Skip to main content

Visual-Spatial Learning and Training in Collaborative Design in Virtual Environments

  • Chapter
Collaborative Design in Virtual Environments

Part of the book series: Intelligent Systems, Control and Automation: Science and Engineering ((ISCA,volume 48))

Abstract

This chapter reviews different types of immersive virtual environments (IVE) and discusses the major advantages that these environments can offer in the domain of visual-spatial learning, assessment, and training. Overall, our review indicates that immersion might be one of the most important aspects to be considered in the design of learning and training environments for visual-spatial cognition. Furthermore, we suggest that only immersive virtual environments can provide a unique tool for assessing and training visual-spatial performance that require either the reliance on non-visual cues (motor, vestibular, or proprioceptive) or the use of egocentric frames of references.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aoki, H., Oman, C., Buckland, D., Natapoff, A.: Desktop-VR system for preflight 3D navigation training. Acta Astronautica 63, 841–847 (2008)

    Article  Google Scholar 

  • Bigel, M., Ellard, C.: The contribution of nonvisual information to simple place navigation and distance estimation: An examination of path integration. Canadian Journal of Experimental Psychology/Revue canadienne de psychologie expérimentale 54(3), 172–185 (2000)

    Article  Google Scholar 

  • Blade, R.A., Padgett, M.L.: Virtual environments standards and terminology. In: Stanney, K. (ed.) Handbook of Virtual Environments: Design, Implementation, and Applications, pp. 15–27. Lawrence Erlbaum Associates Publishers, Mahwah (2002)

    Google Scholar 

  • Blajenkova, O., Motes, M., Kozhevnikov, M.: Individual differences in the representations of novel environments. Journal of Environmental Psychology 25(1), 97–109 (2005)

    Article  Google Scholar 

  • Chance, S., Gaunet, F., Beall, A., Loomis, J.: Locomotion mode affects the updating of objects encountered during travel: The contribution of vestibular and proprioceptive inputs to path integration. Presence 7(2), 168–178 (1998)

    Article  Google Scholar 

  • Cockayne, W., Darken, R.: The application of human ability requirements to virtual environment interface design and evaluation. In: The handbook of task analysis for human-computer interaction, pp. 401–421 (2004)

    Google Scholar 

  • Colt, H.G., Crawford, S.W., Gaulbraith, O.: Virtual reality bronchoscopy simulation. Chest 120, 1333–1339 (2001)

    Article  Google Scholar 

  • Darken, R., Peterson, B.: Spatial orientation, wayfinding, and representation. In: Stanney, K. (ed.) Handbook of Virtual Environments: Design, Implementation, and Applications, pp. 493–518. Lawrence Erlbaum Associates Publishers, Mahwah (2002)

    Google Scholar 

  • Darken, R., Sibert, J.: Navigating large virtual spaces. International Journal of Human-Computer Interaction 8(1), 49–71 (1996)

    Article  Google Scholar 

  • Easton, R., Sholl, M.: Object-array structure, frames of reference, and retrieval of spatial knowledge. Journal of Experimental Psychology: Learning, Memory, and Cognition 21(2), 483–500 (1995)

    Article  Google Scholar 

  • Gillingham, K.K., Wolfe, J.W.: Spatial Orientation in Flight (Technical Report USAFSAM-TR-85-31), Brooks Air Force Base, TX: USAF School of Aerospace Medicine, Aerospace Medical Division (1986)

    Google Scholar 

  • Haskell, I., Wickens, C.: Two- and three-dimensional displays for aviation: A theoretical and empirical comparison. International Journal of Aviation Psychology 3(2), 87–109 (1993)

    Article  Google Scholar 

  • Homan, W.J.: Virtual reality: Real promises and false expectations. EMI: Educational Media International 31(4), 224–227 (1994)

    Article  Google Scholar 

  • Jodlowski, M.T., Doane, S.M., Brou, R.J.: Adaptive expertise during simulated flight. In: Proceedings of the Human Factors and Ergonomics Society 47th Annual Meeting, HFES, Denver, Colorado (October 2003)

    Google Scholar 

  • Kemeny, A., Panerai, F.: Evaluating perception in driving simulation experiments. Trends in Cognitive Sciences 7(1), 31–37 (2003)

    Article  Google Scholar 

  • Kidd, D.G., Monk, C.A.: The effects of dual-task inference and response strategy on stop or go decisions to yellow light changes. In: Proceedings of the 5th International Symposium on Human Factors in Driving Assessment, Training, and Vehicle Design, Big Sky, Montana (June 2009)

