Skip to main content

TRP Channels in Vascular Endothelial Cells

  • Chapter
  • First Online:
Transient Receptor Potential Channels

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 704))

Abstract

Endothelial cells regulate multiple vascular functions, such as vascular tone, permeability, remodeling, and angiogenesis. It is known for long that cytosolic Ca2+ level ([Ca2+]i) and membrane potential of endothelial cells are crucial factors to initiate the signal transduction cascades, leading to diverse vascular functions. Among the various kinds of endothelial ion channels that regulate ion homeostasis, transient receptor potential (TRP) channels emerge as the prime mediators for a diverse range of vascular signaling. The characteristics of TRP channels, including subunit heteromultimerization, diverse ion selectivity, and multiple modes of activation, permit their versatile functional roles in vasculatures. Substantial amount of evidence demonstrates that many TRP channels in endothelial cells participate in physiological and pathophysiological processes of vascular system. In this article, we summarize the recent findings of TRP research in endothelial cells, aiming at providing up-to-date information to the researchers in this rapidly growing field.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Nilius B, Droogmans G (2001) Ion channels and their functional role in vascular endothelium. Physiol Rev 81:1415–1459

    CAS  PubMed  Google Scholar 

  2. Nilius B, Droogmans G, Wondergem R (2003) Transient receptor potential channels in endothelium: solving the calcium entry puzzle? Endothelium 10:5–15

    CAS  PubMed  Google Scholar 

  3. Kwan HY, Huang Y, Yao X (2007) TRP channels in endothelial function and dysfunction. Biochim Biophys Acta 1772:907–914

    CAS  PubMed  Google Scholar 

  4. Nilius B (2007) TRP channels in disease. Biochim Biophys Acta 1772:805–812

    CAS  PubMed  Google Scholar 

  5. Venkatachalam K, Montell C (2007) TRP channels. Annu Rev Biochem 76:387–417

    PubMed Central  CAS  PubMed  Google Scholar 

  6. Antoniotti S, Fiorio Pla A, Barral S, Scalabrino O, Munaron L, Lovisolo D (2006) Interaction between TRPC channel subunits in endothelial cells. J Recept Signal Transduct Res 26: 225–240

    CAS  PubMed  Google Scholar 

  7. Bishara NB, Ding H (2010) Glucose enhances expression of TRPC1 and calcium entry in endothelial cells. Am J Physiol Heart Circ Physiol 298:H171–H178

    CAS  PubMed  Google Scholar 

  8. Chaudhuri P, Colles SM, Bhat M, Van Wagoner DR, Birnbaumer L, Graham LM (2008) Elucidation of a TRPC6-TRPC5 channel cascade that restricts endothelial cell movement. Mol Biol Cell 19:3203–3211

    PubMed Central  CAS  PubMed  Google Scholar 

  9. Wong CO, Huang Y, Yao X (2010) Genistein potentiates activity of the cation channel TRPC5 independently of tyrosine kinases. Br J Pharmacol 159:1486–1496

    PubMed Central  CAS  PubMed  Google Scholar 

  10. Xie Q, Zhang Y, Cai Sun X, Zhai C, Bonanno JA (2005) Expression and functional evaluation of transient receptor potential channel 4 in bovine corneal endothelial cells. Exp Eye Res 81:5–14

    PubMed Central  CAS  PubMed  Google Scholar 

  11. Gifford SM, Yi FX, Bird IM (2006) Pregnancy-enhanced store-operated Ca2+ channel function in uterine artery endothelial cells is associated with enhanced agonist-specific transient receptor potential channel 3-inositol 1,4,5-trisphosphate receptor 2 interaction. J Endocrinol 190:385–395

    CAS  PubMed  Google Scholar 

  12. Hamdollah Zadeh MA, Glass CA, Magnussen A, Hancox JC, Bates DO (2008) VEGF-mediated elevated intracellular calcium and angiogenesis in human microvascular endothelial cells in vitro are inhibited by dominant negative TRPC6. Microcirculation 15:605–614

    CAS  PubMed  Google Scholar 

  13. Thilo F, Loddenkemper C, Berg E, Zidek W, Tepel M (2009) Increased, TRPC3 expression in vascular endothelium of patients with malignant hypertension. Mod Pathol 22: 426–430

    CAS  PubMed  Google Scholar 

  14. Kwiatek AM, Minshall RD, Cool DR, Skidgel RA, Malik AB, Tiruppathi C (2006) Caveolin-1 regulates store-operated Ca2+ influx by binding of its scaffolding domain to transient receptor potential channel-1 in endothelial cells. Mol Pharmacol 70:1174–1183

    CAS  PubMed  Google Scholar 

  15. Singh I, Knezevic N, Ahmmed GU, Kini V, Malik AB, Mehta D (2007) Galphaq-TRPC6-mediated Ca2+ entry induces RhoA activation and resultant endothelial cell shape change in response to thrombin. J Biol Chem 282:7833–7843

    CAS  PubMed  Google Scholar 

  16. Thilo F, Baumunk D, Krause H, Schrader M, Miller K, Loddenkemper C, Zakrzewicz A, Krueger K, Zidek W, Tepel M (2009) Transient receptor potential canonical type 3 channels and blood pressure in humans. J Hypertens 27:1217–1223

    CAS  PubMed  Google Scholar 

  17. Abdullaev IF, Bisaillon JM, Potier M, Gonzalez JC, Motiani RK, Trebak M (2008) Stim1 and Orai1 mediate CRAC currents and store-operated calcium entry important for endothelial cell proliferation. Circ Res 103:1289–1299

    PubMed Central  CAS  PubMed  Google Scholar 

  18. Ge R, Tai Y, Sun Y, Zhou K, Yang S, Cheng T, Zou Q, Shen F, Wang Y (2009) Critical role of TRPC6 channels in VEGF-mediated angiogenesis. Cancer Lett 283:43–51

    CAS  PubMed  Google Scholar 

  19. Paria BC, Bair AM, Xue J, Yu Y, Malik AB, Tiruppathi C (2006) Ca2+ influx induced by protease-activated receptor-1 activates a feed-forward mechanism of TRPC1 expression via nuclear factor-kappaB activation in endothelial cells. J Biol Chem 281:20715–20727

    CAS  PubMed  Google Scholar 

  20. Yang LX, Guo RW, Liu B, Wang XM, Qi F, Guo CM, Shi YK, Wang H (2009) Role of TRPC1 and NF-kappaB in mediating angiotensin II-induced Ca2+ entry and endothelial hyperpermeability. Peptides 30:1368–1373

    PubMed  Google Scholar 

  21. Brown RC, Wu L, Hicks K, O’Neil RG (2008) Regulation of blood-brain barrier permeability by transient receptor potential type C and type v calcium-permeable channels. Microcirculation 15:359–371

    PubMed Central  CAS  PubMed  Google Scholar 

  22. Poteser M, Graziani A, Rosker C, Eder P, Derler I, Kahr H, Zhu MX, Romanin C, Groschner K (2006) TRPC3 and TRPC4 associate to form a redox-sensitive cation channel. Evidence for expression of native TRPC3-TRPC4 heteromeric channels in endothelial cells. J Biol Chem 281:13588–13595

    CAS  PubMed  Google Scholar 

  23. Huang H, Wang W, Liu P, Jiang Y, Zhao Y, Wei H, Niu W (2009) TRPC1 expression and distribution in rat hearts. Eur J Histochem 53:217–223

    CAS  PubMed  Google Scholar 

  24. Moller CC, Mangos S, Drummond IA, Reiser J (2008) Expression of trpC1 and trpC6 orthologs in zebrafish. Gene Expr Patterns 8:291–296

    PubMed Central  CAS  PubMed  Google Scholar 

  25. Yao X, Garland CJ (2005) Recent developments in vascular endothelial cell transient receptor potential channels. Circ Res 97:853–863

    CAS  PubMed  Google Scholar 

  26. Thodeti CK, Matthews B, Ravi A, Mammoto A, Ghosh K, Bracha AL, Ingber DE (2009) TRPV4 channels mediate cyclic strain-induced endothelial cell reorientation through integrin-to-integrin signaling. Circ Res 104:1123–1130

    PubMed Central  CAS  PubMed  Google Scholar 

  27. Willette RN, Bao W, Nerurkar S, Yue TL, Doe CP, Stankus G, Turner GH, Ju H, Thomas H, Fishman CE, Sulpizio A, Behm DJ, Hoffman S, Lin Z, Lozinskaya I, Casillas LN, Lin M, Trout RE, Votta BJ, Thorneloe K, Lashinger ES, Figueroa DJ, Marquis R, Xu X (2008) Systemic activation of the transient receptor potential vanilloid subtype 4 channel causes endothelial failure and circulatory collapse: Part 2. J Pharmacol Exp Ther 326:443–452

    CAS  PubMed  Google Scholar 

  28. AbouAlaiwi WA, Takahashi M, Mell BR, Jones TJ, Ratnam S, Kolb RJ, Nauli SM (2009) Ciliary polycystin-2 is a mechanosensitive calcium channel involved in nitric oxide signaling cascades. Circ Res 104:860–869

    PubMed Central  CAS  PubMed  Google Scholar 

  29. Loot AE, Popp R, Fisslthaler B, Vriens J, Nilius B, Fleming I (2008) Role of cytochrome P450-dependent transient receptor potential V4 activation in flow-induced vasodilatation. Cardiovasc Res 80:445–452

    CAS  PubMed  Google Scholar 

  30. Nauli SM, Kawanabe Y, Kaminski JJ, Pearce WJ, Ingber DE, Zhou J (2008) Endothelial cilia are fluid shear sensors that regulate calcium signaling and nitric oxide production through polycystin-1. Circulation 117:1161–1171

    PubMed Central  CAS  PubMed  Google Scholar 

  31. Vriens J, Owsianik G, Fisslthaler B, Suzuki M, Janssens A, Voets T, Morisseau C, Hammock BD, Fleming I, Busse R, Nilius B (2005) Modulation of the Ca2 permeable cation channel TRPV4 by cytochrome P450 epoxygenases in vascular endothelium. Circ Res 97:908–915

    CAS  PubMed  Google Scholar 

  32. Zhang DX, Mendoza SA, Bubolz AH, Mizuno A, Ge ZD, Li R, Warltier DC, Suzuki M, Gutterman DD (2009) Transient receptor potential vanilloid type 4-deficient mice exhibit impaired endothelium-dependent relaxation induced by acetylcholine in vitro and in vivo. Hypertension 53:532–538

    PubMed Central  CAS  PubMed  Google Scholar 

  33. Ma YY, Huo HR, Li CH, Zhao BS, Li LF, Sui F, Guo SY, Jiang TL (2008) Effects of cinnamaldehyde on PGE2 release and TRPV4 expression in mouse cerebral microvascular endothelial cells induced by interleukin-1beta. Biol Pharm Bull 31:426–430

    CAS  PubMed  Google Scholar 

  34. Mendoza SA, Fang J, Gutterman DD, Wilcox DA, Bubolz AH, Li R, Suzuki M, Zhang DX (2010) TRPV4-mediated endothelial Ca2+ influx and vasodilation in response to shear stress. Am J Physiol Heart Circ Physiol 298:H466–H476

    PubMed Central  CAS  PubMed  Google Scholar 

  35. Gao F, Wang DH (2010) Hypotension induced by activation of the transient receptor potential vanilloid 4 channels: role of Ca2+-activated K+ channels and sensory nerves. J Hypertens 28:102–110

    PubMed Central  CAS  PubMed  Google Scholar 

  36. Fian R, Grasser E, Treiber F, Schmidt R, Niederl P, Rosker C (2007) The contribution of TRPV4-mediated calcium signaling to calcium homeostasis in endothelial cells. J Recept Signal Transduct Res 27:113–124

