Skip to main content

Statistical Analysis of Lateral Diffusion and Reaction Kinetics of Single Molecules on the Membranes of Living Cells

  • Chapter
  • First Online:
Cell Signaling Reactions

Abstract

Single-molecule imaging has made it possible to directly observe the behavior of signaling molecules functioning on the membrane of living cells, revealing multiple subpopulations which can be characterized by their lateral diffusion coefficients on the membrane and or kinetics of dissociation from the membrane. The transition kinetics between these functional states is a central problem for understanding bio-signaling mechanisms. Here I propose a novel method to simultaneously analyze lateral diffusion coefficient and reaction kinetics from single-molecule trajectories. Based on the probability density function of displacement derived from a diffusion equation with appropriate reaction terms, the temporal development of diffusive mobility can be analyzed in a quantitative manner. I discuss simple diffusion models for a molecule that exhibits one or two states with different diffusion coefficients in the absence or presence of state transitions and/or membrane dissociation. I use numerical simulation based on my model to generate single-molecule trajectories to demonstrate the practice of this method with special emphasis on revealing reaction schemes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Akaike H (1974) A new look at the statistical model identification. IEEE Trans Automat Contr 19:716–723

    Article  Google Scholar 

  2. Bannai H, Lévi S, Schweizer C, Dahan M, Triller A (2006) Imaging the lateral diffusion of membrane molecules with quantum dots. Nat Protoc 1:2628–2634

    Article  CAS  PubMed  Google Scholar 

  3. Cheezum MK, Walker WF, Guilford WH (2001) Quantitative comparison of algorithms for tracking single fluorescent particles. Biophys J 81(4):2378–2388

    Article  CAS  PubMed  Google Scholar 

  4. Gambin Y, Lopez-Esparza R, Reffay M, Sierecki E, Gov NS, Genest M, Hodges RS, Urbach W (2006) Lateral mobility of proteins in liquid membranes revisited. Proc Natl Acad Sci USA 103:2098–2102

    Article  CAS  PubMed  Google Scholar 

  5. Jin T, Xu X, Hereld D (2008) Chemotaxis, chemokine receptors and human disease. Cytokine 44:1–8

    Article  CAS  PubMed  Google Scholar 

  6. Kusumi A, Sako Y, Yamamoto M (1993) Confined lateral diffusion of membrane receptors as studied by single particle tracking (nanovid microscopy). Effects of calcium-induced differentiation in cultured epithelial cells. Biophys J 65:2021–2040

    Article  CAS  PubMed  Google Scholar 

  7. Matsuoka S, Iijima M, Watanabe TM, Kuwayama H, Yanagida T, Devreotes PN, Ueda M (2006) Single-molecule analysis of chemoattractant-stimulated membrane recruitment of a PH-domain-containing protein. J Cell Sci 119:1071–1079

    Article  CAS  PubMed  Google Scholar 

  8. Matsuoka S, Shibata T, Ueda M (2009) Statistical analysis of lateral diffusion and multistate kinetics in single-molecule imaging. Biophys J 97(4):1115–1124

    Article  CAS  PubMed  Google Scholar 

  9. Miyanaga Y, Matsuoka S, Yanagida T, Ueda M (2007) Stochastic signal inputs for chemotactic response in Dictystelium cells revealed by single molecule imaging techniques. Biosystems 88(3):251–260

    Article  CAS  PubMed  Google Scholar 

  10. Mortimer D, Fothergill T, Pujic Z, Richards LJ, Goodhill GJ (2008) Growth cone chemotaxis. Trends Neurosci 31(2):90–98

    Article  CAS  PubMed  Google Scholar 

  11. Petrov EP, Schwille P (2008) Translational diffusion in lipid membranes beyond Saffman-Delbruck approximation. Biophys J 94(5):L41–L43

    Article  CAS  PubMed  Google Scholar 

  12. Pinaud F, Michalet X, Iyer G, Margeat E, Moore H-P, Weiss S (2009) Dynamic partitioning of a GPI-anchored protein in glycosphingolipid-rich microdomains imaged by single-quantum dot tracking. Traffic 10(6):691–712

    Article  CAS  PubMed  Google Scholar 

  13. Qian H, Sheetz MP, Elson EL (1991) Single particle tracking. Analysis of diffusion and flow in two-dimensional systems. Biophys J 60:910–921

    Article  CAS  PubMed  Google Scholar 

  14. Saffman PG, Delbrück M (1975) Brownian motion in biological membranes. Proc Natl Acad Sci USA 72:3111–3113

    Article  CAS  PubMed  Google Scholar 

  15. Saxton MJ (1997) Single-particle tracking: the distribution of diffusion coefficients. Biophys J 72:1744–1753

    Article  CAS  PubMed  Google Scholar 

  16. Saxton MJ, Jacobson K (1997) Single-particle tracking: applications to membrane dynamics. Annu Rev Biophys Biomol Struct 26:373–399

    Article  CAS  PubMed  Google Scholar 

  17. Shibata SC, Hibino K, Mashimo T, Yanagida T, Sako Y (2006) Formation of signal transduction complexes during immobile phase of NGFR movements. Biochem Biophys Res Commun 342:316–322

    Article  CAS  PubMed  Google Scholar 

  18. Ueda M, Sako Y, Tanaka T, Devreotes P, Yanagida T (2001) Single-molecule analysis of chemotactic signaling in Dictyostelium cells. Science 294(5543):864–867

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgement

The author would like to thank Masahiro Ueda and Tatsuo Shibata for helpful discussion, Hiroaki Takagi, Yuichi Togashi, Masatoshi Nishikawa and members of Stochastic biocomputing group in Osaka University for generous suggestions and Peter Karagiannis for critical reading of the manuscript. This work is supported by JST, CREST.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Satomi Matsuoka .

Editor information

Editors and Affiliations

Appendix

Appendix

When calculated from experimental trajectories, the autocorrelation function of the squared displacements in model 6 contains an error term dependent on the lag time, τ. Let us assume the trajectory consists of an estimated molecular position at time t, x′(t), that distributes around the actual position, x(t), with fluctuations, η(t), such that the variance is ε 2 and <η(t)> = 0. The displacement along the x-axis during time t and t + Δt, Δx ′(t), is written as,

$$ \Delta x\,'(t) = \Delta x(t) + \Delta \eta (t), $$

where

$$ \Delta x(t) = x\left( {t + \Delta t} \right) - x(t), $$
$$ \Delta \eta (t) = \eta \left( {t + \Delta t} \right) - \eta (t). $$

The variance of Δη(t) is 2ε 2. Then, an autocorrelation function calculated from the trajectories of all molecules theoretically follows,

$$ \begin{array}{llll} \left\langle {\Delta {{x\,'}^2}(0)\Delta {{x'}^2}\left( \tau \right)} \right\rangle = \left\langle {\Delta {x^2}(0)\Delta {x^2}\left( \tau \right)} \right\rangle + \left\langle {\Delta {x^2}(0)} \right\rangle \left\langle {\Delta {\eta^2}\left( \tau \right)} \right\rangle \cr \quad+ 4\left\langle {\Delta x(0)\Delta x\left( \tau \right)} \right\rangle \left\langle {\Delta \eta (0)\Delta \eta \left( \tau \right)} \right\rangle + 2\left\langle {\Delta x(0)} \right\rangle \left\langle {\Delta \eta (0)\Delta {\eta^2}\left( \tau \right)} \right\rangle \cr \quad+ \left\langle {\Delta {x^2}\left( \tau \right)} \right\rangle \left\langle {\Delta {\eta^2}(0)} \right\rangle + 2\left\langle {\Delta x\left( \tau \right)} \right\rangle \left\langle {\Delta {\eta^2}(0)\Delta \eta \left( \tau \right)} \right\rangle \\ \quad+ \left\langle {\Delta {\eta^2}(0)\Delta {\eta^2}\left( \tau \right)} \right\rangle. \\\end{array} $$

When \( \tau \ne 0 \)and \( \tau \ne \Delta t \), it is,

$$ \begin{array}{llll} \left\langle {\Delta {{x\,'}^2}(0)\Delta {{x\,'}\,^2}\left( \tau \right)} \right\rangle = \left\langle {\Delta {x^2}(0)\Delta {x^2}\left( \tau \right)} \right\rangle + \left\langle {\Delta {x^2}(0)} \right\rangle \left\{ {\left\langle {{\eta^2}\left( {\tau + \Delta t} \right)} \right\rangle + \left\langle {{\eta^2}\left( \tau \right)} \right\rangle } \right\} \cr \quad+ \left\langle {\Delta {x^2}\left( \tau \right)} \right\rangle \left\{ {\left\langle {{\eta^2}\left( {\Delta t} \right)} \right\rangle + \left\langle {{\eta^2}(0)} \right\rangle } \right\} + \left\langle {{\eta^2}\left( {\Delta t} \right)} \right\rangle \left\langle {{\eta^2}\left( {\tau + \Delta t} \right)} \right\rangle \cr \quad+ \left\langle {{\eta^2}\left( {\Delta t} \right)} \right\rangle \left\langle {{\eta^2}\left( \tau \right)} \right\rangle + \left\langle {{\eta^2}(0)} \right\rangle \left\langle {{\eta^2}\left( {\tau + \Delta t} \right)} \right\rangle + \left\langle {{\eta^2}(0)} \right\rangle \left\langle {{\eta^2}\left( \tau \right)} \right\rangle, \\\end{array}$$
(12.14)

which is composed of three terms: an autocorrelation of the squared displacements in the absence of the error, <Δx 2(0)Δx 2(τ)>, an ensemble average of the error, <η 2(t)>, and an actual value of the ensemble-averaged squared displacements, <Δx 2(t)>. <Δx 2(0)Δx 2(τ)> is explained by Eq. 12.13.

If the molecule does not exhibit membrane dissociation, the ensemble average of the error is equal to ε 2 irrespective of time t. However, in the presence of dissociation, the number of molecules decreases depending on t, leading to a concomitant decrease in the ensemble average. The ensemble average of the error imposed on molecules that dissociate at t=t r is,

$$ \left\langle {{\eta^2}(t)|{t_r}} \right\rangle = {\varepsilon^2}H({t_r} - t) = \left\{ {\begin{array}{lll} {{\varepsilon^2},} & {t \leq {t_r},} \\{0,} & {t \geq {t_r},} \\\end{array} } \right. $$

where H(t) is a Heaviside function. Taking the integral for t r from 0 to plus infinity, the ensemble average is,

$$ \begin{array}{lllll} \left\langle {{\eta^2}(t)} \right\rangle = \int_0^\infty {\left\langle {{\eta^2}(t)|{t_r}} \right\rangle } P\left( {{t_r}} \right)d{t_r} \\ = {\varepsilon^2}\int_0^\infty {H({t_r} - t)} P\left( {{t_r}} \right)d{t_r} \\ = {\varepsilon^2}\int_t^\infty {P\left( {{t_r}} \right)d{t_r}} \cr = {\varepsilon^2}\left( {1 - \int_0^t {P\left( {{t_r}} \right)d{t_r}} } \right) \\\end{array} $$

where P(t r ) represents the probability that a molecule dissociates at t=t r . Theoretically, the membrane residence probability, R(t), is equivalent to \( 1 - \int_0^t {P\left( {{t_r}} \right)d{t_r}} \). Experimentally, the release curve can be used as an estimate of R(t). Thus, the ensemble average of the error can be calculated from the experimental data.

The actual value of the ensemble-averaged squared displacements is calculated from the trajectories as follows. Since the estimated value is,

$$ \begin{array}{lll} \left\langle {\Delta {{x\,'}\,^2}(t)} \right\rangle = \left\langle {{{\left( {\Delta x(t) + \Delta \eta (t)} \right)}^2}} \right\rangle \\ = \left\langle {\Delta {x^2}(t)} \right\rangle + \left\langle {\Delta {\eta^2}(t)} \right\rangle \\ = \left\langle {\Delta {x^2}(t)} \right\rangle + \left\langle {{\eta^2}\left( {t + \Delta t} \right)} \right\rangle + \left\langle {{\eta^2}(t)} \right\rangle, \\\end{array} $$

the actual value of the ensemble-averaged squared displacements is,

$$ \left\langle {\Delta {x^2}(t)} \right\rangle = \left\langle {\Delta {{x\,'}^2}(t)} \right\rangle - \left\langle {{\eta^2}\left( {t + \Delta t} \right)} \right\rangle - \left\langle {{\eta^2}(t)} \right\rangle. $$

The ensemble average of the estimated squared displacements is obtained from the time series of squared displacements of i-th molecule,

$$ \left\langle {\Delta {{x\,'}^2}(t)} \right\rangle = \frac{1}{X}\sum\limits_{i = 1}^X {\Delta {{x\,'}_i}^2(t)}. $$

From Eq. 12.14 and calculating <η 2(t)> and <Δx 2(t)>, the autocorrelation function in the absence of the measurement error, <Δx 2(0)Δx 2(τ)>, is,

$$ \begin{array}{lll} \left\langle {\Delta {x^2}(0)\Delta {x^2}\left( \tau \right)} \right\rangle = \left\langle {\Delta {{x\,'}^2}(0)\Delta {{x\,'}^2}\left( \tau \right)} \right\rangle \cr \quad- {\varepsilon^2}\left[ {\left\langle {\Delta {{x\,'}^2}(0)} \right\rangle \left\{ {R\,'\left( {\tau + \Delta t} \right) + R'\left( \tau \right)} \right\} + \left\langle {\Delta {{x\,'}^2}\left( \tau \right)} \right\rangle \left\{ {R'\left( {\Delta t} \right) + 1} \right\}} \right] \\ \quad+ {\varepsilon^4}\left\{ {R'\left( {\Delta t} \right) + 1} \right\}\left\{ {R'\left( {\tau + \Delta t} \right) + R'\left( \tau \right)} \right\}, \\\end{array} $$

where R′(t) represent the release curve. The calculated autocorrelation function is fitted to Eq. 12.13 to obtain values of s 1, s 2, D and E.

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Netherlands

About this chapter

Cite this chapter

Matsuoka, S. (2011). Statistical Analysis of Lateral Diffusion and Reaction Kinetics of Single Molecules on the Membranes of Living Cells. In: Sako, Y., Ueda, M. (eds) Cell Signaling Reactions. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-9864-1_12

Download citation

Publish with us

Policies and ethics