    Google Scholar 

  • Klatzky, R., Loomis, J., Beall, A., Chance, S., Golledge, R.: Spatial updating of self-position and orientation during real, imagined, and virtual locomotion. Psychological Science 9(4), 293–298 (1998)

    Article  Google Scholar 

  • Kozhevnikov, M.: The role of immersive 3-D environments in mental rotation. Paper was be presented at the Psychonomic Society 50th Annaul Meetihg, Boston, November 12-22 (2009)

    Google Scholar 

  • Kozhevnikov, M., Blazhenkova, O., Royan, J., Gorbunov, A.: The role of immersivity in three-dimensional mental rotation. In: Paper was presented at third International Conference on Design Computing and Cognition DCC 2008, Atlanta, GA (2008)

    Google Scholar 

  • Kozhevnikov, M: Individual difference in allocentric and agocentric spatial ability, Technical report, Office on Naval Research, N000140611072 (2007)

    Google Scholar 

  • Kozhevnikov, M., Motes, M., Rasch, B., Blajenkova, O.: Perspective-taking vs. mental rotation transformations and how they predict spatial navigation performance. Applied Cognitive Psychology 20, 397–417 (2006)

    Article  Google Scholar 

  • Loomis, J., Beall, A.: Visually controlled locomotion: Its dependence on optic flow, three-dimensional space perception, and cognition. Ecological Psychology 10(3), 271–285 (1998)

    Article  Google Scholar 

  • Loomis, J., Blascovich, J., Beall, A.: Immersive virtual environment technology as a basic research tool in psychology. Behavior Research Methods, Instruments & Computers 31(4), 557–564 (1999)

    Article  Google Scholar 

  • Loomis, J., Klatzky, R., Golledge, R., Philbeck, J.: Human Navigation by Path Integration. In: Wayfinding Behavior: Cognitive Mapping and Other Spatial Processes, Johns Hopkins University Press, Baltimore (1998)

    Google Scholar 

  • Macuga, K.L., Beall, A.C., Kelly, J.W., Smith, R.S., Loomis, J.M.: Changing lanes: inertial cues and explicit path information facilitate steering performance when visual feedback is removed. Experimental Brain Research 178, 141–150 (2007)

    Article  Google Scholar 

  • Pausch, R., Proffitt, D., Williams, G.: Quantifying immersion in virtual reality. In: SIGGRAPH (August 1997)

    Google Scholar 

  • Péruch, P., Gaunet, F.: Virtual environments as a promising tool for investigating human spatial cognition. Cahiers de Psychologie Cognitive/Current Psychology of Cognition 17(4), 881–899 (1998)

    Google Scholar 

  • Richardson, A., Montello, D., Hegarty, M.: Spatial knowledge acquisition from maps and from navigation in real and virtual environments. Memory & Cognition 27(4), 741–750 (1999)

    Article  Google Scholar 

  • Rieser, J.: Access to knowledge of spatial structure at novel points of observation. Journal of Experimental Psychology: Learning, Memory, and Cognition 15(6), 1157–1165 (1989)

    Article  Google Scholar 

  • Rizzo, A., Schultheis, M.: Expanding the boundaries of psychology: The application of virtual reality. Psychological Inquiry 13(2), 134–140 (2002)

    Google Scholar 

  • Salas, E., Oser, R., Cannon-Bowers, J., Daskarolis-Kring, E.: Team training in virtual environments: An event-based approach. In: Stanney, K. (ed.) Handbook of Virtual Environments: Design, Implementation, and Applications, pp. 873–892. Lawrence Erlbaum Associates Publishers, Mahwah (2002)

    Google Scholar 

  • Van Orden, K., Broyles, J.: Visuospatial task performance as a function of two- and three-dimensional display presentation techniques. Displays 21(1), 17–24 (2000)

    Article  Google Scholar 

  • Verner, L., Oleynikov, D., Holtmann, S., Haider, H., Zhukov, L.: Measurements of the level of surgical expertise using flight path analysis from da Vinci Robotic Surgical System. Medicine Meets Virtual Reality 11, 373–378 (2003)

    Google Scholar 

  • Wiederhold, B., Rizzo, A.: Virtual reality and applied psychophysiology. Applied Psychophysiology and Biofeedback 30(3), 183–185 (2005)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Netherlands

About this chapter

Cite this chapter

Kozhevnikov, M., Garcia, A. (2011). Visual-Spatial Learning and Training in Collaborative Design in Virtual Environments. In: Wang, X., Tsai, J.JH. (eds) Collaborative Design in Virtual Environments. Intelligent Systems, Control and Automation: Science and Engineering, vol 48. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-0605-7_2

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-0605-7_2

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-007-0604-0

  • Online ISBN: 978-94-007-0605-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics