Skip to main content

The Linear-Eddy Model

  • Chapter
Turbulent Combustion Modeling

Part of the book series: Fluid Mechanics and Its Applications ((FMIA,volume 95))

Abstract

Regime-independent modeling is important for accurate simulation of the complex combustor designs needed to meet increasingly stringent performance requirements. One strategy for achieving robust yet affordable predictive capability is to resolve, in space and time, the relevant advection-diffusion-reaction couplings using a low-dimensional representation of turbulent advection. In the linear-eddy model (LEM), this is accomplished in one spatial dimension by introducing an instantaneous map, the ‘triplet map,’ that emulates the effect of an eddy turnover on property profiles along a notional line of sight. The map preserves the continuity of these profiles and obeys applicable conservation laws. Details and representative applications of the model are presented for passive and reactive scalar mixing, with emphasis on its use as a mixing-reaction closure for large-eddy simulation (LES) based on the embedding of an LEM domain in each LES control volume.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Calhoon, W.H., Menon, S., Goldin, G.: Comparison of reduced and full chemical mechanisms for nonpremixed turbulent h2-air het flames. Combust. Sci. Technol. 104, 115–141 (1995)

    Article  Google Scholar 

  2. Chakravarthy, V., Menon, S.: Modeling of turbulent premixed flames in the flamelet regime. In: Proceedings of first International Symposium on Turbulent and Shear Flow Phenomena, pp. 189–194. Begel House (1999)

    Google Scholar 

  3. Chakravarthy, V., Menon, S.: Large-eddy simulations of turbulent premixed flames in the flamelet regime. Combust. Sci. Technol. 162, 175–222 (2000)

    Article  Google Scholar 

  4. Chakravarthy, V., Menon, S.: Subgrid modeling of premixed flames in the flamelet regime. Flow Turbul. Combust. 65, 23–45 (2000)

    Article  Google Scholar 

  5. Chakravarthy, V., Menon, S.: Linear-eddy simulations of Reynolds and Schmidt number dependencies in turbulent scalar mixing. Phys. Fluids 13, 488–499 (2001)

    Article  Google Scholar 

  6. Cremer, M.A., McMurtry, P.A., Kerstein, A.R.: The effect of turbulence length-scale distribution on scalar mixing in homogeneous turbulent-flow. Phys. Fluids 6, 2143–2153 (1994)

    Article  MATH  Google Scholar 

  7. DesJardin, P.E., Frankel, S.H.: Assessment of turbulent combustion submodels using the Linear Eddy Model. Combust. Flame 104, 343–357 (1996)

    Article  Google Scholar 

  8. DesJardin, P.E., Frankel, S.H.: Linear-eddy modeling of nonequilibrium turbulent reacting flows with nonpremixed reactants. Combust. Flame 109, 471–481 (1997)

    Article  Google Scholar 

  9. Eggenspieler, G., Menon, S.: Combustion and emission modeling near lean blow-out in gas turbine engines. Prog. Comput. Fluid Dyn. 5, 281–297 (2005)

    Article  MATH  Google Scholar 

  10. El-Asrag, H., Menon: Large eddy simulation of a bluff-body stabilized swirling non-premixed flames. Proc. Combust. Inst. 31, 1747–1754 (2007)

    Article  Google Scholar 

  11. El-Asrag, H., Menon, S.: Simulation of soot formation in turbulent premixed flame. Combust. Flame 150, 108–126 (2007)

    Article  Google Scholar 

  12. El-Asrag, H., Menon, S.: Large eddy simulation of soot formation in a turbulent non-premixed jet flame. Combust. Flame 156, 385–395 (2009)

    Article  Google Scholar 

  13. Frankel, S.H., McMurtry, P.A., Givi, P.: Linear eddy modeling of reactant conversion and selectivity in turbulent flows. AIChE J. 41, 259–270 (1995)

    Article  Google Scholar 

  14. Fureby, C., Löfström, C.: Large-eddy simulations of bluff body stabilized flames. Proc. Combust. Inst. 25, 1257–1264 (1994)

    Google Scholar 

  15. Fureby, C., Möller, S.I.: Large-eddy simulation of reacting flows applied to bluff body stabilized flames. AIAA J. 33, 2339–2347 (1995)

    Article  MATH  Google Scholar 

  16. Genin, F., Menon, S.: Studies of shock/turbulent shear layer interaction using large-eddy simulation. Computer Fluids 39, 800–819 (2010)

    Article  MathSciNet  Google Scholar 

  17. Goldin, G.M., Calhoon, W.H., Menon, S.: A Linear eddy mixing model for steady non-premixed turbulent combustion. AIAA-1995-0379 (1995)

