Skip to main content

TRPV1: A Therapy Target That Attracts the Pharmaceutical Interests

  • Chapter
  • First Online:
Transient Receptor Potential Channels

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 704))

Abstract

TRPV1 is a non-selective cation channel gated by noxious heat, vanilloids and extracellular protons, and act as an important signal integrator in sensory nociceptors. Because of its integrative signaling properties in response to inflammatory stimuli, TRPV1 antagonists are predicted to inhibit the sensation of ongoing or burning pain that is reported by patients suffering from chronic pain, therefore offering an unprecedented advantage in selectively inhibiting painful signaling from where it is initiated. In this chapter, we firstly summarize the physiological and pathological roles of TRPV1 and then describe the pharmacology of TRPV1 agonists and antagonists. Finally, we give an update and the status on TRPV1 therapies that have progressed into clinical trials.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Caterina MJ, Schumacher MA, Tominaga M, Rosen TA, Levine JD, Julius D (1997) The capsaicin receptor: a heat-activated ion channel in the pain pathway. Nature 389:816–824

    CAS  PubMed  Google Scholar 

  2. Cortright DN, Krause JE, Broom DC (2007) TRP channels and pain. Biochim Biophys Acta 1772:978–988

    CAS  PubMed  Google Scholar 

  3. Breese NM, George AC, Pauers LE, Stucky CL (2005) Peripheral inflammation selectively increases TRPV1 function in IB4-positive sensory neurons from adult mouse. Pain 115: 37–49

    CAS  PubMed  Google Scholar 

  4. Latorre R, Brauchi S, Orta G, Zaelzer C, Vargas G (2007) Thermo TRP channels as modular proteins with allosteric gating. Cell Calcium 42:427–438

    CAS  PubMed  Google Scholar 

  5. Caterina MJ, Julius D (2001) The vanilloid receptor: a molecular gateway to the pain pathway. Annu Rev Neurosci 24:487–517

    CAS  PubMed  Google Scholar 

  6. Kedei N, Szabo T, Lile JD, Treanor JJ, Olah Z, Iadarola MJ, Blumberg PM (2001) Analysis of the native quaternary structure of vanilloid receptor 1. J Biol Chem 276:28613–28619

    CAS  PubMed  Google Scholar 

  7. Walker KM, Urban L, Medhurst SJ, Patel S, Panesar M, Fox AJ, McIntyre P (2003) The VR1 antagonist capsazepine reverses mechanical hyperalgesia in models of inflammatory and neuropathic pain. J Pharmacol Exp Ther 304:56–62

    CAS  PubMed  Google Scholar 

  8. Chanda S, Sharper V, Hoberman A, Bley K (2006) Developmental toxicity study of pure trans-capsaicin in rats and rabbits. Int J Toxicol 25:205–217

    CAS  PubMed  Google Scholar 

  9. Correll CC, Phelps PT, Anthes JC, Umland S, Greenfeder S (2004) Cloning and pharmacological characterization of mouse TRPV1. Neurosci Lett 370:55–60

    CAS  PubMed  Google Scholar 

  10. Zimov S, Yazulla S (2004) Localization of vanilloid receptor 1 (TRPV1/VR1)-like immunoreactivity in goldfish and zebrafish retinas: restriction to photoreceptor synaptic ribbons. J Neurocytol 33:441–452

    CAS  PubMed  Google Scholar 

  11. Ohta T, Komatsu R, Imagawa T, Otsuguro K, Ito S (2005) Molecular cloning, functional characterization of the porcine transient receptor potential V1 (pTRPV1) and pharmacological comparison with endogenous pTRPV1. Biochem Pharmacol 71:173–187

    CAS  PubMed  Google Scholar 

  12. Lu G, Henderson D, Liu L, Reinhart PH, Simon SA (2005) TRPV1b, a functional human vanilloid receptor splice variant. Mol Pharmacol 67:1119–1127

    CAS  PubMed  Google Scholar 

  13. Vos MH, Neelands TR, McDonald HA, Choi W, Kroeger PE, Puttfarcken PS, Faltynek CR, Moreland RB, Han P (2006) TRPV1b overexpression negatively regulates TRPV1 responsiveness to capsaicin, heat and low pH in HEK293 cells. J Neurochem 99:1088–1102

    CAS  PubMed  Google Scholar 

  14. Sharif Naeini R, Witty MF, Seguela P, Bourque CW (2006) An N-terminal variant of Trpv1 channel is required for osmosensory transduction. Nat Neurosci 9:93–98

    PubMed  Google Scholar 

  15. Lyall V, Heck GL, Vinnikova AK, Ghosh S, Phan TH, Alam RI, Russell OF, Malik SA, Bigbee JW, DeSimone JA (2004) The mammalian amiloride-insensitive non-specific salt taste receptor is a vanilloid receptor-1 variant. J Physiol 558:147–159

    PubMed Central  CAS  PubMed  Google Scholar 

  16. Lyall V, Phan TH, Mummalaneni S, Melone P, Mahavadi S, Murthy KS, DeSimone JA (2009) Regulation of the benzamil-insensitive salt taste receptor by intracellular Ca2+, protein kinase C, and calcineurin. J Neurophysiol 102:1591–1605

    PubMed Central  CAS  PubMed  Google Scholar 

  17. Moiseenkova-Bell VY, Stanciu LA, Serysheva II, Tobe BJ, Wensel TG (2008) Structure of TRPV1 channel revealed by electron cryomicroscopy. Proc Natl Acad Sci USA 105: 7451–7455

    PubMed Central  CAS  PubMed  Google Scholar 

  18. Gouaux E (1998) Single potassium ion seeks open channel for transmembrane travels: tales from the KcsA structure. Structure 6:1221–1226

    CAS  PubMed  Google Scholar 

  19. Long SB, Campbell EB, Mackinnon R (2005) Crystal structure of a mammalian voltage-dependent Shaker family K+ channel. Science 309:897–903

    CAS  PubMed  Google Scholar 

  20. Garcia-Martinez C, Morenilla-Palao C, Planells-Cases R, Merino JM, Ferrer-Montiel A (2000) Identification of an aspartic residue in the P-loop of the vanilloid receptor that modulates pore properties. J Biol Chem 275:32552–32558

    CAS  PubMed  Google Scholar 

  21. Venkatachalam K, Montell C (2007) TRP channels. Annu Rev Biochem 76:387–417

    PubMed Central  CAS  PubMed  Google Scholar 

  22. Pedersen SF, Owsianik G, Nilius B (2005) TRP channels: an overview. Cell Calcium 38:233–252

    CAS  PubMed  Google Scholar 

  23. Montell C (2005) The TRP superfamily of cation channels. Sci STKE 2005:re3

    PubMed  Google Scholar 

  24. Bhave G, Zhu W, Wang H, Brasier DJ, Oxford GS (2002) Gereau RWt: cAMP-dependent protein kinase regulates desensitization of the capsaicin receptor (VR1) by direct phosphorylation. Neuron 35:721–731

    CAS  PubMed  Google Scholar 

  25. Schindl R, Frischauf I, Kahr H, Fritsch R, Krenn M, Derndl A, Vales E, Muik M, Derler I, Groschner K, Romanin C (2008) The first ankyrin-like repeat is the minimum indispensable key structure for functional assembly of homo- and heteromeric TRPC4/TRPC5 channels. Cell Calcium 43:260–269

    CAS  PubMed  Google Scholar 

  26. Garcia-Sanz N, Fernandez-Carvajal A, Morenilla-Palao C, Planells-Cases R, Fajardo-Sanchez E, Fernandez-Ballester G, Ferrer-Montiel A (2004) Identification of a tetramerization domain in the C terminus of the vanilloid receptor. J Neurosci 24:5307–5314

    CAS  PubMed  Google Scholar 

  27. Numazaki M, Tominaga T, Toyooka H, Tominaga M (2002) Direct phosphorylation of capsaicin receptor VR1 by protein kinase Cepsilon and identification of two target serine residues. J Biol Chem 277:13375–13378

    CAS  PubMed  Google Scholar 

  28. Numazaki M, Tominaga T, Takeuchi K, Murayama N, Toyooka H, Tominaga M (2003) Structural determinant of TRPV1 desensitization interacts with calmodulin. Proc Natl Acad Sci USA 100:8002–8006

    PubMed Central  CAS  PubMed  Google Scholar 

  29. Bhave G, Hu HJ, Glauner KS, Zhu W, Wang H, Brasier DJ, Oxford GS (2003) Gereau RWt: Protein kinase C phosphorylation sensitizes but does not activate the capsaicin receptor transient receptor potential vanilloid 1 (TRPV1). Proc Natl Acad Sci USA 100:12480–12485

    PubMed Central  CAS  PubMed  Google Scholar 

  30. Prescott ED, Julius D (2003) A modular PIP2 binding site as a determinant of capsaicin receptor sensitivity. Science 300:1284–1288

    CAS  PubMed  Google Scholar 

  31. Sanchez JF, Krause JE, Cortright DN (2001) The distribution and regulation of vanilloid receptor VR1 and VR1 5′ splice variant RNA expression in rat. Neuroscience 107:373–381

    CAS  PubMed  Google Scholar 

  32. Wisnoskey BJ, Sinkins WG, Schilling WP (2003) Activation of vanilloid receptor type I in the endoplasmic reticulum fails to activate store-operated Ca2+ entry. Biochem J 372: 517–528

    PubMed Central  CAS  PubMed  Google Scholar 

  33. Southall MD, Li T, Gharibova LS, Pei Y, Nicol GD, Travers JB (2003) Activation of epidermal vanilloid receptor-1 induces release of proinflammatory mediators in human keratinocytes. J Pharmacol Exp Ther 304:217–222

    CAS  PubMed  Google Scholar 

  34. Liu B, Hui K, Qin F (2003) Thermodynamics of heat activation of single capsaicin ion channels VR1. Biophys J 85:2988–3006

    PubMed Central  CAS  PubMed  Google Scholar 

  35. Birder LA (2001) Involvement of the urinary bladder urothelium in signaling in the lower urinary tract. Proc West Pharmacol Soc 44:85–86

    CAS  PubMed  Google Scholar 

  36. Daly D, Rong W, Chess-Williams R, Chapple C, Grundy D (2007) Bladder afferent sensitivity in wild-type and TRPV1 knockout mice. J Physiol 583:663–674

    PubMed Central  CAS  PubMed  Google Scholar 

  37. Avraham Y, Zolotarev O, Grigoriadis NC, Poutahidis T, Magen I, Vorobiav L, Zimmer A, Ilan Y, Mechoulam R, Berry EM (2008) Cannabinoids and capsaicin improve liver function following thioacetamide-induced acute injury in mice. Am J Gastroenterol 103:3047–3056

    CAS  PubMed  Google Scholar 

  38. Zhang L, Taylor N, Xie Y, Ford R, Johnson J, Paulsen JE, Bates B (2005) Cloning and expression of MRG receptors in macaque, mouse, and human. Brain Res Mol Brain Res 133:187–197

    CAS  PubMed  Google Scholar 

  39. Reilly CA, Taylor JL, Lanza DL, Carr BA, Crouch DJ, Yost GS (2003) Capsaicinoids cause inflammation and epithelial cell death through activation of vanilloid receptors. Toxicol Sci 73:170–181

    PubMed Central  CAS  PubMed  Google Scholar 

  40. Watanabe N, Horie S, Michael GJ, Spina D, Page CP, Priestley JV (2005) Immunohistochemical localization of vanilloid receptor subtype 1 (TRPV1) in the guinea pig respiratory system. Pulm Pharmacol Ther 18:187–197

    CAS  PubMed  Google Scholar 

  41. Zhang X, Huang J, McNaughton PA (2005) NGF rapidly increases membrane expression of TRPV1 heat-gated ion channels. EMBO J 24:4211–4223

    PubMed Central  CAS  PubMed  Google Scholar 

  42. Ji RR, Samad TA, Jin SX, Schmoll R, Woolf CJ (2002) p38 MAPK activation by NGF in primary sensory neurons after inflammation increases TRPV1 levels and maintains heat hyperalgesia. Neuron 36:57–68

    CAS  PubMed  Google Scholar 

  43. Lainez S, Valente P, Ontoria-Oviedo I, Estevez-Herrera J, Camprubi-Robles M, Ferrer-Montiel A, Planells-Cases R (2010) GABAA receptor associated protein (GABARAP) modulates TRPV1 expression and channel function and desensitization. Faseb J 24(6):1958–1970

    CAS  PubMed  Google Scholar 

  44. Jeske NA, Patwardhan AM, Henry MA, Milam SB (2009) Fibronectin stimulates TRPV1 translocation in primary sensory neurons. J Neurochem 108:591–600

    PubMed Central  CAS  PubMed  Google Scholar 

  45. Lee YM, Li WH, Kim YK, Kim KH, Chung JH (2008) Heat-induced MMP-1 expression is mediated by TRPV1 through PKCalpha signaling in HaCaT cells. Exp Dermatol 17:864–870

    CAS  PubMed  Google Scholar 

  46. Amaya F, Wang H, Costigan M, Allchorne AJ, Hatcher JP, Egerton J, Stean T, Morisset V, Grose D, Gunthorpe MJ, Chessell IP, Tate S, Green PJ, Woolf CJ (2006) The voltage-gated sodium channel Na(v)1.9 is an effector of peripheral inflammatory pain hypersensitivity. J Neurosci 26:12852–12860

    CAS  PubMed  Google Scholar 

  47. Rashid MH, Inoue M, Bakoshi S, Ueda H (2003) Increased expression of vanilloid receptor 1 on myelinated primary afferent neurons contributes to the antihyperalgesic effect of capsaicin cream in diabetic neuropathic pain in mice. J Pharmacol Exp Ther 306:709–717

    CAS  PubMed  Google Scholar 

  48. Kamei J, Zushida K, Morita K, Sasaki M, Tanaka S (2001) Role of vanilloid VR1 receptor in thermal allodynia and hyperalgesia in diabetic mice. Eur J Pharmacol 422:83–86

    CAS  PubMed  Google Scholar 

  49. Hong S, Wiley JW (2005) Early painful diabetic neuropathy is associated with differential changes in the expression and function of vanilloid receptor 1. J Biol Chem 280:618–627

    CAS  PubMed  Google Scholar 

  50. Hudson LJ, Bevan S, Wotherspoon G, Gentry C, Fox A, Winter J (2001) VR1 protein expression increases in undamaged DRG neurons after partial nerve injury. Eur J Neurosci 13:2105–2114

    CAS  PubMed  Google Scholar 

  51. Kanai Y, Nakazato E, Fujiuchi A, Hara T, Imai A (2005) Involvement of an increased spinal TRPV1 sensitization through its up-regulation in mechanical allodynia of CCI rats. Neuropharmacology 49:977–984

    CAS  PubMed  Google Scholar 

  52. Ghilardi JR, Rohrich H, Lindsay TH, Sevcik MA, Schwei MJ, Kubota K, Halvorson KG, Poblete J, Chaplan SR, Dubin AE, Carruthers NI, Swanson D, Kuskowski M, Flores CM, Julius D, Mantyh PW (2005) Selective blockade of the capsaicin receptor TRPV1 attenuates bone cancer pain. J Neurosci 25:3126–3131

    CAS  PubMed  Google Scholar 

  53. Engler A, Aeschlimann A, Simmen BR, Michel BA, Gay RE, Gay S, Sprott H (2007) Expression of transient receptor potential vanilloid 1 (TRPV1) in synovial fibroblasts from patients with osteoarthritis and rheumatoid arthritis. Biochem Biophys Res Commun 359:884–888

    CAS  PubMed  Google Scholar 

  54. Fernihough J, Gentry C, Bevan S, Winter J (2005) Regulation of calcitonin gene-related peptide and TRPV1 in a rat model of osteoarthritis. Neurosci Lett 388:75–80

    CAS  PubMed  Google Scholar 

  55. Groneberg DA, Niimi A, Dinh QT, Cosio B, Hew M, Fischer A, Chung KF (2004) Increased expression of transient receptor potential vanilloid-1 in airway nerves of chronic cough. Am J Respir Crit Care Med 170:1276–1280

    PubMed  Google Scholar 

  56. Chan CL, Facer P, Davis JB, Smith GD, Egerton J, Bountra C, Williams NS, Anand P (2003) Sensory fibres expressing capsaicin receptor TRPV1 in patients with rectal hypersensitivity and faecal urgency. Lancet 361:385–391

    CAS  PubMed  Google Scholar 

  57. Banerjee B, Medda BK, Lazarova Z, Bansal N, Shaker R, Sengupta JN (2007) Effect of reflux-induced inflammation on transient receptor potential vanilloid one (TRPV1) expression in primary sensory neurons innervating the oesophagus of rats. Neurogastroenterol Motil 19:681–691

    CAS  PubMed  Google Scholar 

  58. Matthews PJ, Aziz Q, Facer P, Davis JB, Thompson DG, Anand P (2004) Increased capsaicin receptor TRPV1 nerve fibres in the inflamed human oesophagus. Eur J Gastroenterol Hepatol 16:897–902

    CAS  PubMed  Google Scholar 

  59. Charrua A, Cruz CD, Cruz F, Avelino A (2007) Transient receptor potential vanilloid subfamily 1 is essential for the generation of noxious bladder input and bladder overactivity in cystitis. J Urol 177:1537–1541

    CAS  PubMed  Google Scholar 

  60. Wang ZY, Wang P, Merriam FV, Bjorling DE (2008) Lack of TRPV1 inhibits cystitis-induced increased mechanical sensitivity in mice. Pain 139:158–167

    CAS  PubMed  Google Scholar 

  61. Dinis P, Charrua A, Avelino A, Yaqoob M, Bevan S, Nagy I, Cruz F (2004) Anandamide-evoked activation of vanilloid receptor 1 contributes to the development of bladder hyperreflexia and nociceptive transmission to spinal dorsal horn neurons in cystitis. J Neurosci 24:11253–11263

    CAS  PubMed  Google Scholar 

  62. Jia Y, Lee LY (2007) Role of TRPV receptors in respiratory diseases. Biochim Biophys Acta 1772:915–927

    CAS  PubMed  Google Scholar 

  63. Watanabe N, Horie S, Michael GJ, Keir S, Spina D, Page CP, Priestley JV (2006) Immunohistochemical co-localization of transient receptor potential vanilloid (TRPV)1 and sensory neuropeptides in the guinea-pig respiratory system. Neuroscience 141: 1533–1543

    CAS  PubMed  Google Scholar 

  64. Jia Y, McLeod RL, Hey JA (2005) TRPV1 receptor: a target for the treatment of pain, cough, airway disease and urinary incontinence. Drug News Perspect 18:165–171

    CAS  PubMed  Google Scholar 

  65. Wang Y, Babankova D, Huang J, Swain GM, Wang DH (2008) Deletion of transient receptor potential vanilloid type 1 receptors exaggerates renal damage in deoxycorticosterone acetate-salt hypertension. Hypertension 52:264–270

    PubMed Central  PubMed  Google Scholar 

  66. Wimalawansa SJ (1996) Calcitonin gene-related peptide and its receptors: molecular genetics, physiology, pathophysiology, and therapeutic potentials. Endocr Rev 17: 533–585

    CAS  PubMed  Google Scholar 

  67. Woudenberg-Vrenken TE, Bindels RJ, Hoenderop JG (2009) The role of transient receptor potential channels in kidney disease. Nat Rev Nephrol 5:441–449

    CAS  PubMed  Google Scholar 

  68. Kopp UC, Cicha MZ, Smith LA (2003) Dietary sodium loading increases arterial pressure in afferent renal-denervated rats. Hypertension 42:968–973

    CAS  PubMed  Google Scholar 

  69. Wang Y, Wang DH (2006) A novel mechanism contributing to development of Dahl salt-sensitive hypertension: role of the transient receptor potential vanilloid type 1. Hypertension 47:609–614

    CAS  PubMed  Google Scholar 

  70. Koomans HA, Blankestijn PJ, Joles JA (2004) Sympathetic hyperactivity in chronic renal failure: a wake-up call. J Am Soc Nephrol 15:524–537

    PubMed  Google Scholar 

  71. Charrua A, Reguenga C, Cordeiro JM, Correiade-Sa P, Paule C, Nagy I, Cruz F, Avelino A (2009) Functional transient receptor potential vanilloid 1 is expressed in human urothelial cells. J Urol 182:2944–2950

    CAS  PubMed  Google Scholar 

  72. Birder LA, Nakamura Y, Kiss S, Nealen ML, Barrick S, Kanai AJ, Wang E, Ruiz G, De Groat WC, Apodaca G, Watkins S, Caterina MJ (2002) Altered urinary bladder function in mice lacking the vanilloid receptor TRPV1. Nat Neurosci 5:856–860

    CAS  PubMed  Google Scholar 

  73. Cefalu JS, Guillon MA, Burbach LR, Zhu QM, Hu DQ, Ho MJ, Ford AP, Nunn PA, Cockayne DA (2009) Selective pharmacological blockade of the TRPV1 receptor suppresses sensory reflexes of the rodent bladder. J Urol 182:776–785

    CAS  PubMed  Google Scholar 

  74. Birder LA (2007) TRPs in bladder diseases. Biochim Biophys Acta 1772:879–884

    PubMed Central  CAS  PubMed  Google Scholar 

  75. Sadananda P, Shang F, Liu L, Mansfield KJ, Burcher E (2009) Release of ATP from rat urinary bladder mucosa: role of acid, vanilloids and stretch. Br J Pharmacol 158: 1655–1662

    PubMed Central  CAS  PubMed  Google Scholar 

  76. Babes A, Amuzescu B, Krause U, Scholz A, Flonta ML, Reid G (2002) Cooling inhibits capsaicin-induced currents in cultured rat dorsal root ganglion neurones. Neurosci Lett 317:131–134

    CAS  PubMed  Google Scholar 

  77. Romanovsky AA, Almeida MC, Garami A, Steiner AA, Norman MH, Morrison SF, Nakamura K, Burmeister JJ, Nucci TB (2009) The transient receptor potential vanilloid-1 channel in thermoregulation: a thermosensor it is not. Pharmacol Rev 61:228–261

    PubMed Central  CAS  PubMed  Google Scholar 

  78. Nilius B, Talavera K, Owsianik G, Prenen J, Droogmans G, Voets T (2005) Gating of TRP channels: a voltage connection?. J Physiol 567:35–44

    PubMed Central  CAS  PubMed  Google Scholar 

  79. Pingle SC, Matta JA, Ahern GP (2007) Capsaicin receptor: TRPV1 a promiscuous TRP channel. Handb Exp Pharmacol 179:155-171

    CAS  PubMed  Google Scholar 

  80. Vyklicky L, Lyfenko A, Kuffler DP, Vlachova V (2003) Vanilloid receptor TRPV1 is not activated by vanilloids applied intracellularly. NeuroReport 14:1061–1065

    CAS  PubMed  Google Scholar 

  81. Woo DH, Jung SJ, Zhu MH, Park CK, Kim YH, Oh SB, Lee CJ (2008) Direct activation of transient receptor potential vanilloid 1(TRPV1) by diacylglycerol (DAG. Mol Pain 4:42

    PubMed Central  PubMed  Google Scholar 

  82. Sutton KG, Garrett EM, Rutter AR, Bonnert TP, Jarolimek W, Seabrook GR (2005) Functional characterisation of the S512Y mutant vanilloid human TRPV1 receptor. Br J Pharmacol 146:702–711

    PubMed Central  CAS  PubMed  Google Scholar 

  83. Premkumar LS, Agarwal S, Steffen D (2002) Single-channel properties of native and cloned rat vanilloid receptors. J Physiol 545:107–117

    PubMed Central  CAS  PubMed  Google Scholar 

  84. Holzer P (2009) Acid-sensitive ion channels and receptors. Handb Exp Pharmacol 194: 283–332

    CAS  PubMed  Google Scholar 

  85. Jordt SE, Tominaga M, Julius D (2000) Acid potentiation of the capsaicin receptor determined by a key extracellular site. Proc Natl Acad Sci USA 97:8134–8139

    PubMed Central  CAS  PubMed  Google Scholar 

  86. Gavva NR, Tamir R, Klionsky L, Norman MH, Louis JC, Wild KD, Treanor JJ (2005) Proton activation does not alter antagonist interaction with the capsaicin-binding pocket of TRPV1. Mol Pharmacol 68:1524–1533

    CAS  PubMed  Google Scholar 

  87. Tousova K, Vyklicky L, Susankova K, Benedikt J, Vlachova V (2005) Gadolinium activates and sensitizes the vanilloid receptor TRPV1 through the external protonation sites. Mol Cell Neurosci 30:207–217

    CAS  PubMed  Google Scholar 

  88. Ahern GP, Brooks IM, Miyares RL, Wang XB (2005) Extracellular cations sensitize and gate capsaicin receptor TRPV1 modulating pain signaling. J Neurosci 25:5109–5116

    CAS  PubMed  Google Scholar 

  89. Raisinghani M, Pabbidi RM, Premkumar LS (2005) Activation of transient receptor potential vanilloid 1 (TRPV1) by resiniferatoxin. J Physiol 567:771–786

    PubMed Central  CAS  PubMed  Google Scholar 

  90. Ahern GP, Wang X, Miyares RL (2006) Polyamines are potent ligands for the capsaicin receptor TRPV1. J Biol Chem 281:8991–8995

    CAS  PubMed  Google Scholar 

  91. Valente P, Garcia-Sanz N, Gomis A, Fernandez-Carvajal A, Fernandez-Ballester G, Viana F, Belmonte C, Ferrer-Montiel A (2008) Identification of molecular determinants of channel gating in the transient receptor potential box of vanilloid receptor I. FASEB J 22:3298–3309

    CAS  PubMed  Google Scholar 

  92. Owsianik G, Talavera K, Voets T, Nilius B (2006) Permeation and selectivity of TRP channels. Annu Rev Physiol 68:685–717

    CAS  PubMed  Google Scholar 

  93. Hellwig N, Plant TD, Janson W, Schafer M, Schultz G, Schaefer M (2004) TRPV1 acts as proton channel to induce acidification in nociceptive neurons. J Biol Chem 279: 34553–34561

    CAS  PubMed  Google Scholar 

  94. Voets T, Janssens A, Droogmans G, Nilius B (2004) Outer pore architecture of a Ca2+-selective TRP channel. J Biol Chem 279:15223–15230

    CAS  PubMed  Google Scholar 

  95. Voets T, Nilius B (2003) The pore of TRP channels: trivial or neglected?. Cell Calcium 33:299–302

    CAS  PubMed  Google Scholar 

  96. Voets T, Prenen J, Fleig A, Vennekens R, Watanabe H, Hoenderop JG, Bindels RJ, Droogmans G, Penner R, Nilius B (2001) CaT1 and the calcium release-activated calcium channel manifest distinct pore properties. J Biol Chem 276:47767–47770

    CAS  PubMed  Google Scholar 

  97. Xia R, Mei ZZ, Mao HJ, Yang W, Dong L, Bradley H, Beech DJ, Jiang LH (2008) Identification of pore residues engaged in determining divalent cationic permeation in transient receptor potential melastatin subtype channel 2. J Biol Chem 283: 27426–27432

    PubMed Central  CAS  PubMed  Google Scholar 

  98. Voets T, Prenen J, Vriens J, Watanabe H, Janssens A, Wissenbach U, Bodding M, Droogmans G, Nilius B (2002) Molecular determinants of permeation through the cation channel TRPV4. J Biol Chem 277:33704–33710

    CAS  PubMed  Google Scholar 

  99. Mohapatra DP, Nau C (2003) Desensitization of capsaicin-activated currents in the vanilloid receptor TRPV1 is decreased by the cyclic AMP-dependent protein kinase pathway. J Biol Chem 278:50080–50090

    CAS  PubMed  Google Scholar 

  100. Chung MK, Guler AD, Caterina MJ (2008) TRPV1 shows dynamic ionic selectivity during agonist stimulation. Nat Neurosci 11:555–564

    CAS  PubMed  Google Scholar 

  101. Mohapatra DP, Nau C (2005) Regulation of Ca2+-dependent desensitization in the vanilloid receptor TRPV1 by calcineurin and cAMP-dependent protein kinase. J Biol Chem 280:13424–13432

    CAS  PubMed  Google Scholar 

  102. Mandadi S, Tominaga T, Numazaki M, Murayama N, Saito N, Armati PJ, Roufogalis BD, Tominaga M (2006) Increased sensitivity of desensitized TRPV1 by PMA occurs through PKCepsilon-mediated phosphorylation at S800. Pain 123:106–116

    CAS  PubMed  Google Scholar 

  103. Jung J, Shin JS, Lee SY, Hwang SW, Koo J, Cho H, Oh U (2004) Phosphorylation of vanilloid receptor 1 by Ca2+/calmodulin-dependent kinase II regulates its vanilloid binding. J Biol Chem 279:7048–7054

    CAS  PubMed  Google Scholar 

  104. Novakova-Tousova K, Vyklicky L, Susankova K, Benedikt J, Samad A, Teisinger J, Vlachova V (2007) Functional changes in the vanilloid receptor subtype 1 channel during and after acute desensitization. Neuroscience 149:144–154

    CAS  PubMed  Google Scholar 

  105. Jahnel R, Bender O, Munter LM, Dreger M, Gillen C, Hucho F (2003) Dual expression of mouse and rat VRL-1 in the dorsal root ganglion derived cell line F-11 and biochemical analysis of VRL-1 after heterologous expression. Eur J Biochem 270:4264–4271

    CAS  PubMed  Google Scholar 

  106. Korepanova A, Pereda-Lopez A, Solomon LR, Walter KA, Lake MR, Bianchi BR, McDonald HA, Neelands TR, Shen J, Matayoshi ED, Moreland RB, Chiu ML (2009) Expression and purification of human TRPV1 in baculovirus-infected insect cells for structural studies. Protein Expr Purif 65:38–50

    CAS  PubMed  Google Scholar 

  107. Caterina MJ, Rosen TA, Tominaga M, Brake AJ, Julius D (1999) A capsaicin-receptor homologue with a high threshold for noxious heat. Nature 398:436–441

    CAS  PubMed  Google Scholar 

  108. Bylund DB, Deupree JD, Toews ML (2004) Radioligand-binding methods for membrane preparations and intact cells. Methods Mol Biol 259:1–28

    CAS  PubMed  Google Scholar 

  109. Salazar H, Llorente I, Jara-Oseguera A, Garcia-Villegas R, Munari M, Gordon SE, Islas LD, Rosenbaum T (2008) A single N-terminal cysteine in TRPV1 determines activation by pungent compounds from onion and garlic. Nat Neurosci 11:255–261

    PubMed Central  CAS  PubMed  Google Scholar 

  110. Dabrowski M (2009) Novel approaches in ion channel lead generation. In: Biophysical Society 53rd Annual Meeting, Boston, MA

    Google Scholar 

  111. Nanion Application Notes (2009) http://www.nanion.de/pdf/Patchliner_TRPV1.pdf

  112. Smart D, Jerman JC, Gunthorpe MJ, Brough SJ, Ranson J, Cairns W, Hayes PD, Randall AD, Davis JB (2001) Characterisation using FLIPR of human vanilloid VR1 receptor pharmacology. Eur J Pharmacol 417:51–58

    CAS  PubMed  Google Scholar 

  113. Schroeder KS, Neagle BD (1996) FLIPR: a new instrument for accurate, high throughput optical screening. J Biomol Screen 1:5

    Google Scholar 

  114. Reubish D, Emerling D, Defalco J, Steiger D, Victoria C, Vincent F (2009) Functional assessment of temperature-gated ion-channel activity using a real-time PCR machine. Biotechniques 47:iii–ix

    Google Scholar 

  115. Kym PR, Kort ME, Hutchins CW (2009) Analgesic potential of TRPV1 antagonists. Biochem Pharmacol 78:211–216

    CAS  PubMed  Google Scholar 

  116. Vriens J, Appendino G, Nilius B (2009) Pharmacology of vanilloid transient receptor potential cation channels. Mol Pharmacol 75:1262–1279

    CAS  PubMed  Google Scholar 

  117. Appendino G, Minassi A, Pagani A, Ech-Chahad A (2008) The role of natural products in the ligand deorphanization of TRP channels. Curr Pharm Des 14:2–17

    CAS  PubMed  Google Scholar 

  118. Ahern GP (2003) Activation of TRPV1 by the satiety factor oleoylethanolamide. J Biol Chem 278:30429–30434

    CAS  PubMed  Google Scholar 

  119. Wang X, Miyares RL, Ahern GP (2005) Oleoylethanolamide excites vagal sensory neurones, induces visceral pain and reduces short-term food intake in mice via capsaicin receptor TRPV1. J Physiol 564:541–547

    PubMed Central  CAS  PubMed  Google Scholar 

  120. Hwang SW, Oh U (2002) Hot channels in airways: pharmacology of the vanilloid receptor. Curr Opin Pharmacol 2:235–242

    CAS  PubMed  Google Scholar 

  121. Szallasi A, Appendino G (2004) Vanilloid receptor TRPV1 antagonists as the next generation of painkillers. Are we putting the cart before the horse?. J Med Chem 47:2717–2723

    CAS  PubMed  Google Scholar 

  122. McNamara FN, Randall A, Gunthorpe MJ (2005) Effects of piperine, the pungent component of black pepper, at the human vanilloid receptor (TRPV1. Br J Pharmacol 144:781–790

    PubMed Central  CAS  PubMed  Google Scholar 

  123. Xu H, Blair NT, Clapham DE (2005) Camphor activates and strongly desensitizes the transient receptor potential vanilloid subtype 1 channel in a vanilloid-independent mechanism. J Neurosci 25:8924–8937

    CAS  PubMed  Google Scholar 

  124. Siemens J, Zhou S, Piskorowski R, Nikai T, Lumpkin EA, Basbaum AI, King D, Julius D (2006) Spider toxins activate the capsaicin receptor to produce inflammatory pain. Nature 444:208–212

    CAS  PubMed  Google Scholar 

  125. Dray A, Bettaney J, Forster P (1990) Resiniferatoxin, a potent capsaicin-like stimulator of peripheral nociceptors in the neonatal rat tail in vitro. Br J Pharmacol 99:323–326

    PubMed Central  CAS  PubMed  Google Scholar 

  126. Docherty RJ, Yeats JC, Piper AS (1997) Capsazepine block of voltage-activated calcium channels in adult rat dorsal root ganglion neurones in culture. Br J Pharmacol 121: 1461–1467

    PubMed Central  CAS  PubMed  Google Scholar 

  127. Liu L, Simon SA (1997) Capsazepine, a vanilloid receptor antagonist, inhibits nicotinic acetylcholine receptors in rat trigeminal ganglia. Neurosci Lett 228:29–32

    CAS  PubMed  Google Scholar 

  128. Pal M, Angaru S, Kodimuthali A, Dhingra N (2009) Vanilloid receptor antagonists: emerging class of novel anti-inflammatory agents for pain management. Curr Pharm Des 15: 1008–1026

    CAS  PubMed  Google Scholar 

  129. Gharat LA (2008) Szallasi, Arpad: Advances in the design and therapeutic use of capsaicin receptor TRPV1 agonists and antagonists. Expert Opin Ther Pat 18:10

    Google Scholar 

  130. Rami HK, Thompson M, Stemp G, Fell S, Jerman JC, Stevens AJ, Smart D, Sargent B, Sanderson D, Randall AD, Gunthorpe MJ, Davis JB (2006) Discovery of SB-705498: a potent, selective and orally bioavailable TRPV1 antagonist suitable for clinical development. Bioorg Med Chem Lett 16:3287–3291

    CAS  PubMed  Google Scholar 

  131. Chizh BA, O’Donnell MB, Napolitano A, Wang J, Brooke AC, Aylott MC, Bullman JN, Gray EJ, Lai RY, Williams PM, Appleby JM (2007) The effects of the TRPV1 antagonist SB-705498 on TRPV1 receptor-mediated activity and inflammatory hyperalgesia in humans. Pain 132:132–141

    CAS  PubMed  Google Scholar 

  132. Honore P, Wismer CT, Mikusa J, Zhu CZ, Zhong C, Gauvin DM, Gomtsyan A, El Kouhen R, Lee CH, Marsh K, Sullivan JP, Faltynek CR, Jarvis MF (2005) A-425619 [1-isoquinolin-5- yl-3-(4-trifluoromethyl-benzyl)-urea], a novel transient receptor potential type V1 receptor antagonist, relieves pathophysiological pain associated with inflammation and tissue injury in rats. J Pharmacol Exp Ther 314:410–421

    CAS  PubMed  Google Scholar 

  133. El Kouhen R, Surowy CS, Bianchi BR, Neelands TR, McDonald HA, Niforatos W, Gomtsyan A, Lee CH, Honore P, Sullivan JP, Jarvis MF, Faltynek CR (2005) A-425619 [1-isoquinolin-5-yl-3-(4-trifluoromethyl-benzyl)-urea], a novel and selective transient receptor potential type V1 receptor antagonist, blocks channel activation by vanilloids, heat, and acid. J Pharmacol Exp Ther 314:400–409

    CAS  PubMed  Google Scholar 

  134. McGaraughty S, Chu KL, Faltynek CR, Jarvis MF (2006) Systemic and site-specific effects of A-425619, a selective TRPV1 receptor antagonist, on wide dynamic range neurons in CFA-treated and uninjured rats. J Neurophysiol 95:18–25

    CAS  PubMed  Google Scholar 

  135. Surowy CS, Neelands TR, Bianchi BR, McGaraughty S, El Kouhen R, Han P, Chu KL, McDonald HA, Vos M, Niforatos W, Bayburt EK, Gomtsyan A, Lee CH, Honore P, Sullivan JP, Jarvis MF, Faltynek CR (2008) R)-(5-tert-butyl-2,3-dihydro-1H-inden-1-yl)-3-(1H-indazol-4-yl)-urea (ABT-102) blocks polymodal activation of transient receptor potential vanilloid 1 receptors in vitro and heat-evoked firing of spinal dorsal horn neurons in vivo. J Pharmacol Exp Ther 326:879–888

    CAS  PubMed  Google Scholar 

  136. Gomtsyan A, Bayburt EK, Schmidt RG, Surowy CS, Honore P, Marsh KC, Hannick SM, McDonald HA, Wetter JM, Sullivan JP, Jarvis MF, Faltynek CR, Lee CH (2008) Identification of (R)-1-(5-tert-butyl-2,3-dihydro-1H-inden-1-yl)-3-(1H-indazol-4-yl)urea (ABT-102) as a potent TRPV1 antagonist for pain management. J Med Chem 51:392–395

    CAS  PubMed  Google Scholar 

  137. Valenzano KJ, Grant ER, Wu G, Hachicha M, Schmid L, Tafesse L, Sun Q, Rotshteyn Y, Francis J, Limberis J, Malik S, Whittemore ER, Hodges D (2003) N-4-tertiarybutylphenyl)-4-(3-chloropyridin-2-yl)tetrahydropyrazine -1(2H)-carbox-amide (BCTC), a novel, orally effective vanilloid receptor 1 antagonist with analgesic properties: I. in vitro characterization and pharmacokinetic properties. J Pharmacol Exp Ther 306:377–386

    CAS  PubMed  Google Scholar 

  138. Pomonis JD, Harrison JE, Mark L, Bristol DR, Valenzano KJ, Walker K (2003) N-4-Tertiarybutylphenyl)-4-(3-cholorphyridin-2-yl)tetrahydropyrazine -1(2H)-carbox-amide (BCTC), a novel, orally effective vanilloid receptor 1 antagonist with analgesic properties: II. in vivo characterization in rat models of inflammatory and neuropathic pain. J Pharmacol Exp Ther 306:387–393

    CAS  PubMed  Google Scholar 

  139. Swanson DM, Dubin AE, Shah C, Nasser N, Chang L, Dax SL, Jetter M, Breitenbucher JG, Liu C, Mazur C, Lord B, Gonzales L, Hoey K, Rizzolio M, Bogenstaetter M, Codd EE, Lee DH, Zhang SP, Chaplan SR, Carruthers NI (2005) Identification and biological evaluation of 4-(3-trifluoromethylpyridin-2-yl)piperazine-1-carboxylic acid (5-trifluoromethylpyridin-2-yl)amide, a high affinity TRPV1 (VR1) vanilloid receptor antagonist. J Med Chem 48:1857–1872

    CAS  PubMed  Google Scholar 

  140. Brown BS, Keddy R, Zheng GZ, Schmidt RG, Koenig JR, McDonald HA, Bianchi BR, Honore P, Jarvis MF, Surowy CS, Polakowski JS, Marsh KC, Faltynek CR, Lee CH (2008) Tetrahydropyridine-4-carboxamides as novel, potent transient receptor potential vanilloid 1 (TRPV1) antagonists. Bioorg Med Chem 16:8516–8525

    CAS  PubMed  Google Scholar 

  141. Lappin SC, Randall AD, Gunthorpe MJ, Morisset V (2006) TRPV1 antagonist, SB-366791, inhibits glutamatergic synaptic transmission in rat spinal dorsal horn following peripheral inflammation. Eur J Pharmacol 540:73–81

    CAS  PubMed  Google Scholar 

  142. Gunthorpe MJ, Rami HK, Jerman JC, Smart D, Gill CH, Soffin EM, Luis Hannan S, Lappin SC, Egerton J, Smith GD, Worby A, Howett L, Owen D, Nasir S, Davies CH, Thompson M, Wyman PA, Randall AD, Davis JB (2004) Identification and characterisation of SB-366791, a potent and selective vanilloid receptor (VR1/TRPV1) antagonist. Neuropharmacology 46:133–149

    CAS  PubMed  Google Scholar 

  143. Gavva NR, Tamir R, Qu Y, Klionsky L, Zhang TJ, Immke D, Wang J, Zhu D, Vanderah TW, Porreca F, Doherty EM, Norman MH, Wild KD, Bannon AW, Louis JC, Treanor JJ (2005) AMG9810 [(E)-3-(4-t-butylphenyl)-N-(2,3-dihydrobenzo[b][1,4] dioxin-6-yl)acrylamide], a novel vanilloid receptor 1 (TRPV1) antagonist with antihyperalgesic properties. J Pharmacol Exp Ther 313:474–484

    CAS  PubMed  Google Scholar 

  144. Szallasi A, Cortright DN, Blum CA, Eid SR (2007) The vanilloid receptor TRPV1: 10 years from channel cloning to antagonist proof-of-concept. Nat Rev Drug Discov 6: 357–372

    CAS  PubMed  Google Scholar 

  145. Ognyanov VI, Balan C, Bannon AW, Bo Y, Dominguez C, Fotsch C, Gore VK, Klionsky L, Ma VV, Qian YX, Tamir R, Wang X, Xi N, Xu S, Zhu D, Gavva NR, Treanor JJ, Norman MH (2006) Design of potent, orally available antagonists of the transient receptor potential vanilloid 1. Structure-activity relationships of 2-piperazin-1-yl-1H-benzimidazoles. J Med Chem 49:3719–3742

    CAS  PubMed  Google Scholar 

  146. Shishido Y, Jinno M, Ikeda T, Ito F, Sudo M, Makita N, Ohta A, Iki-Taki A, Ohmi T, Kanai Y, Tamura T, Shimojo M (2008) Synthesis of benzamide derivatives as TRPV1 antagonists. Bioorg Med Chem Lett 18:1072–1078

    CAS  PubMed  Google Scholar 

  147. Westaway SM, Chung YK, Davis JB, Holland V, Jerman JC, Medhurst SJ, Rami HK, Stemp G, Stevens AJ, Thompson M, Winborn KY, Wright J (2006) N-Tetrahydroquinolinyl, N-quinolinyl and N-isoquinolinyl biaryl carboxamides as antagonists of TRPV1. Bioorg Med Chem Lett 16:4533–4536

    CAS  PubMed  Google Scholar 

  148. Zheng X, Hodgetts KJ, Brielmann H, Hutchison A, Burkamp F, Brian Jones A, Blurton P, Clarkson R, Chandrasekhar J, Bakthavatchalam R, De Lombaert S, Crandall M, Cortright D, Blum CA (2006) From arylureas to biarylamides to aminoquinazolines: discovery of a novel, potent TRPV1 antagonist. Bioorg Med Chem Lett 16:5217–5221

    CAS  PubMed  Google Scholar 

  149. Culshaw AJ, Bevan S, Christiansen M, Copp P, Davis A, Davis C, Dyson A, Dziadulewicz EK, Edwards L, Eggelte H, Fox A, Gentry C, Groarke A, Hallett A, Hart TW, Hughes GA, Knights S, Kotsonis P, Lee W, Lyothier I, McBryde A, McIntyre P, Paloumbis G, Panesar M, Patel S, Seiler MP, Yaqoob M, Zimmermann K (2006) Identification and biological characterization of 6-aryl-7-isopropylquinazolinones as novel TRPV1 antagonists that are effective in models of chronic pain. J Med Chem 49:471–474

    CAS  PubMed  Google Scholar 

  150. Crutchlow M (2009) Pharmacologic Inhibition of TRPV1 Impairs Sensation of Potentially Injurious Heat in Healthy Subjects. American Society for Clinical Pharmacology and Therapeutics (ASCPT) meeting

    Google Scholar 

  151. Harrop S (2006) Pain therapeutics-SMi’s seventh annual conference. IDrugs 9:548–550

    PubMed  Google Scholar 

  152. Gunthorpe MJ, Chizh BA (2009) Clinical development of TRPV1 antagonists: targeting a pivotal point in the pain pathway. Drug Discov Today 14:56–67

    CAS  PubMed  Google Scholar 

  153. Keith Bley Preclinical data were reported at the SMi Pain Therapeutics Meeting in London, UK, June 2006

    Google Scholar 

  154. Denney WS (2009) 5th Modern Drug Discovery & Development Summit. Merck & Co, Inc, San Diego, CA

    Google Scholar 

  155. Gavva NR, Treanor JJ, Garami A, Fang L, Surapaneni S, Akrami A, Alvarez F, Bak A, Darling M, Gore A, Jang GR, Kesslak JP, Ni L, Norman MH, Palluconi G, Rose MJ, Salfi M, Tan E, Romanovsky AA, Banfield C, Davar G (2008) Pharmacological blockade of the vanilloid receptor TRPV1 elicits marked hyperthermia in humans. Pain 136:202–210

    CAS  PubMed  Google Scholar 

  156. Samer RE TRP1 antaonists: are they too hot to handle? Spring pain research conference cayman, United Kingdom 2008

    Google Scholar 

  157. Gavva NR (2008) Body-temperature maintenance as the predominant function of the vanilloid receptor TRPV1. Trends Pharmacol Sci 29:550–557

    CAS  PubMed  Google Scholar 

  158. Lehto SG, Tamir R, Deng H, Klionsky L, Kuang R, Le A, Lee D, Louis JC, Magal E, Manning BH, Rubino J, Surapaneni S, Tamayo N, Wang T, Wang J, Wang J, Wang W, Youngblood B, Zhang M, Zhu D, Norman MH, Gavva NR (2008) Antihyperalgesic effects of (R,E)-N-(2-hydroxy-2,3-dihydro-1H-inden-4-yl)-3-(2-(piperidin-1-yl)-4-(tri fluoromethyl)phenyl)-acrylamide (AMG8562), a novel transient receptor potential vanilloid type 1 modulator that does not cause hyperthermia in rats. J Pharmacol Exp Ther 326:218–229

    CAS  PubMed  Google Scholar 

  159. Garami A, Shimansky YP, Pakai E, Oliveira DL, Gavva NR, Romanovsky AA (2010) Contributions of different modes of TRPV1 activation to TRPV1 antagonist-induced hyperthermia. J Neurosci 30:1435–1440

    PubMed Central  CAS  PubMed  Google Scholar 

  160. Seabrook GR, Sutton KG, Jarolimek W, Hollingworth GJ, Teague S, Webb J, Clark N, Boyce S, Kerby J, Ali Z, Chou M, Middleton R, Kaczorowski G, Jones AB (2002) Functional properties of the high-affinity TRPV1 (VR1) vanilloid receptor antagonist (4-hydroxy-5-iodo-3-methoxyphenylacetate ester) iodo-resiniferatoxin. J Pharmacol Exp Ther 303: 1052–1060

    CAS  PubMed  Google Scholar 

  161. Gavva NR, Klionsky L, Qu Y, Shi L, Tamir R, Edenson S, Zhang TJ, Viswanadhan VN, Toth A, Pearce LV, Vanderah TW, Porreca F, Blumberg PM, Lile J, Sun Y, Wild K, Louis JC, Treanor JJ (2004) Molecular determinants of vanilloid sensitivity in TRPV1. J Biol Chem 279:20283–20295

    CAS  PubMed  Google Scholar 

  162. Neelands TR, Jarvis MF, Han P, Faltynek CR, Surowy CS (2005) Acidification of rat TRPV1 alters the kinetics of capsaicin responses. Mol Pain 1:28

    PubMed Central  PubMed  Google Scholar 

  163. Gavva NR, Bannon AW, Surapaneni S, Hovland DN Jr., Lehto SG, Gore A, Juan T, Deng H, Han B, Klionsky L, Kuang R, Le A, TamirR, Wang J, Youngblood B, Zhu D, Norman MH, Magal E, Treanor JJ, Louis JC (2007) The vanilloid receptor TRPV1 is tonically activated in vivo and involved in body temperature regulation. J Neurosci 27:3366–3374

    CAS  PubMed  Google Scholar 

  164. Gavva NR, Bannon AW, Hovland DN Jr., Lehto SG, Klionsky L, Surapaneni S, Immke DC, Henley C, Arik L, Bak A, Davis J, Ernst N, Hever G, Kuang R, Shi L, Tamir R, Wang J, Wang W, Zajic G, Zhu D, Norman MH, Louis JC, Magal E, Treanor JJ (2007) Repeated administration of vanilloid receptor TRPV1 antagonists attenuates hyperthermia elicited by TRPV1 blockade. J Pharmacol Exp Ther 323:128–137

    CAS  PubMed  Google Scholar 

  165. Cuypers E, Yanagihara A, Karlsson E, Tytgat J (2006) Jellyfish and other cnidarian envenomations cause pain by affecting TRPV1 channels. FEBS Lett 580:5728–5732

    PubMed Central  CAS  PubMed  Google Scholar 

  166. Andreev YA, Kozlov SA, Koshelev SG, Ivanova EA, Monastyrnaya MM, Kozlovskaya EP, Grishin EV (2008) Analgesic compound from sea anemone Heteractis crispa is the first polypeptide inhibitor of vanilloid receptor 1 (TRPV1. J Biol Chem 283:23914–23921

    PubMed Central  CAS  PubMed  Google Scholar 

  167. Knotkova H, Pappagallo M, Szallasi A (2008) Capsaicin (TRPV1 Agonist) therapy for pain relief: farewell or revival?. Clin J Pain 24:142–154

    PubMed  Google Scholar 

  168. Reeves PJ, Callewaert N, Contreras R, Khorana HG (2002) Structure and function in rhodopsin: high-level expression of rhodopsin with restricted and homogeneous N-glycosylation by a tetracycline-inducible N-acetylglucosaminyltransferase I-negative HEK293S stable mammalian cell line. Proc Natl Acad Sci U S A 99:13419–13424

    PubMed Central  CAS  PubMed  Google Scholar 

  169. Durocher Y, Perret S, Kamen A (2002) High-level and high-throughput recombinant protein production by transient transfection of suspension-growing human 293-EBNA1 cells. Nucleic Acids Res 30:E9

    PubMed Central  PubMed  Google Scholar 

  170. Cortright DN, Szallasi A (2009) TRP channels and pain. Curr Pharm Des 15:1736–1749

    CAS  PubMed  Google Scholar 

  171. Yoshimura N, Kaiho Y, Miyazato M, Yunoki T, Tai C, Chancellor MB, Tyagi P (2008) Therapeutic receptor targets for lower urinary tract dysfunction. Naunyn Schmiedebergs Arch Pharmacol 377:437–448

    CAS  PubMed  Google Scholar 

  172. Liddle RA (2007) The role of Transient Receptor Potential Vanilloid 1 (TRPV1) channels in pancreatitis. Biochim Biophys Acta 1772:869–878

    PubMed Central  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rong Xia .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Xia, R., Dekermendjian, K., Lullau, E., Dekker, N. (2011). TRPV1: A Therapy Target That Attracts the Pharmaceutical Interests. In: Islam, M. (eds) Transient Receptor Potential Channels. Advances in Experimental Medicine and Biology, vol 704. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-0265-3_34

Download citation

Publish with us

Policies and ethics