    CAS  PubMed  Google Scholar 

  37. Troidl C, Troidl K, Schierling W, Cai WJ, Nef H, Mollmann H, Kostin S, Schimanski S, Hammer L, Elsasser A, Schmitz-Rixen T, Schaper W (2009) Trpv4 induces collateral vessel growth during regeneration of the arterial circulation. J Cell Mol Med 13:2613–2621

    PubMed  Google Scholar 

  38. Kohler R, Heyken WT, Heinau P, Schubert R, Si H, Kacik M, Busch C, Grgic I, Maier T, Hoyer J (2006) Evidence for a functional role of endothelial transient receptor potential V4 in shear stress-induced vasodilatation. Arterioscler Thromb Vasc Biol 26:1495–1502

    PubMed  Google Scholar 

  39. Earley S, Gonzales AL, Crnich R (2009) Endothelium-dependent cerebral artery dilation mediated by TRPA1 and Ca2+-Activated, K+ channels. Circ Res 104:987–994

    PubMed Central  CAS  PubMed  Google Scholar 

  40. Marrelli SP, O’Neil RG, Brown RC, Bryan RM Jr. (2007) PLA2 and TRPV4 channels regulate endothelial calcium in cerebral arteries. Am J Physiol Heart Circ Physiol 292:H1390–H1397

    CAS  PubMed  Google Scholar 

  41. Mangos S, Liu Y, Drummond IA (2007) Dynamic expression of the osmosensory channel trpv4 in multiple developing organs in zebrafish. Gene Expr Patterns 7:480–484

    PubMed Central  CAS  PubMed  Google Scholar 

  42. Hecquet CM, Ahmmed GU, Vogel SM, Malik AB (2008) Role of TRPM2 channel in mediating H2O2-induced Ca2+ entry and endothelial hyperpermeability. Circ Res 102:347–355

    CAS  PubMed  Google Scholar 

  43. Inoue K, Xiong ZG (2009) Silencing, TRPM7 promotes growth/proliferation and nitric oxide production of vascular endothelial cells via the ERK pathway. Cardiovasc Res 83:547–557

    PubMed Central  CAS  PubMed  Google Scholar 

  44. Paria BC, Vogel SM, Ahmmed GU, Alamgir S, Shroff J, Malik AB, Tiruppathi C (2004) Tumor necrosis factor-alpha-induced TRPC1 expression amplifies store-operated Ca2+ influx and endothelial permeability. Am J Physiol Lung Cell Mol Physiol 287:L1303–L1313

    CAS  PubMed  Google Scholar 

  45. Ma X, Qiu S, Luo J, Ma Y, Ngai CY, Shen B, Wong CO, Huang Y, Yao X (2010) Functional role of vanilloid transient receptor potential 4-canonical transient receptor potential 1 complex in flow-induced Ca2+ influx. Arterioscler Thromb Vasc Biol 30:851–858

    CAS  PubMed  Google Scholar 

  46. Berridge MJ, Bootman MD, Roderick HL (2003) Calcium signalling: dynamics, homeostasis and remodelling. Nat Rev Mol Cell Biol 4:517–529

    CAS  PubMed  Google Scholar 

  47. Spector AA (2009) Arachidonic acid cytochrome P450 epoxygenase pathway. J Lipid Res 50 (Suppl):S52-S56

    PubMed Central  PubMed  Google Scholar 

  48. Ross RA (2003) Anandamide and vanilloid TRPV1 receptors. Br J Pharmacol 140:790–801

    PubMed Central  CAS  PubMed  Google Scholar 

  49. Cioffi DL, Wu S, Stevens T (2003) On the endothelial cell I(SOC). Cell Calcium 33: 323–336

    CAS  PubMed  Google Scholar 

  50. Salido GM, Sage SO, Rosado JA (2009) TRPC channels and store-operated Ca(2+) entry. Biochim Biophys Acta 1793:223–230

    CAS  PubMed  Google Scholar 

  51. Freichel M, Suh SH, Pfeifer A, Schweig U, Trost C, Weissgerber P, Biel M, Philipp S, Freise D, Droogmans G, Hofmann F, Flockerzi V, Nilius B (2001) Lack of an endothelial store-operated Ca2+ current impairs agonist-dependent vasorelaxation in TRP4–/– mice. Nat Cell Biol 3:121–127

    CAS  PubMed  Google Scholar 

  52. Tiruppathi C, Freichel M, Vogel SM, Paria BC, Mehta D, Flockerzi V, Malik AB (2002) Impairment of store-operated Ca2+ entry in TRPC4(–/–) mice interferes with increase in lung microvascular permeability. Circ Res 91:70–76

    CAS  PubMed  Google Scholar 

  53. Sundivakkam PC, Kwiatek AM, Sharma TT, Minshall RD, Malik AB, Tiruppathi C (2009) Caveolin-1 scaffold domain interacts with TRPC1 and IP3R3 to regulate Ca2+ store release-induced Ca2+ entry in endothelial cells. Am J Physiol Cell Physiol 296:C403–C413

    PubMed Central  CAS  PubMed  Google Scholar 

  54. Trebak M (2009) STIM1/Orai1, ICRAC, and endothelial SOC. Circ Res 104:e56–57

    PubMed Central  CAS  PubMed  Google Scholar 

  55. Beech DJ (2009) Harmony and discord in endothelial calcium entry. Circ Res 104:e22–23

    PubMed Central  CAS  PubMed  Google Scholar 

  56. Cahalan MD (2009) STIMulating store-operated Ca(2+) entry. Nat Cell Biol 11:669–677

    PubMed Central  CAS  PubMed  Google Scholar 

  57. Bair AM, Thippegowda PB, Freichel M, Cheng N, Ye RD, Vogel SM, Yu Y, Flockerzi V, Malik AB, Tiruppathi C (2009) Ca2+ entry via TRPC channels is necessary for thrombin-induced NF-kappaB activation in endothelial cells through AMP-activated protein kinase and protein kinase Cdelta. J Biol Chem 284:563–574

    PubMed Central  CAS  PubMed  Google Scholar 

  58. Thippegowda PB, Singh V, Sundivakkam PC, Xue J, Malik AB, Tiruppathi C (2010) Ca2+ influx via TRPC channels induces NF-kappaB-dependent A20 expression to prevent thrombin-induced apoptosis in endothelial cells. Am J Physiol Cell Physiol 298:C656–C664

    PubMed Central  CAS  PubMed  Google Scholar 

  59. Fantozzi I, Zhang S, Platoshyn O, Remillard CV, Cowling RT, Yuan JX (2003) Hypoxia increases AP-1 binding activity by enhancing capacitative Ca2+ entry in human pulmonary artery endothelial cells. Am J Physiol Lung Cell Mol Physiol 285:L1233–L1245

    CAS  PubMed  Google Scholar 

  60. Earley S, Waldron BJ, Brayden JE (2004) Critical role for transient receptor potential channel TRPM4 in myogenic constriction of cerebral arteries. Circ Res 95:922–929

    CAS  PubMed  Google Scholar 

  61. Kwan HY, Shen B, Ma X, Kwok YC, Huang Y, Man YB, Yu S, Yao X (2009) TRPC1 associates with BK(Ca) channel to form a signal complex in vascular smooth muscle cells. Circ Res 104:670–678

    CAS  PubMed  Google Scholar 

  62. Earley S, Heppner TJ, Nelson MT, Brayden JE (2005) TRPV4 forms a novel Ca2+ signaling complex with ryanodine receptors and BKCa channels. Circ Res 97:1270–1279

