrow cells differentiate into wound myofibroblasts and accelerate the healing of wounds with exposed bones when combined with an occlusive dressing. Br J Dermatol 152:616–622

    PubMed  CAS  Google Scholar 

  • Yamamoto H, Itoh F, Adachi Y, Sakamoto H, Adachi M, Hinoda Y, Imai K (1997) Relation of enhanced secretion of active matrix metalloproteinases with tumor spread in human hepatocellular carcinoma. Gastroenterology 112:1290–1296

    PubMed  CAS  Google Scholar 

  • Yan X et al (2007) Injured microenvironment directly guides the differentiation of engrafted Flk-1(+) mesenchymal stem cell in lung. Exp Hematol 35:1466–1475

    PubMed  CAS  Google Scholar 

  • Ye J, Yao K, Kim JC (2006) Mesenchymal stem cell transplantation in a rabbit corneal alkali burn model: engraftment and involvement in wound healing. Eye 20:482–490

    PubMed  CAS  Google Scholar 

  • Yeh CN, Maitra A, Lee KF, Jan YY, Chen MF (2004) Thioacetamide-induced intestinal-type cholangiocarcinoma in rat: an animal model recapitulating the multi-stage progression of human cholangiocarcinoma. Carcinogenesis 25:631–636

    PubMed  CAS  Google Scholar 

  • Yeung T, Georges PC, Flanagan LA, Marg B, Ortiz M, Funaki M, Zahir N, Ming W, Weaver V, Janmey PA (2005) Effects of substrate stiffness on cell morphology, cytoskeletal structure, and adhesion. Cell Motil Cytoskeleton 60:24–34

    PubMed  Google Scholar 

  • Zalewski A, Shi Y, Johnson AG (2002) Diverse origin of intimal cells: smooth muscle cells, myofibroblasts, fibroblasts, and beyond? Circ Res 91:652–655

    PubMed  CAS  Google Scholar 

  • Zeisberg M, Kalluri R (2008) Fibroblasts emerge via epithelial–mesenchymal transition in chronic kidney fibrosis. Front Biosci 13:6991–6998

    PubMed  CAS  Google Scholar 

  • Zeisberg EM, Potenta S, Xie L, Zeisberg M, Kalluri R (2007a) Discovery of endothelial to mesenchymal transition as a source for carcinoma-associated fibroblasts. Cancer Res 67:10123–10128

    CAS  Google Scholar 

  • Zeisberg EM, Tarnavski O, Zeisberg M, Dorfman AL, McMullen JR, Gustafsson E, Chandraker A, Yuan X, Pu WT, Roberts AB, Neilson EG, Sayegh MH, Izumo S, Kalluri R (2007b) Endothelial-to-mesenchymal transition contributes to cardiac fibrosis. Nat Med 13:952–961

    CAS  Google Scholar 

  • Zeisberg M, Yang C, Martino M, Duncan MB, Rieder F, Tanjore H, Kalluri R (2007c) Fibroblasts derive from hepatocytes in liver fibrosis via epithelial to mesenchymal transition. J Biol Chem 282:23337–23347

    CAS  Google Scholar 

  • Zeisberg EM, Potenta SE, Sugimoto H, Zeisberg M, Kalluri R (2008) Fibroblasts in kidney fibrosis emerge via endothelial-to-mesenchymal transition. J Am Soc Nephrol 19:2282–2287

    PubMed  Google Scholar 

  • Zhao XH, Laschinger C, Arora P, Szaszi K, Kapus A, McCulloch CA (2007) Force activates smooth muscle alpha-actin promoter activity through the Rho signaling pathway. J Cell Sci 120:1801–1809

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The work of BH is supported by grants from the Swiss National Science Foundation (#3100A0-113733/1 and #3200–067254), from the GEBERT RÜF STIFTUNG, and from the Connaught Funding Program. The work of AD was supported in part by a grant from the University of Limoges (Contrat Renforcé Recherche). The work of IAD was supported in part by a grant from the Australian Academy of Science and a visiting fellowship at the University of Limoges. We are very grateful to Paulette Bioulac-Sage, and Sébastien Lepreux (Service d’Anatomie Pathologique, Hôpital Pellegrin, CHU Bordeaux, France) for the illustrations of pathological cases.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giulio Gabbiani .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Hinz, B., Darby, I.A., Gabbiani, G., Desmoulière, A. (2011). The Role of the Myofibroblast in Fibrosis and Cancer Progression. In: Mueller, M., Fusenig, N. (eds) Tumor-Associated Fibroblasts and their Matrix. The Tumor Microenvironment, vol 4. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-0659-0_3

Download citation

Publish with us

Policies and ethics