    Google Scholar 

  18. Goldin, G.M., Menon, S.: Scalar pdf construction model for turbulent non-premixed combustion. Combust. Sci. Technol. 125, 47–72 (1997)

    Article  Google Scholar 

  19. Goldin, G.M., Menon, S.: A comparison of scalar pdf turbulent combustion models. Combust. Flame 113, 442–453 (1998)

    Article  Google Scholar 

  20. Gopalakrishnan, P., Bobba, M.K., Seitzman, J.M.: Controlling mechnamisms for low nox emissions in a non-premixed stagnation point reverse flow combustor. Proc. Combust. Inst. 31, 3401–3408 (2007)

    Article  Google Scholar 

  21. Guilkey, J.E., Kerstein, A., McMurtry, P.A., Klewicki, J.C.: Effects of initial conditions on scalar statistics in pipe mixing. AIChE J. 43, 1947–1954 (1997)

    Article  Google Scholar 

  22. Guilkey, J.E., Kerstein, A.R., McMurtry, P.A., Klewicki, J.C.: Mixing mechanisms in turbulent pipe flow. Phys. Fluids 9, 717–723 (1997)

    Article  Google Scholar 

  23. Guilkey, J.E., Kerstein, A.R., McMurtry, P.A., Klewicki, J.C.: Long-tailed probability distributions in turbulent-pipe flow mixing. Phys. Rev. E 56, 1753–1758 (1997)

    Article  Google Scholar 

  24. Hawkes, E.R., Sankaran, R., Chen, J.H., Kaiser, S.A., Frank, J.H.: An analysis of lower-dimensional approximations to the scalar dissipation rate using direct numerical simulations of plane jet flames. Proc. Combust. Inst. 32, 1455–1463 (2009)

    Article  Google Scholar 

  25. Hawkes, E.R., Sankaran, R., Sutherland, J.C., Chen, J.H.: Scalar mixing in direct numerical simulations of temporally evolving plane jet flames with skeletal CO/H2 kinetics. Proc. Combust. Inst. 31, 1633–1640 (2007)

    Article  Google Scholar 

  26. Jaberi, F.A., Miller, R.S., Madnia, C.K., Givi, P.: Non-gaussian scalar statistics in homogeneous turbulence. J. Fluid Mech. 313, 241–282 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  27. Kalda, J., Morozenko, A.: Turbulent mixing: the roots of intermittency. New J. Phys. 10, 093003 (2008)

    Article  Google Scholar 

  28. Kerstein, A.R.: Linear-eddy model of turbulent scalar transport and mixing. Combust. Sci. Technol. 60, 391–421 (1988)

    Article  Google Scholar 

  29. Kerstein, A.R.: Linear-eddy model of turbulent transport II: Application to shear layer mixing. Combust. Flame 75, 397–413 (1989)

    Article  Google Scholar 

  30. Kerstein, A.R.: Linear-eddy model of turbulent transport. Part 3. Mixing and differential molecular diffusion in round jets. J. Fluid Mech. 216, 411–435 (1990)

    Article  MATH  Google Scholar 

  31. Kerstein, A.R.: Linear-eddy modeling of turbulent transport. Part V: Geometry of scalar interfaces. Phys. Fluids A 3, 1110–1114 (1990)

    Article  Google Scholar 

  32. Kerstein, A.R.: Linear-eddy modeling of turbulent transport. Part 6. Microstructure of diffusive scalar mixing fields. J. Fluid Mech. 231, 361–394 (1991)

    Article  MATH  Google Scholar 

  33. Kerstein, A.R.: Linear-eddy modeling of turbulent transport. Part 7. Finite-rate chemistry and multi-stream mixing. J. Fluid Mech. 240, 289–313 (1992)

    Article  Google Scholar 

  34. Kerstein, A.R.: Prandtl-number dependence of turbulent flame propagation. Phys. Rev. E 64, 066306 (2001)

    Article  Google Scholar 

  35. Kerstein, A.R., Cremer, M.A., McMurtry, P.A.: Scaling properties of differential molecular diffusion effects in turbulence. Phys. Fluids 7, 1999–2007 (1995)

    Article  MATH  Google Scholar 

  36. Kerstein, A.R., Krueger, S.K.: Linear eddy simulations of mixing in a homogeneous turbulent-flow. Phys. Rev. E 73, 025302 (2006)

    Article  Google Scholar 

  37. Kerstein, A.R., McMurtry, P.A.: Low wave-number statistics of randomly advected passive scalars. Phys. Rev. E 50, 2057 (1994)

    Article  Google Scholar 

  38. Kim, W.W., Menon, S.: A new incompressible solver for large-eddy simulations. Int. J. Num. Fluid Mech. 31, 983–1017 (1999)

    Article  MATH  Google Scholar 

  39. Kim, W.W., Menon, S.: Numerical simulations of turbulent premixed flames in the thin-reaction-zones regime. Combust. Sci. Technol. 160, 119–150 (2000)

    Article  Google Scholar 

  40. Kim, W.W., Menon, S., Mongia, H.C.: Large-eddy simulation of a gas turbine combustor flow. Combust. Sci. Technol. 143, 25–62 (1999)

    Article  Google Scholar 

  41. Krueger, S.K.: Linear eddy modeling of entrainment and mixing in stratus clouds. J. Atmos. Sci. 50, 3078–3090 (1993)

    Article  Google Scholar 

  42. Krueger, S.K., Su, C.W., McMurtry, P.A.: Modeling entrainment and finescale mixing in cumulus clouds. J. Atmos. Sci. 54, 2697–2712 (1997)

    Article  Google Scholar 

  43. McMurtry, P.A., Gansauge, T.C., Kerstein, A.R., Krueger, S.K.: Linear eddy simulations of mixing in a homogeneous turbulent-flow. Phys. Fluids A 5, 1023–1034 (1993)

    Article  Google Scholar 

  44. McMurtry, P.A., Menon, S., Kerstein, A.R.: A new subgrid model for turbulent combustion: Application to hydrogen-air combustion. Proc. Combust. Inst. 24, 271–278 (1993)

    Google Scholar 

  45. Menon, S.: Computational and modeling constraints for large-eddy simulations of turbulent combustion. Int. J. Engine Res. 1, 209–227 (2000)

    Article  Google Scholar 

  46. Menon, S., Calhoon, W.H.: Subgrid mixing and molecular transport modeling for large-eddy simulations of turbulent reacting flows. Proc. Combust. Inst. 26, 59–66 (1996)

    Google Scholar 

  47. Menon, S., Calhoon, W.H., Goldin, J.R., Kerstein, A.R.: Effects of molecular transport on turbulent-chemistry interactions in hydrogen-argon-air jet diffusion flame. Proc. Combust. Inst. 25, 1125–1131 (1994)

    Google Scholar 

  48. Menon, S., Kerstein, A.R.: Stochastic simulation of the structure and propagation rate of turbulent premixed flames. Proc. Combust. Inst. 24, 443–450 (1992)

    Google Scholar 

  49. Menon, S., Kim, W.W.: High Reynolds number flow simulations using the localized dynamic subgrid-scale model. AIAA-96-0425 (1996)

    Google Scholar 

  50. Menon, S., McMurtry, P., Kerstein, A.R.: A linear eddy mixing model for large eddy simulation of turbulent combustion. In: B. Galperin, S. Orszag (eds.) LES of Complex Engineering and Geophysical Flows, pp. 287–314. Cambridge University Press, Cambridge, UK (1993)

    Google Scholar 

  51. Menon, S., McMurtry, P.A., Kerstein, A.R., Chen, J.Y.: A new mixing to predict NOx production in turbulent hydrogen-air jet flame. J. Prop. Power 10, 161–168 (1994)

    Article  Google Scholar 

  52. Menon, S., Pannala, S.: Subgrid combustion simulations of reacting two-phase shear layers. AIAA-98-3318 (1998)

    Google Scholar 

  53. Menon, S., Patel, N.: Subgrid modeling for LES of spray combustion in large-scale combustors. AIAA J. 44, 709–723 (2006)

    Article  Google Scholar 

  54. Menon, S., Yeung, P.K., Kim, W.W.: Effect of subgrid models on the computed interscale energy transfer in isotropic turbulence. Computers Fluids 25, 165–180 (1996)

    Article  MATH  Google Scholar 

  55. Oevermann, M., Schmidt, H., Kerstein, A.R.: Investigation of autoignition under thermal stratification using linear eddy modeling. Combust. Flame 155, 370–379 (2008)

    Article  Google Scholar 

  56. Patel, N., Kirtas, M., Sankaran, V., Menon, S.: Simulation of spray combustion in a lean direct injection combustor. Proc. Combust. Inst. 31, 2327–2334 (2007)

    Article  Google Scholar 

  57. Patel, N., Menon, S.: Simulation of spray-turbulence-flame interactions in a lean direct injection combustor. Combust. Flame 153, 228–257 (2008)

    Article  Google Scholar 

  58. Pope, S.B.: Pdf methods for turbulent reactive flows. Prog. Energy Combust. Sci. 11, 119–192 (1985)

    Article  MathSciNet  Google Scholar 

  59. Porumbel, I., Menon, S.: Large-eddy simulation of bluff body stabilized premixed flames. AIAA-2006-0152 (2006)

    Google Scholar 

  60. Sankaran, V., Menon, S.: Structure of premixed flame in the thin-reaction-zones regime. Proc. Combust. Inst. 28, 203–210 (2000)

    Article  Google Scholar 

  61. Sankaran, V., Menon, S.: LES of scalar mixing in supersonic shear layers. Proc. Combust. Inst. 30, 2835–2842 (2005)

    Article  Google Scholar 

  62. Sankaran, V., Menon, S.: Subgrid combustion modeling of 3-d premixed flames in the thin-reaction-zone regime. Proc. Combust. Inst. 30, 575–582 (2005)

    Article  Google Scholar 

  63. Sankaran, V., Porumbel, I., Menon, S.: Large-eddy simulation of a single-cup gas turbine combustor. AIAA-2003-5083 (2003)

    Google Scholar 

  64. Weydahl, T.: A framework for mixing-reaction closure with the linear-eddy model. Ph.D. Thesis, Norwegian University of Science and Technology, Trodheim, Norway (2010)

    Google Scholar 

  65. Schenck, H.W., Wendt, J.O.L., Kerstein, A.R.: Mixing characterization of transient puffs in a rotary kiln incinerator. Combust. Sci. Technol. 116, 427–453 (1996)

    Article  Google Scholar 

  66. Schmidt, R.C., Kerstein, A.R., McDermott, R.: ODTLES: A multi-scale model for 3D turbulent flow based on one-dimensional turbulence modeling. Comput. Meth. Appl. Mech. Engg. 199, 865–880 (2009)

    Article  MathSciNet  Google Scholar 

  67. Sen, B.A., Hawkes, E., Menon, S.: Large eddy simulation of extinction and reignition with artificial neural networks based chemical kinetics. Combust. Flame 157, 566–578 (2010)

    Article  Google Scholar 

  68. Sen, B.A., Menon, S.: Artificial neural networks based chemistry-mixing subgrid model for LES. AIAA-2009-0241 (2009)

    Google Scholar 

  69. Sen, B.A., Menon, S.: Turbulent premixed flame modeling using artificial neural network based chemical kinetics. Proc. Combust. Inst. 32, 1605–1611 (2009)

    Article  Google Scholar 

  70. Sen, B.A., Menon, S.: Linear eddy mixing and artificial neural networks for LES subgrid chemistry closure. Combust. Flame 157, 62–74 (2010)

    Article  Google Scholar 

  71. Smith, T., Menon, S.: One-dimensional simulations of freely propagating turbulent premixed flames. Combust. Sci. Technol. 128, 99–130 (1996)

    Article  Google Scholar 

  72. Smith, T.M., Menon, S.: Model simulations of freely propagating turbulent premixed flames. Proc. Combust. Inst. 26, 299–306 (1996)

    Google Scholar 

  73. Smith, T.M., Menon, S.: Large-eddy simulations of turbulent reacting stagnation point flows. AIAA-97-0372 (1997)

    Google Scholar 

  74. Smith, T.M., Menon, S.: Subgrid combustion modeling for premixed turbulent reacting flows. AIAA-98-0242 (1998)

    Google Scholar 

  75. Su, C.W., Krueger, S.K., McMurtry, P.A., Austin, P.H.: Linear eddy modeling of droplet spectral evolution during entrainment and mixing in cumulus clouds. Atmos. Res. 47, 41–58 (1998)

    Article  Google Scholar 

  76. Undapalli, S., Menon, S.: LES of premixed and non-premixed combustion in a stagnation point reverse flow combustor. Proc. Combust. Inst. 32, 1537–1544 (2009)

    Article  Google Scholar 

  77. Woosley, S.E., Kerstein, A.R., Sankaran, V., Aspden, A.J., Roepke, F.K.: Type Ia supernovae: Calculations of turbulent flames using the linear eddy model. Astrophys. J. 704, 255–273 (2009)

    Article  Google Scholar 

  78. Wu, J., Menon, S.: Aerosol dynamics in the near-field engine exhaust plumes. J. Appl. Meteo. 40, 795–809 (2001)

    Article  Google Scholar 

  79. Zimberg, M.J., Frankel, S.H., Gore, J.P., Sivathanu, Y.R.: A study of coupled turbulent mixing, soot chemistry, and radiation effects using the linear eddy model. Combust. Flame 113, 454–469 (1998)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suresh Menon .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Menon, S., Kerstein, A.R. (2011). The Linear-Eddy Model. In: Echekki, T., Mastorakos, E. (eds) Turbulent Combustion Modeling. Fluid Mechanics and Its Applications, vol 95. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-0412-1_10

Download citation

Publish with us

Policies and ethics