Skip to main content

MicroRNAs in Bladder Cancer

  • Chapter
  • First Online:
MicroRNAs in Cancer Translational Research

Abstract

Bladder cancer is the fourth most common solid malignancy in men and fifth most common overall with an estimated 70,000 new cases of urothelial carcinoma (UC) and over 14,000 deaths from the disease expected in 2010 in the United States. Although the majority of patients with invasive bladder cancer present without radiographic or clinical evidence of disease beyond the bladder, up to 56% of patients die from the result of occult metastasis not detected by current staging modalities. The potential of microRNAs (miRNAs) as novel tumor markers has been the focus of recent scrutiny because of their tissue specificity, stability, and association with clinical-pathological parameters. Prognostic tools based on conventional clinical and pathologic staging can quantify the risk of death from UC, but their accuracy is imperfect due to the heterogeneous biologic behavior of tumors. Use of biomarkers specific to the tumor and/or patient can provide prognostic utility over that available from routine clinical features. Data have emerged documenting altered systemic miRNAs expression across a spectrum of cancers including urothelial carcinoma of the bladder. Examples include miR-21 (up-regulated), miR-200 family (associated with epithelial-mesenchymal transition and Zeb1/2), and miR-145 (apoptosis). Assessing the expression of all known and predicted non-coding RNAs species and contrasting the miRNAs in the circulation of patients with superficial or invasive disease has great potential in determining whether we can identify systemic miRNAs as screening tools for bladder cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adam L, Zhong M, Choi W, et al. MiR-200 expression regulates epithelial-to-mesenchymal transition in bladder cancer cells and reverses resistance to epidermal growth factor receptor therapy. Clin Cancer Res. 2009;15:5060–72.

    Article  CAS  PubMed  Google Scholar 

  • Bracken CP, Gregory PA, Kolesnikoff N, et al. A double-negative feedback loop between ZEB1-SIP1 and the microRNA-200 family regulates epithelial-mesenchymal transition. Cancer Res. 2008;68:7846–54.

    Article  CAS  PubMed  Google Scholar 

  • Calin GA, Dumitru CD, Shimizu M, et al. Frequent deletions and down-regulation of micro-RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia. Proc Natl Acad Sci USA. 2002;99:15524–9.

    Article  CAS  PubMed  Google Scholar 

  • Catto JW, Miah S, Owen HC, et al. Distinct microRNA alterations characterize high- and low-grade bladder cancer. Cancer Res. 2009;69:8472–81.

    Article  CAS  PubMed  Google Scholar 

  • Chan JA, Krichevsky AM, Kosik KS. MicroRNA-21 is an antiapoptotic factor in human glioblastoma cells. Cancer Res. 2005;65:6029–33.

    Article  CAS  PubMed  Google Scholar 

  • Chen CZ, L, L, Lodish HF, et al. MicroRNAs modulate hematopoietic lineage differentiation. Science. 2004;303:83–6.

    Article  CAS  PubMed  Google Scholar 

  • Chiyomaru T, Enokida H, Tatarano S, et al. MiR-145 and miR-133a function as tumour suppressors and directly regulate FSCN1 expression in bladder cancer. Br J Cancer. 2010;102:883–91.

    Article  CAS  PubMed  Google Scholar 

  • Cho WC. MicroRNAs in cancer – from research to therapy. Biochim Biophys Acta. 2010;1805:209–17.

    CAS  PubMed  Google Scholar 

  • Darnell DK, Kaur S, Stanislaw S, et al. MicroRNA expression during chick embryo development. Dev Dyn. 2006;235:3156–65.

    Article  CAS  PubMed  Google Scholar 

  • Dyrskjot L, Ostenfeld MS, Bramsen JB, et al. Genomic profiling of microRNAs in bladder cancer: miR-129 is associated with poor outcome and promotes cell death in vitro. Cancer Res. 2009;69:4851–60.

    Article  CAS  PubMed  Google Scholar 

  • Gottardo F, Liu CG, Ferracin M, et al. Micro-RNA profiling in kidney and bladder cancers. Urol Oncol. 2007;25:387–92.

    CAS  PubMed  Google Scholar 

  • Gregory PA, Bert AG, Paterson EL, et al. The miR-200 family and miR-205 regulate epithelial to mesenchymal transition by targeting ZEB1 and SIP1. Nat Cell Biol. 2008;10:593–601.

    Article  CAS  PubMed  Google Scholar 

  • Grosshans H, Filipowicz W Molecular biology: the expanding world of small RNAs. Nature. 2008;451:414–6.

    Article  CAS  PubMed  Google Scholar 

  • Hanke M, Hoefig K, Merz H, et al. A robust methodology to study urine microRNA as tumor marker: microRNA-126 and microRNA-182 are related to urinary bladder cancer. Urol Oncol. 2010;28:655–61

    PubMed  Google Scholar 

  • Huang L, Luo J, Cai Q, et al. MicroRNA-125b suppresses the development of bladder cancer by targeting E2F3. Int J Cancer. 2010;28:655–61.

    Google Scholar 

  • Hutvagner G, Zamore PD. A microRNA in a multiple-turnover RNAi enzyme complex. Science. 2002;297:2056–60.

    Article  CAS  PubMed  Google Scholar 

  • Ichimi T, Enokida H, Okuno Y, et al. Identification of novel microRNA targets based on microRNA signatures in bladder cancer. Int J Cancer. 2009;125:345–52.

    Article  CAS  PubMed  Google Scholar 

  • Jemal A, Siegel R, Xu J, et al. Cancer statistics, 2010. CA Cancer J Clin. 2010;60:277–300.

    PubMed  Google Scholar 

  • Kawakami K, Enokida H, Tachiwada T, et al. Identification of differentially expressed genes in human bladder cancer through genome-wide gene expression profiling. Oncol Rep. 2006;16:521–31.

    CAS  PubMed  Google Scholar 

  • Lagos-Quintana M, Rauhut R, Meyer J, et al. New microRNAs from mouse and human. RNA. 2003;9:175–9.

    Article  CAS  PubMed  Google Scholar 

  • Lagos-Quintana M, Rauhut R, Yalcin A, et al. Identification of tissue-specific microRNAs from mouse. Curr Biol. 2002;12:735–9.

    Article  CAS  PubMed  Google Scholar 

  • Lamy P, Andersen CL, Dyrskjot L, et al. Are microRNAs located in genomic regions associated with cancer? Br J Cancer. 2006;95:1415–8.

    Article  CAS  PubMed  Google Scholar 

  • Lee RC, Feinbaum RL and Ambros V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell. 1993;75:843–54.

    Article  CAS  PubMed  Google Scholar 

  • Lee YS, Kim HK, Chung S, et al. Depletion of human micro-RNA miR-125b reveals that it is critical for the proliferation of differentiated cells but not for the down-regulation of putative targets during differentiation. J Biol Chem. 2005;280:16635–41.

    Article  CAS  PubMed  Google Scholar 

  • Lin T, Dong W, Huang J, et al. MicroRNA-143 as a tumor suppressor for bladder cancer. J Urol. 2009;181:1372–80.

    Article  CAS  PubMed  Google Scholar 

  • Liu B, Cunha GR, Baskin LS. Differential expression of microRNAs in mouse embryonic bladder. Biochem Biophys Res Commun. 2009;385:528–33.

    Article  CAS  PubMed  Google Scholar 

  • Lu J, Getz G, Miska EA, et al. MicroRNA expression profiles classify human cancers. Nature. 2005;435:834–8.

    Article  CAS  PubMed  Google Scholar 

  • Lu Q, Lu C, Zhou GP, et al. MicroRNA-221 silencing predisposed human bladder cancer cells to undergo apoptosis induced by TRAIL. Urol Oncol. 2010;28:635–41.

    PubMed  Google Scholar 

  • Lujambio A, Ropero S, Ballestar E, et al. Genetic unmasking of an epigenetically silenced microRNA in human cancer cells. Cancer Res. 2007;67:1424–9.

    Article  CAS  PubMed  Google Scholar 

  • Meng F, Henson R, Wehbe-Janek H, et al. MicroRNA-21 regulates expression of the PTEN tumor suppressor gene in human hepatocellular cancer. Gastroenterology. 2007;133:647–58.

    Google Scholar 

  • Neely LA, Rieger-Christ KM, Neto BS, et al. A microRNA expression ratio defining the invasive phenotype in bladder tumors. Urol Oncol. 2010;28:39–48.

    CAS  PubMed  Google Scholar 

  • Nelson KM, Weiss GJ. MicroRNAs and cancer: past, present, and potential future. Mol Cancer Ther. 2008;7:3655–60.

    Article  CAS  PubMed  Google Scholar 

  • Nelson PT, Hatzigeorgiou AG, Mourelatos Z. MiRNP:mRNA association in polyribosomes in a human neuronal cell line. RNA. 2004;10:387–94.

