Skip to main content

Cooperative Mission Planning for Multi-UAV Teams

  • Reference work entry
  • First Online:
Handbook of Unmanned Aerial Vehicles

Abstract

The use of robotic agents, such as unmanned aerial vehicles (UAVs) or unmanned ground vehicles (UGVs), has motivated the development of numerous autonomous cooperative task allocation and planning methods for heterogeneous networked teams. Typically agents within the team have different roles and responsibilities, and ensuring proper coordination between them is critical for efficient mission execution. However, as the number of agents, system components, and mission tasks increase, planning for such teams becomes increasingly complex, motivating the development of algorithms that can operate in real-time dynamic environments.

Given the complexity of the cooperative missions considered, there have been numerous solution approaches developed in recent years. This chapter provides an overview of three of the most common planning frameworks: integer programming, Markov decision processes, and game theory. The chapter also considers various architectural decisions that must be addressed when implementing online planning systems for multi-agent teams, providing insights on when centralized, distributed, and decentralized architectures might be good choices for a given application, and how to organize the communication and computation to achieve desired mission performance. Algorithms that can be utilized within the various architectures are identified and discussed, and future directions for research are suggested.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 1,399.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 1,999.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • A. Ahmed, A. Patel, T. Brown, M. Ham, M. Jang, G. Agha, Task assignment for a physical agent team via a dynamic forward/reverse auction mechanism, in International Conference on Integration of Knowledge Intensive Multi-Agent Systems (IEEE, Piscataway, 2005)

    Google Scholar 

  • B. Alidaee, H. Wang, F. Landram, A note on integer programming formulations of the real-time optimal scheduling and flight path selection of UAVs. IEEE Trans. Control Syst. Technol. 17(4), 839–843 (2009)

    Google Scholar 

  • B. Alidaee, H. Wang, F. Landram, On the flexible demand assignment problems: case of unmanned aerial vehicles. IEEE Trans. Autom. Sci. Eng. 8(4), 865–868 (2011)

    Google Scholar 

  • M. Alighanbari, J.P. How, A robust approach to the UAV task assignment problem. Int. J. Robust Nonlinear Control 18(2), 118–134 (2008a)

    MATH  MathSciNet  Google Scholar 

  • M. Alighanbari, J.P. How, An unbiased Kalman consensus algorithm. AIAA J. Aerosp. Comput. Inf. Commun. 5(9), 298–311 (2008b)

    Google Scholar 

  • G. Arslan, J. Marden, J. Shamma, Autonomous vehicle-target assignment: a game-theoretical formulation. J. Dyn. Syst. Meas. Control 129, 584 (2007)

    Google Scholar 

  • M.L. Atkinson, Results analysis of using free market auctions to distribute control of UAVs, in AIAA 3rd Unmanned Unlimited Technical Conference, Workshop and Exhibit (AIAA, Reston, 2004)

    Google Scholar 

  • A.G. Banerjee, M. Ono, N. Roy, B.C. Williams, Regression-based LP solver for chance-constrained finite horizon optimal control with nonconvex constraints, in Proceedings of the American Control Conference (San Francisco, 2011)

    Google Scholar 

  • R. Beard, V. Stepanyan, Information consensus in distributed multiple vehicle coordinated control. IEEE Conf. Decis. Control 2, 2029–2034 (2003)

    Google Scholar 

  • R.W. Beard, T.W. McLain, M.A. Goodrich, E.P. Anderson, Coordinated target assignment and intercept for unmanned air vehicles. IEEE Trans. Robot. Autom. 18, 911–922 (2002)

    Google Scholar 

  • R. Becker, Solving transition independent decentralized Markov decision processes, in Computer Science Department Faculty Publication Series, 2004, pp. 208

    Google Scholar 

  • J. Bellingham, A. Richards, J.P. How, Receding horizon control of autonomous aerial vehicles. Am. Control Conf. 5, 3741–3746 (2002)

    Google Scholar 

  • R. Bellman, Dynamic Programming (Dover, Mineola, 2003)

    MATH  Google Scholar 

  • A. Ben-Tal, A. Nemirovski, Robust convex optimization. Math. Oper. Res. 23(4), 769–805 (1998)

    MATH  MathSciNet  Google Scholar 

  • D. Bernstein, R. Givan, N. Immerman, S. Zilberstein, The complexity of decentralized control of Markov decision processes, in Mathematics of operations research (2002), pp. 769-805. http://dl.acm.org/citation.cfm?id=2073951

  • D.P. Bertsekas, The auction algorithm for assignment and other network flow problems, Technical report, MIT, 1989

    Google Scholar 

  • D.P. Bertsekas, Dynamic Programming and Optimal Control, vol. I–II, 3rd edn. (Athena Scientific, Belmont, 2007)

    Google Scholar 

  • D.P. Bertsekas, J.N. Tsitsiklis, Parallel and Distributed Computation: Numerical Methods (Prentice-Hall, Englewood Cliffs, 1989)

    MATH  Google Scholar 

  • D. Bertsimas, D. Brown, Constructing uncertainty sets for robust linear optimization. Oper. Res. 57(6), 1483–1495 (2009)

