Skip to main content

Part of the book series: Tasks for Vegetation Science ((TAVS,volume 39))

Abstract

The development of phenology-modeling methodologies in the field of animal ecology has tended to precede that of computing technology in the past 30 years, since the introduction of nonlinear and distributed models of poikilotherm thermal responses. These models are becoming increasingly sophisticated, detailed and accurate, and the study of their behavior is teaching us about the evolution of seasonality and the effects of temperature on the distribution and population stability of poikilotherms. It is also becoming increasingly feasible to investigate the outcomes of phenological processes through models that make predictions over large, climatically and topographically complex areas.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 349.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 449.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References Cited

  • Allen, J. C., J. L. Foltz, W. N. Dixon, A. M. Liebhold, J. J. Colbert, J. Régnière, D. R. Gray, J. W. Wilder, and I. Christie, Will the gypsy moth become a pest in Florida?, Florida Entomologist, 76, 102–113, 1993.

    Article  Google Scholar 

  • Bentz, B. J., J. A. Logan, and G. D. Amman, Temperature-dependent development of the mountain pine beetle (Coleoptera: Scolytidae) and simulation of its phenology, Can. Entomologist, 123, 1083–1094, 1991.

    Article  Google Scholar 

  • Bolstad, P. V., L. Swift, F. Collins, and J. Régnière, Measured and predicted air temperatures at basin to regional scales in the southern Appalachian mountains, Agricult. Forest Meteorol., 91, 161–176, 1998.

    Article  Google Scholar 

  • Boutin, S., and D. Hebert, Landscape ecology and forest management: developing an effective partnership, Ecol. Appl., 12, 390–397, 2002.

    Google Scholar 

  • Chen, J., S. C. Saunders, T. R. Crow, R. J. Naiman, K. D. Brosofske, G. D. Mroz, B. L. Brookshire, and J. F. Franklin, Microclimate in forest ecosystem and landscape ecology: variations in local climate can be used to monitor and compare the effects of different management regimes, Bioscience, 49, 288–297, 1999.

    Article  Google Scholar 

  • Cooke, B. J., and J. Régnière, An object-oriented, process-based stochastic simulation model of Bacillus thuringiensis efficacy against spruce budworm, Choristoneura fumiferana (Lepidoptera: Tortricidae), Int. J. Pest Management, 42, 291–306, 1996.

    Article  Google Scholar 

  • Curry, G. L., R. M. Feldman, and K. C. Smith, A stochastic model of temperature-dependent population, Theoretical Population Biology, 13, 197–213, 1978.

    Article  PubMed  CAS  Google Scholar 

  • Forrester, J. W., Industrial dynamics, MIT Press, Cambridge, MA 464 pp., 1961.

    Google Scholar 

  • Gignac, M., Comparaison de la régression spatiale et du krigeage avec dérive pour interpoler des extrants de modèles de simulation de développement d’insectes au Québec en fonction de l’échelle, de la topographie et de l’influence maritime, M. Sc. Thesis, Faculty of Forestry and Geomatics, Université Laval, Sainte-Foy, Quebec, Canada, 2000.

    Google Scholar 

  • Gray, D. R., F. W. Ravlin, and J. A. Braine, Diapause in the gypsy moth: a model of inhibition and development, J. Insect Physiology, 47, 173–184, 2001.

    Article  CAS  Google Scholar 

  • Haila, Y., A conceptual genealogy of fragmentation research: from island biogeography to landscape ecology, Ecol. Appl., 12, 321–334, 2002.

    Google Scholar 

  • Hutchinson, M. F., The application of thin-plate smoothing splines to continent-wide data assimilation, in Data assimilation systems, edited by J. D. Jasper, pp. 104–113, BMRC Res. Rep. No. 27, Melbourne Bureau of Meteorology, 1991.

    Google Scholar 

  • Hutchinson, M. F., Stochastic space-time weather models from ground-based data, Agricult. Forest Meteorol., 73, 237–264, 1995.

    Article  Google Scholar 

  • Isaaks, E. H., and R. M. Srivastava, An introduction to applied geostatistics, Oxford University Press, New York, 561 pp., 1989.

    Google Scholar 

  • Janisch, E., The influence of temperature on the life-history of insects, Trans. Entomolological Society of London, 80, 137–168, 1932.

    Article  Google Scholar 

  • Liebhold. A. M., J. A. Halverson, and G. A. Elmes, Gypsy moth invasion in North America: a quantitative analysis, J. Biogeography, 19, 513–520, 1992.