    CAS  PubMed  Google Scholar 

  63. Feletou M, Vanhoutte PM (2009) EDHF: an update. Clin Sci (Lond) 117:139–155

    CAS  Google Scholar 

  64. Liu C, Ngai CY, Huang Y, Ko WH, Wu M, He GW, Garland CJ, Dora KA, Yao X (2006) Depletion of intracellular Ca2+ stores enhances flow-induced vascular dilatation in rat small mesenteric artery. Br J Pharmacol 147:506–515

    PubMed Central  CAS  PubMed  Google Scholar 

  65. Jenkins CM, Cedars A, Gross RW (2009) Eicosanoid signalling pathways in the heart. Cardiovasc Res 82:240–249

    PubMed Central  CAS  PubMed  Google Scholar 

  66. Grgic I, Kaistha BP, Hoyer J, Kohler R (2009) Endothelial, Ca+-activated K+ channels in normal and impaired EDHF-dilator responses–relevance to cardiovascular pathologies and drug discovery. Br J Pharmacol 157:509–526

    PubMed Central  CAS  PubMed  Google Scholar 

  67. Poblete IM, Orliac ML, Briones R, Adler-Graschinsky E, Huidobro-Toro JP (2005) Anandamide elicits an acute release of nitric oxide through endothelial TRPV1 receptor activation in the rat arterial mesenteric bed. J Physiol 568:539–551

    PubMed Central  CAS  PubMed  Google Scholar 

  68. Bratz IN, Dick GM, Tune JD, Edwards JM, Neeb ZP, Dincer UD, Sturek M (2008) Impaired capsaicin-induced relaxation of coronary arteries in a porcine model of the metabolic syndrome. Am J Physiol Heart Circ Physiol 294:H2489–H2496

    CAS  PubMed  Google Scholar 

  69. Cioffi DL, Lowe K, Alvarez DF, Barry C, Stevens T (2009) TRPing on the lung endothelium: calcium channels that regulate barrier function. Antioxid Redox Signal 11:765–776

    PubMed Central  CAS  PubMed  Google Scholar 

  70. Tiruppathi C, Ahmmed GU, Vogel SM, Malik AB (2006) Ca2+ signaling, TRP channels, and endothelial permeability. Microcirculation 13:693–708

    CAS  PubMed  Google Scholar 

  71. Clark K, Middelbeek J, van Leeuwen FN (2008) Interplay between TRP channels and the cytoskeleton in health and disease. Eur J Cell Biol 87:631–640

    CAS  PubMed  Google Scholar 

  72. Gerzanich V, Woo SK, Vennekens R, Tsymbalyuk O, Ivanova S, Ivanov A, Geng Z, Chen Z, Nilius B, Flockerzi V, Freichel M, Simard JM (2009) De novo expression of Trpm4 initiates secondary hemorrhage in spinal cord injury. Nat Med 15:185–191

    PubMed Central  CAS  PubMed  Google Scholar 

  73. Pocock TM, Foster RR, Bates DO (2004) Evidence of a role for TRPC channels in VEGF-mediated increased vascular permeability in vivo. Am J Physiol Heart Circ Physiol 286:H1015–H1026

    CAS  PubMed  Google Scholar 

  74. Alvarez DF, King JA, Weber D, Addison E, Liedtke W, Townsley MI (2006) Transient receptor potential vanilloid 4-mediated disruption of the alveolar septal barrier: a novel mechanism of acute lung injury. Circ Res 99:988–995

    PubMed Central  CAS  PubMed  Google Scholar 

  75. Hamanaka K, Jian MY, Weber DS, Alvarez DF, Townsley MI, Al-Mehdi AB, King JA, Liedtke W, Parker JC (2007) TRPV4 initiates the acute calcium-dependent permeability increase during ventilator-induced lung injury in isolated mouse lungs. Am J Physiol Lung Cell Mol Physiol 293:L923–L932

    CAS  PubMed  Google Scholar 

  76. He Y, Yao G, Savoia C, Touyz RM (2005) Transient receptor potential melastatin 7 ion channels regulate magnesium homeostasis in vascular smooth muscle cells: role of angiotensin II. Circ Res 96:207–215

    CAS  PubMed  Google Scholar 

  77. Graziani A, Poteser M, Heupel WM, Schleifer H, Krenn M, Drenckhahn D, Romanin C, Baumgartner W, Groschner K (2010) Cell-cell contact formation governs Ca2+ signaling by TRPC4 in the vascular endothelium: evidence for a regulatory TRPC4-beta-catenin interaction. J Biol Chem 285:4213–4223

    PubMed Central  CAS  PubMed  Google Scholar 

  78. Yu PC, Gu SY, Bu JW, Du JL (2010) TRPC1 is essential for in vivo angiogenesis in zebrafish. Circ Res 106:1221–1232

    CAS  PubMed  Google Scholar 

  79. Droge W (2002) Free radicals in the physiological control of cell function. Physiol Rev 82:47–95

    CAS  PubMed  Google Scholar 

  80. Balzer M, Lintschinger B, Groschner K (1999) Evidence for a role of Trp proteins in the oxidative stress-induced membrane conductances of porcine aortic endothelial cells. Cardiovasc Res 42:543–549

    CAS  PubMed  Google Scholar 

  81. Naziroglu M (2007) New molecular mechanisms on the activation of TRPM2 channels by oxidative stress and ADP-ribose. Neurochem Res 32:1990–2001

    CAS  PubMed  Google Scholar 

  82. Naziroglu M, Luckhoff A (2008) A calcium influx pathway regulated separately by oxidative stress and ADP-Ribose in TRPM2 channels: single channel events. Neurochem Res 33:1256–1262

    CAS  PubMed  Google Scholar 

  83. Aarts M, Iihara K, Wei WL, Xiong ZG, Arundine M, Cerwinski W, MacDonald JF, Tymianski M (2003) A key role for TRPM7 channels in anoxic neuronal death. Cell 115:863–877

    CAS  PubMed  Google Scholar 

  84. Bessac BF, Sivula M, von Hehn CA, Escalera J, Cohn L, Jordt SE (2008) TRPA1 is a major oxidant sensor in murine airway sensory neurons. J Clin Invest 118:1899–1910

    PubMed Central  CAS  PubMed  Google Scholar 

  85. Resnick N, Yahav H, Shay-Salit A, Shushy M, Schubert S, Zilberman LC, Wofovitz E (2003) Fluid shear stress and the vascular endothelium: for better and for worse. Prog Biophys Mol Biol 81:177–199

    PubMed  Google Scholar 

  86. White CR, Frangos JA (2007) The shear stress of it all: the cell membrane and mechanochemical transduction. Philos Trans R Soc Lond B Biol Sci 362:1459–1467

    PubMed Central  CAS  PubMed  Google Scholar 

  87. Suzuki M, Mizuno A, Kodaira K, Imai M (2003) Impaired pressure sensation in mice lacking TRPV4. J Biol Chem 278:22664–22668

    CAS  PubMed  Google Scholar 

  88. Strotmann R, Harteneck C, Nunnenmacher K, Schultz G, Plant TD (2000) OTRPC4, a nonselective cation channel that confers sensitivity to extracellular osmolarity. Nat Cell Biol 2:695–702

    CAS  PubMed  Google Scholar 

  89. Vriens J, Watanabe H, Janssens A, Droogmans G, Voets T, Nilius B (2004) Cell swelling, heat, and chemical agonists use distinct pathways for the activation of the cation channel TRPV4. Proc Natl Acad Sci USA 101:396–401

    PubMed Central  CAS  PubMed  Google Scholar 

  90. Yao X, Kwan HY, Chan FL, Chan NW, Huang Y (2000) A protein kinase G-sensitive channel mediates flow-induced Ca(2+) entry into vascular endothelial cells. FASEB J 14: 932–938

    CAS  PubMed  Google Scholar 

  91. Ohata H, Ikeuchi T, Kamada A, Yamamoto M, Momose K (2001) Lysophosphatidic acid positively regulates the fluid flow-induced local Ca(2+) influx in bovine aortic endothelial cells. Circ Res 88:925–932

