Skip to main content

MicroRNAs and Cancer Stem Cells

  • Chapter
  • First Online:
MicroRNAs in Cancer Translational Research

Abstract

MicroRNAs (miRNAs) are a class of non-coding RNAs that are believed to play important roles during tumorigenesis and cancer metastasis. Growing evidence has shown altered regulation of miRNAs in cancer stem cell populations. In this chapter, the expression profiles of miRNA in embryonic stem cells and cancer stem cells are summarized. The individual miRNAs which may regulate cancer stem cells and their target genes are described. Several miRNAs, including miR-302 and miR-181, function to promote the cancer stem cell phenotype. Conversely, other miRNAs including let-7, miR-145, miR-200 family, miR-203, miR-128, miR-34, and miR-199b, suppress stemness and promote differentiation of cancer stem cells. The recent evidence for a role of miRNA in regulating cancer stem cells, epithelial-mesenchymal transition, and cancer metastasis are described. We introduce the potential of miRNA for cancer diagnostics and therapeutics based on current tests and studies of miRNA treatment on cancer. The current challenges to apply miRNA-based cancer therapeutics are also discussed with an emphasis on recent evidence for miRNA-mediated heterotypic signals. The miRNA regulation of factors that are secreted into the blood stream creates an attractive new approach to managing miRNA-driven disease processes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Albanese C, Hulit J, Sakamaki T, et al. Recent advances in inducible expression in transgenic mice. Semin Cell Dev Biol. 2002;13:129–41.

    Article  CAS  PubMed  Google Scholar 

  • Al-Hajj M, Wicha MS, Benito-Hernandez A, et al. Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci USA. 2003;100:3983–8.

    Article  CAS  PubMed  Google Scholar 

  • Barroso-del Jesus A, Lucena-Aguilar G, Menendez P. The miR-302-367 cluster as a potential stemness regulator in ESCs. Cell Cycle. 2009;8:394–8.

    Article  CAS  PubMed  Google Scholar 

  • Bitko V, Barik S. Nasal delivery of siRNA. Methods Mol Biol. 2008;442:75–82.

    Article  CAS  PubMed  Google Scholar 

  • Büssing I, Slack FJ, Grosshans H. Let-7 microRNAs in development, stem cells and cancer. Trends Mol Med. 2008;14:400–9.

    Article  PubMed  Google Scholar 

  • Card DA, Hebbar PB, Li L, et al. Oct4/Sox2-regulated miR-302 targets cyclin D1 in human embryonic stem cells. Mol Cell Biol. 2008;28:6426–38.

    Article  PubMed  Google Scholar 

  • Chen CZ, Li L, Lodish HF, et al. MicroRNAs modulate hematopoietic lineage differentiation. Science. 2004;303:83–6.

    Article  CAS  PubMed  Google Scholar 

  • Cho WC. MicroRNAs: potential biomarkers for cancer diagnosis, prognosis and targets for therapy. Int J Biochem Cell Biol. 2010;42:1273–81.

    Article  CAS  PubMed  Google Scholar 

  • Cho WC, Chow AS, Au JS. Restoration of tumour suppressor hsa-miR-145 inhibits cancer cell growth in lung adenocarcinoma patients with epidermal growth factor receptor mutation. Eur J Cancer. 2009;45:2197–206.

    Article  CAS  PubMed  Google Scholar 

  • Choi WY, Giraldez AJ, Schier AF. Target protectors reveal dampening and balancing of Nodal agonist and antagonist by miR-430. Science. 2007;318:271–4.

    Google Scholar 

  • Cordes KR, Sheehy NT, White MP, et al. MiR-145 and miR-143 regulate smooth muscle cell fate and plasticity. Nature. 2009;460:705–10.

    CAS  PubMed  Google Scholar 

  • Corney DC, Flesken-Nikitin A, Godwin AK, et al. MicroRNA-34b and MicroRNA-34c are targets of p53 and cooperate in control of cell proliferation and adhesion-independent growth. Cancer Res. 2007;67:8433–8.

    Article  CAS  PubMed  Google Scholar 

  • DeSano JT, Xu L. MicroRNA regulation of cancer stem cells and therapeutic implications. AAPS J. 2009;11:682–92.

    Article  CAS  PubMed  Google Scholar 

  • Ebert MS, Neilson JR, Sharp PA. MicroRNA sponge: competitive inhibitors of small RNAs in mammalian cells. Nat Methods. 2007;4:721–6.