    Article  Google Scholar 

  • Logan, J. A., Toward an expert system for development of pest simulation models, Environ. Entomology, 17, 359–376, 1988.

    Google Scholar 

  • Logan, J. A., and B. J. Bentz, Model analysis of mountain pine beetle (Coleoptera: Scolytidae) seasonality, Environ. Entomology, 28, 924–934, 1999.

    Google Scholar 

  • Logan, J. A., and J. A. Powell, Ghost forests, global warming, and the mountain pine beetle, Amer. Entomologist, 47, 160–173, 2001.

    Google Scholar 

  • Logan, J.A., D. J. Wolkind, S. C. Hoyt, and L. K. Tanigoshi, An analytic model for description of temperature dependent rate phenomena in arthropods, Environ. Entomology, 5, 1133–1140, 1976.

    Google Scholar 

  • Manetsch, T. J., Time varying distributed delays and their use in aggregative models of large systems, IEEE Transactions in Systems, Man, and Cybernetics, 6, 547–553, 1976.

    Article  Google Scholar 

  • McGarigal, K., and S. A. Cushman, Comparative evaluation of experimental approaches to the study of habitat fragmentation effects, Ecol. Appl., 12, 335–345, 2002.

    Article  Google Scholar 

  • Montgommery, M. E., Variation in the suitability of tree species for the gypsy moth, in Proceedings U.S. Department of Agriculture Interagency Gypsy Moth Research Review, edited by K.W Gottschalk, M. J. Tivery, and S. I. Smith, pp. 1–13, USDA Forest Service General Technical Report NE 146, 1990.

    Google Scholar 

  • Nalder, I. A., and R.W. Wein, Spatial interpolation of climatic normals: test of a new method in the Canadian boreal forest, Agricult. and Forest Meteorol., 92, 211–225, 1998.

    Article  Google Scholar 

  • Nealis, V. G., J. Régnière, and D. R. Gray, Modeling seasonal development of Gypsy moth in a novel environment for decision-support of an eradication program, in Integrated management and dynamics of forest defoliating insects, edited by A. M. Liebhold, M. L. McManus, I. S. Otvos, and S. L. C. Fosbroke, pp. 124–132, USDA Forest Service General Technical Report NE-277, 2001.

    Google Scholar 

  • Powell, J. A., J. Jenkins, J. A. Logan, and B. J. Bentz, Seasonal temperature alone can synchronize life cycles, Bull. Mathematical Biology, 62, 977–998, 2000.

    Article  CAS  Google Scholar 

  • Price, D. T., D. W. McKenney, I. A. Nalder, M. F. Hutchinson, and J. L. Kesteven, A comparison of two statistical methods for spatial interpolation of Canadian monthly mean climate data, Agricult. Forest Meteorol., 101, 81–94, 2000.

    Article  Google Scholar 

  • Racsko, P., L. Szeidl, and M. Semonov, A serial approach to local stochastic weather models, Ecological Modelling, 57, 27–41, 1991.

    Article  Google Scholar 

  • Régnière, J., A method of describing and using variability in development rates for the simulation of insect phenology, Can. Entomologist, 116, 1367–1376, 1984.

    Article  Google Scholar 

  • Régnière, J., Generalized approach to landscape-wide seasonal forecasting with temperature-driven simulation models, Environ. Entomology, 25, 869–881, 1996.

    Google Scholar 

  • Régnière, J., and P. Bolstad, Statistical simulation of daily air temperature patterns in eastern North America to forecast seasonal events in insect pest management, Environ. Entomology, 23, 1368–1380, 1994.

    Google Scholar 

  • Régnière, J., and B. Cooke, Validation of a process-oriented model of Bacillus thuringiensis variety kurstaki efficacy against spruce budworm (Lepidoptera: Tortricidae), Environ. Entomology, 27, 801–811, 1998.

    Google Scholar 

  • Régnière, J., and V. Nealis, Modelling seasonality of gypsy moth, Lymantria dispar (Lepidoptera: Lymantriidae), to evaluate probability of its persistence in novel environments, Can. Entomologist, 134, 805–824, 2002.

    Article  Google Scholar 

  • Régnière, J., and A. Sharov, Phenology of Lymantria dispar (Lepidoptera: Lymantriidae), male flight and the effect of moth dispersal in heterogeneous landscapes, Int. J. Biometeorol., 41, 161–168, 1998.