    Article  CAS  PubMed  Google Scholar 

  • Ostenfeld MS, Bramsen JB, Lamy P, et al. MiR-145 induces caspase-dependent and -independent cell death in urothelial cancer cell lines with targeting of an expression signature present in Ta bladder tumors. Oncogene. 2010;29:1073–84.

    Article  CAS  PubMed  Google Scholar 

  • Park SM, Gaur AB, Lengyel E, et al. The miR-200 family determines the epithelial phenotype of cancer cells by targeting the E-cadherin repressors ZEB1 and ZEB2. Genes Dev. 2008;22:894–907.

    Article  CAS  PubMed  Google Scholar 

  • Pasquinelli AE, Reinhart BJ, Slack F, et al. Conservation of the sequence and temporal expression of let-7 heterochronic regulatory RNA. Nature. 2000;408:86–9.

    Article  CAS  PubMed  Google Scholar 

  • Pelosi G, Pastorino U, Pasini F, et al. Independent prognostic value of fascin immunoreactivity in stage I nonsmall cell lung cancer. Br J Cancer. 2003;88:537–47.

    Article  CAS  PubMed  Google Scholar 

  • Protopopov A, Kashuba V, Zabarovska VI, et al. An integrated physical and gene map of the 3.5-Mb chromosome 3p21.3 (AP20) region implicated in major human epithelial malignancies. Cancer Res. 2003;63:404–12.

    CAS  PubMed  Google Scholar 

  • Richter J, Wagner U, Schraml P, et al. Chromosomal imbalances are associated with a high risk of progression in early invasive (pT1) urinary bladder cancer. Cancer Res. 1999;59:5687–91.

    CAS  PubMed  Google Scholar 

  • Saito Y, Liang G, Egger G, et al. Specific activation of microRNA-127 with downregulation of the proto-oncogene BCL6 by chromatin-modifying drugs in human cancer cells. Cancer Cell. 2006;9:435–43.

    Article  CAS  PubMed  Google Scholar 

  • Schaefer A, Jung M, Kristiansen G, et al. MicroRNAs and cancer: current state and future perspectives in urologic oncology. Urol Oncol. 2010;28:4–13.

    CAS  PubMed  Google Scholar 

  • Staack A, Hayward SW, Baskin LS, et al. Molecular, cellular and developmental biology of urothelium as a basis of bladder regeneration. Differentiation. 2005;73:121–33.

    Article  CAS  PubMed  Google Scholar 

  • Tong AW, Fulgham P, Jay C, et al. MicroRNA profile analysis of human prostate cancers. Cancer Gene Ther. 2009;16:206–16.

    CAS  PubMed  Google Scholar 

  • Vasudevan S, Tong Y, Steitz JA. Switching from repression to activation: microRNAs can up-regulate translation. Science. 2007;318:1931–4.

    Article  CAS  PubMed  Google Scholar 

  • Vignjevic D, Kojima S, Aratyn Y, et al. Role of fascin in filopodial protrusion. J Cell Biol. 2006;174:863–75.

    Article  CAS  PubMed  Google Scholar 

  • Volinia S, Calin GA, Liu CG, et al. A microRNA expression signature of human solid tumors defines cancer gene targets. Proc Natl Acad Sci USA. 2006;103:2257–61.

    Article  CAS  PubMed  Google Scholar 

  • Wang G, Zhang H, He H, et al. Up-regulation of microRNA in bladder tumor tissue is not common. Int Urol Nephrol. 2010;42:95–102.

    Article  PubMed  Google Scholar 

  • Wiklund ED, Bramsen JB, Hulf T, et al. Coordinated epigenetic repression of the miR-200 family and miR-205 in invasive bladder cancer. Int J Cancer. 2010. doi:10.1002/ijc.25461.

    Google Scholar 

  • Wszolek MF, Rieger-Christ KM, Kenney PA, et al. A MicroRNA expression profile defining the invasive bladder tumor phenotype. Urol Oncol. 2010. doi:10.1016/j.urolonc.2009.08.024.

    Google Scholar 

  • Wu W, Sun M, Zou GM, et al. MicroRNA and cancer: current status and prospective. Int J Cancer. 2007;120:953–60.

    Article  CAS  PubMed  Google Scholar 

  • Yang H, Dinney CP, Ye Y, et al. Evaluation of genetic variants in microRNA-related genes and risk of bladder cancer. Cancer Res. 2008;68:2530–7.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liana Adam .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Netherlands

About this chapter

Cite this chapter

Williams, M.B., Adam, L. (2011). MicroRNAs in Bladder Cancer. In: Cho, W. (eds) MicroRNAs in Cancer Translational Research. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-0298-1_10

Download citation

Publish with us

Policies and ethics