    Google Scholar 

  • Eger A, Aigner K, Sonderegger S, et al. DeltaEF1 is a transcriptional repressor of E-cadherin and regulates epithelial plasticity in breast cancer cells. Oncogene. 2005;24:2375–85.

    Article  CAS  PubMed  Google Scholar 

  • Eramo A, Lotti F, Sette G, et al. Identification and expansion of the tumorigenic lung cancer stem cell population. Cell Death Differ. 2008;15:504–14.

    Article  CAS  PubMed  Google Scholar 

  • Fabani MM, Abreu-Goodger C, Williams D, et al. Efficient inhibition of miR-155 function in vivo by peptide nucleic acids. Nucleic Acids Res. 2010;38:4466–75.

    Article  CAS  PubMed  Google Scholar 

  • Fabani MM, Gait MJ. MiR-122 targeting with LNA/2′-O-methyl oligonucleotide mixmers, peptide nucleic acids (PNA), and PNA-peptide conjugates. RNA. 2008;14:336–46.

    Article  CAS  PubMed  Google Scholar 

  • Foshay KM, Gallicano GI. MiR-17 family miRNAs are expressed during early mammalian development and regulate stem cell differentiation. Dev Biol. 2009;326:431–43.

    Article  CAS  PubMed  Google Scholar 

  • Garzia L, Andolfo I, Cusanelli E, et al. MicroRNA-199b-5p impairs cancer stem cells through negative regulation of HES1 in medulloblastoma. PLoS One. 2009;4(3):e4998.

    Google Scholar 

  • Ginestier C, Hur MH, Charafe-Jauffret E, et al. ALDH1 is a marker of normal and malignant human mammary stem cells and a predictor of poor clinical outcome. Cell Stem Cell. 2007;1:555–67.

    Article  CAS  PubMed  Google Scholar 

  • Godlewski J, Nowicki MO, Bronisz A, et al. Targeting of the Bmi-1 oncogene/stem cell renewal factor by microRNA-128 inhibits glioma proliferation and self-renewal. Cancer Res. 2008;68:9125–30.

    Article  CAS  PubMed  Google Scholar 

  • Gregory PA, Bert AG, Paterson EL, et al. The miR-200 family and miR-205 regulate epithelial to mesenchymal transition by targeting ZEB1 and SIP1. Nat Cell Biol. 2008;10:593–601.

    Article  CAS  PubMed  Google Scholar 

  • Gupta PB, Onder TT, Jiang G, et al. Identification of selective inhibitors of cancer stem cells by high-throughput screening. Cell. 2009;138:645–59.

    Article  CAS  PubMed  Google Scholar 

  • Hayashita Y, Osada H, Tatematsu Y, et al. A polycistronic microRNA cluster, miR-17-92, is overexpressed in human lung cancers and enhances cell proliferation. Cancer Res. 2005;65:9628–32.

    Article  CAS  PubMed  Google Scholar 

  • He L, He X, Lim LP, et al. A microRNA component of the p53 tumour suppressor network. Nature. 2007;447:1130–4.

    Article  CAS  PubMed  Google Scholar 

  • He L, Thomson JM, Hemann MT, et al. A microRNA polycistron as a potential human oncogene. Nature. 2005;435:828–33.

    Article  CAS  PubMed  Google Scholar 

  • Houbaviy HB, Murray MF, Sharp PA. Embryonic stem cell-specific MicroRNAs. Dev Cell. 2003;5:351–8.

    Article  CAS  PubMed  Google Scholar 

  • Ji Q, Hao X, Zhang M, et al. MicroRNA miR-34 inhibits human pancreatic cancer tumor-initiating cells. PLoS One. 2009a;4:e6816.

    Google Scholar 

  • Ji J, Yamashita T, Budhu A, et al. Identification of microRNA-181 by genome-wide screening as a critical player in EpCAM-positive hepatic cancer stem cells. Hepatology. 2009b;50:472–80.

    Article  CAS  PubMed  Google Scholar 

  • Johnson CD, Esquela-Kerscher A, Stefani G, et al. The let-7 microRNA represses cell proliferation pathways in human cells. Cancer Res. 2007;67:7713–22.

    Article  CAS  PubMed  Google Scholar 

  • Johnson SM, Grosshans H, Shingara J, et al. RAS is regulated by the let-7 microRNA family. Cell. 2005;120:635–47.

    Article  CAS  PubMed  Google Scholar 

  • Kelly PN, Dakic A, Adams JM, et al. Tumor growth need not be driven by rare cancer stem cells. Science. 2007;317:337.

    Google Scholar 

  • Kent OA, Mendell JT. Small piece in the cancer puzzle: microRNAs as tumor suppressors and oncogenes. Oncogene. 2006;25:6188–96.

    Article  CAS  PubMed  Google Scholar 

  • Kota J, Chivukula RR, O’Donnell KA, et al. Therapeutic microRNA delivery suppresses tumorigenesis in a murine liver cancer model. Cell. 2009;137:1005–17.

    Article  CAS  PubMed  Google Scholar 

  • Krützfeldt J, Rajewsky N, Braich R, et al. Silencing of microRNAs in vivo with ‘antagomirs’. Nature. 2005;438:685–9.

    Article  PubMed  Google Scholar 

  • Lakshmipathy U, Love B, Goff LA, et al. MicroRNA expression pattern of undifferentiated and differentiated human embryonic stem cells. Stem Cells Dev. 2007;16:1003–16.

    Article  CAS  PubMed  Google Scholar 

  • Lapidot T, Sirard C, Vormoor J, et al. A cell initiating human acute myeloid leukaemia after transplantation into SCID mice. Nature. 1994;367:645–8.

    Article  CAS  PubMed  Google Scholar 

  • Li C, Heidt DG, Dalerba P, et al. Identification of pancreatic cancer stem cells. Cancer Res. 2007;67:1030–7.

    Article  CAS  PubMed  Google Scholar 

  • Li SS, Yu SL, Kao LP, et al. Target identification of microRNAs expressed highly in human embryonic stem cells. J Cell Biochem. 2009;106:1020–30.

    Article  CAS  PubMed  Google Scholar 

  • Lin W, Albanese C, Pestell RG, et al. Spatially discrete, light-driven protein expression. Chem Biol. 2002;9:1347–53.

    Article  CAS  PubMed  Google Scholar 

  • Lin SL, Chang DC, Chang-Lin S, et al. MiR-302 reprograms human skin cancer cells into a pluripotent ES-cell-like state. RNA. 2008;14:2115–24.

    Article  CAS  PubMed  Google Scholar 

  • Liu S, Dontu G, Mantle ID, et al. Hedgehog signaling and Bmi-1 regulate self-renewal of normal and malignant human mammary stem cells. Cancer Res. 2006;66:6063–71.

    Article  CAS  PubMed  Google Scholar 

  • Lu Y, Thomson JM, Wong HY, et al. Transgenic over-expression of the microRNA miR-17-92 cluster promotes proliferation and inhibits differentiation of lung epithelial progenitor cells. Dev Biol. 2007;310:442–53.

    Article  CAS  PubMed  Google Scholar 

  • Ma L, Weinberg RA. Micromanagers of malignancy: role of microRNAs in regulating metastasis. Trends Genet. 2008;4:448–56.

    Article  Google Scholar 

  • Mayr C, Hemann MT, Bartel DP. Disrupting the pairing between let-7 and Hmga2 enhances oncogenic transformation. Science. 2007;315:1576–9.

    Article  CAS  PubMed  Google Scholar 

  • Mu P, Han YC, Betel D, et al. Genetic dissection of the miR-17~92 cluster of microRNAs in Myc-induced B-cell lymphomas. Genes Dev. 2009;23:2806–11.

    Article  CAS  PubMed  Google Scholar 

  • Naguibneva I, Ameyar-Zazoua M, Polesskaya A, et al. The microRNA miR-181 targets the homeobox protein Hox-A11 during mammalian myoblast differentiation. Nat Cell Biol. 2006;8(3):278–84.

    Article  CAS  PubMed  Google Scholar 

  • Oh YK, Park TG. siRNA delivery systems for cancer treatment. Adv Drug Deliv Rev. 2009;61:850–62.

    Article  CAS  PubMed  Google Scholar 

  • Olive V, Bennett MJ, Walker JC, et al. MiR-19 is a key oncogenic component of miR-17-92. Genes Dev. 2009;23:2839–49.

    Article  CAS  PubMed  Google Scholar 

  • Peter ME. Regulating cancer stem cells the miR way. Cell Stem Cell. 2010;6:4–6.

    Article  CAS  PubMed  Google Scholar 

  • Prince ME, Sivanandan R, Kaczorowski A, et al. Identification of a subpopulation of cells with cancer stem cell properties in head and neck squamous cell carcinoma. Proc Natl Acad Sci USA. 2007;104:973–8.

    Article  CAS  PubMed  Google Scholar 

  • Qian S, Ding JY, Xie R, et al. MicroRNA expression profile of bronchioalveolar stem cells from mouse lung. Biochem Biophys Res Commun. 2008;377:668–73.

    Article  CAS  PubMed  Google Scholar 

  • Quintana E, Shackleton M, Sabel MS, et al. Efficient tumour formation by single human melanoma cells. Nature. 2008;456:593–8.

    Article  CAS  PubMed  Google Scholar 

  • Reinhart BJ, Slack FJ, Basson M, et al. The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans. Nature. 2000;403:901–6.

    Article  CAS  PubMed  Google Scholar 

  • Ricci-Vitiani L, Lombardi DG, Pilozzi E, et al. Identification and expansion of human colon-cancer-initiating cells. Nature. 2007;445:111–5.

    Article  CAS  PubMed  Google Scholar 

  • Rosen JM, Jordan CT. The increasing complexity of the cancer stem cell paradigm. Science. 2009;4:1670–3.

    Article  Google Scholar 

  • Rubin R, Arzumanyan A, Soliera AR, et al. Insulin receptor substrate (IRS)-1 regulates murine embryonic stem (mES) cells self-renewal. J Cell Physiol. 2007;213:445–53.

    Article  CAS  PubMed  Google Scholar 

  • Schultz J, Lorenz P, Gross G, et al. MicroRNA let-7b targets important cell cycle molecules in malignant melanoma cells and interferes with anchorage-independent growth. Cell Res. 2008;18:549–57.

    Article  CAS  PubMed  Google Scholar 

  • Shi B, Sepp-Lorenzino L, Prisco M, et al. MicroRNA 145 targets the insulin receptor substrate-1 and inhibits the growth of colon cancer cells. J Biol Chem. 2007;282:32582–90.

    Article  CAS  PubMed  Google Scholar 

  • Shimono Y, Zabala M, Cho RW, et al. Downregulation of miRNA-200c links breast cancer stem cells with normal stem cells. Cell. 2009;138:592–603.

    Article  CAS  PubMed  Google Scholar 

  • Singh SK, Clarke ID, Terasaki M, et al. Identification of a cancer stem cell in human brain tumors. Cancer Res. 2003;63:5821–8.

    CAS  PubMed  Google Scholar 

  • Sotiropoulou G, Pampalakis G, Lianidou E, et al. Emerging roles of microRNAs as molecular switches in the integrated circuit of the cancer cell. RNA. 2009;15:1443–61.

    Article  CAS  PubMed  Google Scholar 

  • Suh MR, Lee Y, Kim JY, et al. Human embryonic stem cells express a unique set of microRNAs. Dev Biol. 2004;270:488–98.

    Article  CAS  PubMed  Google Scholar 

  • Takamizawa J, Konishi H, Yanagisawa K, et al. Reduced expression of the let-7 microRNAs in human lung cancers in association with shortened postoperative survival. Cancer Res. 2004;64:3753–6.

    Article  CAS  PubMed  Google Scholar 

  • Tarasov V, Jung P, Verdoodt B, et al. Differential regulation of microRNAs by p53 revealed by massively parallel sequencing: miR-34a is a p53 target that induces apoptosis and G1-arrest. Cell Cycle. 2007;6:1586–93.

    Article  CAS  PubMed  Google Scholar 

  • Tavazoie SF, Alarcon C, Oskarsson T, et al. Endogenous human microRNAs that suppress breast cancer metastasis. Nature. 2008;451:147–52.

    Article  CAS  PubMed  Google Scholar 

  • Trang P, Medina PP, Wiggins JF, et al. Regression of murine lung tumors by the let-7 microRNA. Oncogene. 2010;29:1580–7.

    Article  CAS  PubMed  Google Scholar 

  • Tsang WP, Kwok TT. Let-7a microRNA suppresses therapeutics-induced cancer cell death by targeting caspase-3. Apoptosis. 2008;13:1215–22.

    Article  CAS  PubMed  Google Scholar 

  • Valastyan S, Weinberg RA. MicroRNAs: crucial multi-tasking components in the complex circuitry of tumor metastasis. Cell Cycle. 2009;8:3506–12.

    Article  CAS  PubMed  Google Scholar 

  • Velasco-Velázquez MA, Yu Z, Jiao X, et al. Cancer stem cells and the cell cycle: targeting the drive behind breast cancer. Expert Rev Anticancer Ther. 2009;9:275–9.

    Article  PubMed  Google Scholar 

  • Wellner U, Schubert J, Burk UC, et al. The EMT-activator ZEB1 promotes tumorigenicity by repressing stemness-inhibiting microRNAs. Nat Cell Biol. 2009;11:1487–95.

    Article  CAS  PubMed  Google Scholar 

  • Wu K, Katiyar S, Li A, et al. Dachshund inhibits oncogene-induced breast cancer cellular migration and invasion through suppression of interleukin-8. Proc Natl Acad Sci USA. 2008;105:6924–9.

    Article  CAS  PubMed  Google Scholar 

  • Wulczyn FG, Smirnova L, Rybak A, et al. Post-transcriptional regulation of the let-7 microRNA during neural cell specification. FASEB J. 2007;21:415–26.

    Article  CAS  PubMed  Google Scholar 

  • Xu L, Frederik P, Pirollo KF, et al. Self-assembly of a virus-mimicking nanostructure system for efficient tumor-targeted gene delivery. Hum Gene Ther. 2002;13:469–81.

    Article  CAS  PubMed  Google Scholar 

  • Xu N, Papagiannakopoulos T, Pan G, et al. MicroRNA-145 regulates OCT4, SOX2, and KLF4 and represses pluripotency in human embryonic stem cells. Cell. 2009;137:647–58.

    Article  CAS  PubMed  Google Scholar 

  • Yang ZF, Ho DW, Ng MN, et al. Significance of CD90+ cancer stem cells in human liver cancer. Cancer Cell. 2008;13:153–66.

    Article  CAS  PubMed  Google Scholar 

  • Yi R, Poy MN, Stoffel M, et al. A skin microRNA promotes differentiation by repressing ‘stemness’. Nature. 2008;452:225–9.

    Article  CAS  PubMed  Google Scholar 

  • Yu Z, Baserga R, Chen L, et al. MicroRNA, cell cycle, and human breast cancer. Am J Pathol. 2010a;176:1058–64.

    Article  CAS  PubMed  Google Scholar 

  • Yu Z, Raabe T, Hecht NB. MicroRNA MiR-122a reduces expression of the posttranscriptionally regulated germ cell transition protein 2 (Tnp2) messenger RNA (mRNA) by mRNA cleavage. Biol Reprod. 2005;73:427–33.

    Article  CAS  PubMed  Google Scholar 

  • Yu Z, Wang C, Wang M, et al. A cyclin D1/microRNA 17/20 regulatory feedback loop in control of breast cancer cell proliferation. J Cell Biol. 2008;182:509–17.

    Article  CAS  PubMed  Google Scholar 

  • Yu Z, Willmarth NE, Zhou J, et al. MicroRNA 17/20 inhibits cellular invasion and tumor metastasis in breast cancer by heterotypic signaling. Proc Natl Acad Sci USA. 2010b;107:8231–6.

    Article  CAS  PubMed  Google Scholar 

  • Yu F, Yao H, Zhu P, et al. Let-7 regulates self renewal and tumorigenicity of breast cancer cells. Cell. 2007;131:1109–23.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported in part by awards from National Institutes of Health [R01CA70896, R01CA75503, and R01CA86072 to R.G.P.]. Work conducted at the Kimmel Cancer Center was supported by the NIH Cancer Center Core grant [P30CA56036 to R.G.P.]. This project is supported by a generous grant from the Dr. Ralph and Marian C. Falk Medical Research Trust and was funded and supported in part by a grant from the Pennsylvania Department of Health. The Department specifically disclaims responsibility for any analyses, interpretations or conclusions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard G. Pestell .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Netherlands

About this chapter

Cite this chapter

Yu, Z., Pestell, R.G. (2011). MicroRNAs and Cancer Stem Cells. In: Cho, W. (eds) MicroRNAs in Cancer Translational Research. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-0298-1_16

Download citation

Publish with us

Policies and ethics