    Article  Google Scholar 

  • Régnière, J., and A. Sharov, Simulating temperature-dependent ecological processes at the sub-continental scale: male gypsy moth flight phenology as an example, Int. J. Biometeorol., 42, 146–152, 1999.

    Article  Google Scholar 

  • Régnière, J., B. Cooke, and V. Bergeron, BioSIM: a computer-based decision support tool for seasonal planning of pest management activities, User’s Manual, Canadian Forest Service Information Report LAU-X-116, 35 pp., 1995.

    Google Scholar 

  • Richardson, C. W., Stochastic simulation of daily precipitation, temperature and solar radiation, Water Resources Res., 17, 182–190, 1981.

    Article  Google Scholar 

  • Richardson, C. W., and D. A. Wright, WGEN: A model for generating daily weather variables, US Department of Agriculture, Washington, DC, Agricultural Research Service 8 pp., 1984.

    Google Scholar 

  • Royama, T., Population dynamics of the spruce budworm Choristoneura fumiferana, Ecol. Monographs, 54, 429–462, 1984.

    Article  Google Scholar 

  • Ruel, J. J., and M. P. Ayres, Jensen’s inequality predicts effects of environmental variation, TREE, 14, 361–366, 1999.

    Google Scholar 

  • Russo, J. M., A. M. Liebhold, and J. G. W. Kelley, Mesoscale weather data as input to a gypsy moth (Lepidoptera: Lymantriidae) phenology model, J. Economic Entomology, 86, 838–844, 1993.

    Google Scholar 

  • Ryszkowski, L., Landscape ecology in agroecosystems management: Advances in agroecology, CRC Press, Boca Raton, Fla., 366 pp., 2002.

    Google Scholar 

  • Schaub, L. P., F. W. Ravlin, D. R. Gray, and J. A. Logan, A landscape framework to predict phenological events for gypsy moth (Lepidoptera: Lymantriidae) management programs, Environ. Entomology, 24, 10–18, 1995.

    Google Scholar 

  • Sharov, A. A., B. C. Pijanowski, A. M. Liebhold, and S. H. Gage, What affects the rate of gypsy moth (Lepidoptera: Lymantriidae) spread: winter temperature or forest susceptibility?, Agricult. Forest Entomology, 1, 37–45, 1999.

    Article  Google Scholar 

  • Sharpe, P. J. H., and D. W. DeMichele, Reaction kinetics of poikilotherm development, J. Theoretical Biology, 64, 649–670, 1977.

    Article  CAS  Google Scholar 

  • Stinner, R. E., G. D. Butler Jr., J. S. Bacheler, and C. Tuttle, Simulation of temperature-dependent development in population dynamics models, Can. Entomologist, 107, 1167–1174, 1975.

    Article  Google Scholar 

  • Vansickle, J., Attrition in distributed delay models, IEEE Transactions in Systems, Man and Cybernetics, 7, 635–638, 1977.

    Article  Google Scholar 

  • Wagner, T. L., H.-I. Wu, P. J. H. Sharpe, R. M. Schoolfield, and R. N. Coulson, Modeling insect development rates: a literature review and application of a biophysical model, Annals Entomological Soc. Amer., 77, 208–225, 1984.

    Google Scholar 

  • Wang, J. Y., A critique of the heat unit approach to plant response studies, Ecology, 41, 785–790, 1960.

    Article  Google Scholar 

  • Whiteman, C. D., Mountain Meteorology: Fundamentals and applications, Oxford University Press, New York, 355 pp., 2000.

    Google Scholar 

  • Wilks, D. S., Simultaneous stochastic simulation of daily precipitation, temperature and solar radiation at multiple sites in complex terrain, Agricult. Forest Meteorol., 96, 85–101, 1999.

    Article  Google Scholar 

  • Worner, S. P., Performance of phenological models under variable temperature regimes: consequences of the Kaufmann or rate summation effect, Environ. Entomology, 21, 689–699, 1992.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Kluwer Academic Publishers

About this chapter

Cite this chapter

Régnière, J., Logan, J.A. (2003). Animal Life Cycle Models. In: Schwartz, M.D. (eds) Phenology: An Integrative Environmental Science. Tasks for Vegetation Science, vol 39. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-0632-3_15

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-0632-3_15

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-1580-9

  • Online ISBN: 978-94-007-0632-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics