Skip to main content

Cramér-Rao Lower Bound and Information Geometry

  • Chapter
Connected at Infinity II

Part of the book series: Texts and Readings in Mathematics ((TRM,volume 67))

Abstract

This article focuses on an important piece of work of the world renowned Indian statistician, Calyampudi Radhakrishna Rao. In 1945, C. R. Rao (25 years old then) published a pathbreaking paper [43], which had a profound impact on subsequent statistical research. Roughly speaking, Rao obtained a lower bound to the variance of an estimator. The importance of this work can be gauged, for instance, by the fact that it has been reprinted in the volume Breakthroughs in Statistics: Foundations and Basic Theory [32]. There have been two major impacts of this work:

  • First, it answers a fundamental question statisticians have always been interested in, namely, how good can a statistical estimator be? Is there a fundamental limit when estimating statistical parameters?

  • Second, it opens up a novel paradigm by introducing differential geometric modeling ideas to the field of Statistics. In recent years, this contribution has led to the birth of a flourishing field of Information Geometry [6].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 50.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Ali, S.M. and Silvey, S. D. (1966). A general class of coefficients of divergence of one distribution from another. J. Roy. Statist. Soc. Series B 28, 131–142.

    MathSciNet  MATH  Google Scholar 

  2. Altun, Y., Smola, A. J. and Hofmann, T. (2004). Exponential families for conditional random fields. In Uncertainty in Artificial Intelligence (UAI), pp. 2–9.

    Google Scholar 

  3. Amari, S. (1995). Information geometry of the EM and em algorithms for neural networks. Neural Networks 8, 1379–1408.

    Article  Google Scholar 

  4. Amari, S. (2009). Alpha-divergence is unique, belonging to both f-divergence and Bregman divergence classes. IEEE Trans. Inf. Theor. 55, 4925–4931.

    Article  Google Scholar 

  5. Amari, S., Barndorff-Nielsen, O. E., Kass, R. E., Lauritzen, S., L. and Rao, C. R. (1987). Differential Geometry in Statistical Inference. Lecture Notes-Monograph Series. Institute of Mathematical Statistics.

    MATH  Google Scholar 

  6. Amari, S. and Nagaoka, H. (2000). Methods of Information Geometry. Oxford University Press.

    MATH  Google Scholar 

  7. Arwini, K. and Dodson, C. T. J. (2008). Information Geometry: Near Randomness and Near Independence. Lecture Notes in Mathematics # 1953, Berlin: Springer.

    Book  MATH  Google Scholar 

  8. Atkinson, C. and Mitchell, A. F. S. (1981). Rao’s distance measure. Sankhyā Series A 43, 345–365.

    MathSciNet  MATH  Google Scholar 

  9. Banerjee, A., Merugu, S., Dhillon, I. S. and Ghosh, J. (2005). Clustering with Bregman divergences. J. Machine Learning Res. 6, 1705–1749.

    MathSciNet  MATH  Google Scholar 

  10. Barbaresco, F. (2009). Interactions between symmetric cone and information geometries: Bruhat-Tits and Siegel spaces models for high resolution autoregressive Doppler imagery. In Emerging Trends in Visual Computing (F. Nielsen, Ed.) Lecture Notes in Computer Science # 5416, pp. 124–163. Berlin / Heidelberg: Springer.

    Chapter  Google Scholar 

  11. Bhatia, R. and Holbrook, J. (2006). Riemannian geometry and matrix geometric means. Linear Algebra Appl. 413, 594–618.

    Article  MathSciNet  MATH  Google Scholar 

  12. Bhattacharyya, A. (1943). On a measure of divergence between two statistical populations defined by their probability distributions. Bull. Calcutta Math. Soc. 35, 99–110.

    MathSciNet  MATH  Google Scholar 

  13. Bregman, L. M. (1967). The relaxation method of finding the common point of convex sets and its application to the solution of problems in convex programming. USSR Computational Mathematics and Mathematical Physics 7, 200–217.

    Article  MathSciNet  MATH  Google Scholar 

  14. Brown, L. D. (1986). Fundamentals of Statistical Exponential Families: with Applications in Statistical Decision Theory. Institute of Mathematical Statistics, Hayworth, CA, USA.

    Google Scholar 

  15. Cardoso, J. F. (2003). Dependence, correlation and Gaussianity in independent component analysis. J. Machine Learning Res. 4, 1177–1203.

    MathSciNet  MATH  Google Scholar 

  16. Cena, A. and Pistone, G. (2007). Exponential statistical manifold. Ann. Instt. Statist. Math. 59, 27–56.

    Article  MathSciNet  MATH  Google Scholar 

  17. Champkin, J. (2011). C. R. Rao. Significance 8, 175–178.

    Article  Google Scholar 

  18. Chentsov, N. N. (1982). Statistical Decision Rules and Optimal Inferences. Transactions of Mathematics Monograph, # 53 (Published in Russian in 1972).

    Google Scholar 

  19. Cover, T. M. and Thomas, J. A. (1991). Elements of Information Theory. New York: Wiley.

    Book  MATH  Google Scholar 

  20. Cramér, H. (1946). Mathematical Methods of Statistics. NJ, USA: Princeton University Press.

    MATH  Google Scholar 

  21. Csiszár, I. (1967). Information-type measures of difference of probability distributions and indirect observation. Studia Scientia. Mathematica. Hungarica 2, 229–318.

    MathSciNet  Google Scholar 

  22. Darmois, G. (1945). Sur les limites de la dispersion de certaines estimations. Rev. Internat. Stat. Instt. 13.

    Google Scholar 

  23. Dawid, A. P. (2007). The geometry of proper scoring rules. Ann. Instt. Statist. Math. 59, 77–93.

    Article  MathSciNet  MATH  Google Scholar 

  24. del Carmen Pardo, M. C. and Vajda, I. (1997). About distances of discrete distributions satisfying the data processing theorem of information theory. IEEE Trans. Inf. Theory 43, 1288–1293.

    Article  MathSciNet  MATH  Google Scholar 

  25. Dempster, A. P., Laird, N. M. and Rubin, D. B. (1977). Maximum likelihood from incomplete data via the EM algorithm. J. Roy. Statist. Soc. Series B 39, 1–38.

    MathSciNet  MATH  Google Scholar 

  26. Fisher, R. A. (1922). On the mathematical foundations of theoretical statistics. Phil. Trans. Roy. Soc. London, A 222, 309–368.

    Article  MATH  Google Scholar 

  27. Fréchet, M. (1943). Sur l’extension de certaines évaluations statistiques au cas de petits échantillons. Internat. Statist. Rev. 11, 182–205.

    Article  MATH  Google Scholar 

  28. Gangbo, W. and McCann, R. J. (1996). The geometry of optimal transportation. Acta Math. 177, 113–161.

    Article  MathSciNet  MATH  Google Scholar 

  29. Grasselli, M. R. and Streater, R. F. (2001). On the uniqueness of the Chentsov metric in quantum information geometry. Infinite Dimens. Anal., Quantum Probab. and Related Topics 4, 173–181.

    Article  MathSciNet  MATH  Google Scholar 

  30. Kass, R. E. and Vos, P. W. (1997). Geometrical Foundations of Asymptotic Inference. New York: Wiley.

    Book  MATH  Google Scholar 

  31. Koopman, B. O. (1936). On distributions admitting a sufficient statistic. Trans. Amer. Math. Soc. 39, 399–409.

    Article  MathSciNet  MATH  Google Scholar 

  32. Kotz, S. and Johnson, N. L. (Eds.) (1993). Breakthroughs in Statistics: Foundations and Basic Theory, Volume I. New York: Springer.

    Google Scholar 

  33. Lehmann, E. L. and Casella, G. (1998). Theory of Point Estimation 2nd ed. New York: Springer.

    MATH  Google Scholar 

  34. Lovric, M., Min-Oo, M. and Ruh, E. A. (2000). Multivariate normal distributions parametrized as a Riemannian symmetric space. J. Multivariate Anal. 74, 36–48.

    Article  MathSciNet  MATH  Google Scholar 

  35. Mahalanobis, P. C. (1936). On the generalized distance in statistics. Proc. National Instt. Sci., India 2, 49–55.

    MATH  Google Scholar 

  36. Mahalanobis, P. C. (1948). Historical note on the D2-statistic. Sankhyā 9, 237–240.

    Google Scholar 

  37. Maybank, S., Ieng, S. and Benosman, R. (2011). A Fisher-Rao metric for para-catadioptric images of lines. Internat. J. Computer Vision, 1–19.

    Google Scholar 

  38. Morozova, E. A. and Chentsov, N. N. (1991). Markov invariant geometry on manifolds of states. J. Math. Sci. 56, 2648–2669.

    Article  MATH  Google Scholar 

  39. Murata, N., Takenouchi, T., Kanamori, T. and Eguchi, S. (2004). Information geometry of U-boost and Bregman divergence. Neural Comput. 16, 1437–1481.

    Article  MATH  Google Scholar 

  40. Murray, M. K. and Rice, J. W. (1993). Differential Geometry and Statistics. Chapman and Hall/CRC.

    Book  MATH  Google Scholar 

  41. Peter, A. and Rangarajan, A. (2006). A new closed-form information metric for shape analysis. In Medical Image Computing and Computer Assisted Intervention (MICCAI) Volume 1, pp. 249–256.

    Google Scholar 

  42. Qiao, Y. and Minematsu, N. (2010). A study on invariance of f-divergence and its application to speech recognition. Trans. Signal Process. 58, 3884–3890.

    Article  MathSciNet  Google Scholar 

  43. Rao, C. R. (1945). Information and the accuracy attainable in the estimation of statistical parameters. Bull. Calcutta Math. Soc. 37, 81–89.

    MathSciNet  MATH  Google Scholar 

  44. Rao, C. R. (2010). Quadratic entropy and analysis of diversity. Sankhyā, Series A, 72, 70–80.

    Article  MathSciNet  MATH  Google Scholar 

  45. Shen, Z. (2006). Riemann-Finsler geometry with applications to information geometry. Chinese Annals of Mathematics 27B, 73–94.

    Article  MathSciNet  MATH  Google Scholar 

  46. Shima, H. (2007). The Geometry of Hessian Structures. Singapore: World Scientific.

    Book  MATH  Google Scholar 

  47. Watanabe, S. (2009). Algebraic Geometry and Statistical Learning Theory. Cambridge: Cambridge University Press.

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Rajendra Bhatia C. S. Rajan Ajit Iqbal Singh

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Hindustan Book Agency

About this chapter

Cite this chapter

Nielsen, F. (2013). Cramér-Rao Lower Bound and Information Geometry. In: Bhatia, R., Rajan, C.S., Singh, A.I. (eds) Connected at Infinity II. Texts and Readings in Mathematics, vol 67. Hindustan Book Agency, Gurgaon. https://doi.org/10.1007/978-93-86279-56-9_2

Download citation

Publish with us

Policies and ethics