    CAS  PubMed  Google Scholar 

  92. Nauli SM, Alenghat FJ, Luo Y, Williams E, Vassilev P, Li X, Elia AE, Lu W, Brown EM, Quinn SJ, Ingber DE, Zhou J (2003) Polycystins 1 and 2 mediate mechanosensation in the primary cilium of kidney cells. Nat Genet 33:129–137

    CAS  PubMed  Google Scholar 

  93. Sharif-Naeini R, Folgering JH, Bichet D, Duprat F, Lauritzen I, Arhatte M, Jodar M, Dedman A, Chatelain FC, Schulte U, Retailleau K, Loufrani L, Patel A, Sachs F, Delmas P, Peters DJ, Honore E (2009) Polycystin-1 and -2 dosage regulates pressure sensing. Cell 139:587–596

    CAS  PubMed  Google Scholar 

  94. Kottgen M, Buchholz B, Garcia-Gonzalez MA, Kotsis F, Fu X, Doerken M, Boehlke C, Steffl D, Tauber R, Wegierski T, Nitschke R, Suzuki M, Kramer-Zucker A, Germino GG, Watnick T, Prenen J, Nilius B, Kuehn EW, Walz G (2008) TRPP2 and TRPV4 form a polymodal sensory channel complex. J Cell Biol 182:437–447

    PubMed Central  PubMed  Google Scholar 

  95. Tsiokas L, Arnould T, Zhu C, Kim E, Walz G, Sukhatme VP (1999) Specific association of the gene product of PKD2 with the TRPC1 channel. Proc Natl Acad Sci USA 96:3934–3939

    PubMed Central  CAS  PubMed  Google Scholar 

  96. Pedersen SF, Nilius B (2007) Transient receptor potential channels in mechanosensing and cell volume regulation. Methods Enzymol 428:183–207

    CAS  PubMed  Google Scholar 

  97. Wang D, Iversen J, Strandgaard S (2000) Endothelium-dependent relaxation of small resistance vessels is impaired in patients with autosomal dominant polycystic kidney disease. J Am Soc Nephrol 11:1371–1376

    CAS  PubMed  Google Scholar 

  98. Devuyst O, Persu A, Vo-Cong MT (2003) Autosomal dominant polycystic kidney disease: modifier genes and endothelial dysfunction. Nephrol Dial Transplant 18:2211–2215

    CAS  PubMed  Google Scholar 

  99. Zhu G, Gulsvik A, Bakke P, Ghatta S, Anderson W, Lomas DA, Silverman EK, Pillai SG (2009) Association of TRPV4 gene polymorphisms with chronic obstructive pulmonary disease. Hum Mol Genet 18:2053–2062

    CAS  PubMed  Google Scholar 

  100. Paravicini TM, Yogi A, Mazur A, Touyz RM (2009) Dysregulation of vascular TRPM7 and annexin-1 is associated with endothelial dysfunction in inherited hypomagnesemia. Hypertension 53:423–429

    CAS  PubMed  Google Scholar 

  101. Kumar B, Dreja K, Shah SS, Cheong A, Xu SZ, Sukumar P, Naylor J, Forte A, Cipollaro M, McHugh D, Kingston PA, Heagerty AM, Munsch CM, Bergdahl A, Hultgardh-Nilsson A, Gomez MF, Porter KE, Hellstrand P, Beech DJ (2006) Upregulated, TRPC1 channel in vascular injury in vivo and its role in human neointimal hyperplasia. Circ Res 98:557–563

    PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank the support from Hong Kong RGC Grants (CUHK477307, CUHK477408 and CUHK479109), Focused Investment Scheme of CUHK and Li Ka Shing Institute of Health Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ching-On Wong .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Wong, CO., Yao, X. (2011). TRP Channels in Vascular Endothelial Cells. In: Islam, M. (eds) Transient Receptor Potential Channels. Advances in Experimental Medicine and Biology, vol 704. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-0265-3_40

Download citation

Publish with us

Policies and ethics