    MATH  MathSciNet  Google Scholar 

  • D. Bertsimas, R. Weismantel, Optimization over integers (Dynamic Ideas, Belmont, 2005)

    Google Scholar 

  • D. Bertsimas, D.B. Brown, C. Caramanis, Theory and applications of robust optimization. SIAM review. 53(3), 464–501 (2011)

    MATH  MathSciNet  Google Scholar 

  • L. Bertuccelli, J. How, Active exploration in robust unmanned vehicle task assignment. J. Aerosp. Comput. Inf. Commun. 8, 250–268 (2011)

    Google Scholar 

  • L. Bertuccelli, H. Choi, P. Cho, J. How, Real-time multi-UAV task assignment in dynamic and uncertain environments, in AIAA Guidance, Navigation, and Control Conference (AIAA, Reston, 2009). (AIAA 2009–5776)

    Google Scholar 

  • B.M. Bethke, Kernel-based approximate dynamic programming using bellman residual elimination, Ph.D. thesis, Massachusetts Institute of Technology, Department of Aeronautics and Astronautics, Cambridge, 2010

    Google Scholar 

  • B. Bethke, J.P. How, J. Vian, Group health management of UAV teams with applications to persistent surveillance, in American Control Conference (ACC), Seattle (IEEE, New York, 2008), pp. 3145–3150

    Google Scholar 

  • L. Blackmore, M. Ono, Convex chance constrained predictive control without sampling, in AIAA Proceedings. (np) (2009)

    Google Scholar 

  • V.D. Blondel, J.M. Hendrickx, A. Olshevsky, J.N. Tsitsiklis, Convergence in multiagent coordination, consensus, and flocking, in Proceeding of the IEEE Conference on Decision and Control (2005)

    Google Scholar 

  • S. Bradtke, A. Barto, Linear least-squares algorithms for temporal difference learning. J. Mach. Learn. Res. 22, 33–57 (1996)

    MATH  Google Scholar 

  • L. BuÅŸoniu, R. BabuÅ¡ka, B. De Schutter, D. Ernst, Reinforcement Learning and Dynamic Programming Using Function Approximators (CRC, Boca Raton, 2010)

    Google Scholar 

  • J. Capitán, M. Spaan, L. Merino, A. Ollero, Decentralized multi-robot cooperation with auctioned POMDPs, in Sixth Annual Workshop on Multiagent Sequential Decision Making in Uncertain Domains (MSDM-2011), 2011, p. 24

    Google Scholar 

  • D. Castanon, J. Wohletz, Model predictive control for stochastic resource allocation. IEEE Trans. Autom. Control 54(8), 1739–1750 (2009)

    MathSciNet  Google Scholar 

  • D. A. Castanon, C. Wu, Distributed algorithms for dynamic reassignment. IEEE Conf. Decis. Control 1, 13–18 (2003)

    Google Scholar 

  • PR. Chandler, M. Pachter, D. Swaroop, J.M. Fowler, J.K. Howlett, S. Rasmussen, C. Schumacher, K. Nygard, Complexity in UAV cooperative control, in American Control Conference (ACC), Anchorage, 2002

    Google Scholar 

  • A. Chapman, R. Micillo, R. Kota, N. Jennings, Decentralized dynamic task allocation using overlapping potential games. Comput. J. 53, 1462–1477 (2010)

    Google Scholar 

  • W. Chen, M. Sim, J. Sun, C. Teo, From CVaR to uncertainty set: implications in joint chance constrained optimization. Oper. Res. 58(2), 470–485 (2010)

    MATH  MathSciNet  Google Scholar 

  • T. Chockalingam, S. Arunkumar, A randomized heuristics for the mapping problem: the genetic approach. Parallel Comput. 18(10), 1157–1165 (1992)

    MATH  Google Scholar 

  • H.-L. Choi, L. Brunet, J.P. How, Consensus-based decentralized auctions for robust task allocation. IEEE Trans. Robot. 25(4), 912–926 (2009)

    Google Scholar 

  • T. Cormen, Introduction to Algorithms (MIT, Cambridge, 2001)

    MATH  Google Scholar 

  • J. Cruz Jr., G. Chen, D. Li, X. Wang, Particle swarm optimization for resource allocation in UAV cooperative control, in AIAA Guidance, Navigation, and Control Conference and Exhibit, Providence (AIAA, Reston, 2004), pp. 1–11

    Google Scholar 

  • M.L. Cummings, J.P. How, A. Whitten, O. Toupet, The impact of human-automation collaboration in decentralized multiple unmanned vehicle control. Proc. IEEE 100(3), 660–671 (2012)

    Google Scholar 

  • P. De Boer, D. Kroese, S. Mannor, R. Rubinstein, A tutorial on the cross-entropy method. Ann. Oper. Res. 134(1), 19–67 (2005)

    MATH  MathSciNet  Google Scholar 

  • E. Delage, S. Mannor, Percentile optimization for Markov decision processes with parameter uncertainty. Oper. Res. 58(1), 203–213 (2010)

    MATH  MathSciNet  Google Scholar 

  • M.B. Dias, A. Stentz, A free market architecture for distributed control of a multirobot system, in 6th International Conference on Intelligent Autonomous Systems IAS-6 (IOS, Amsterdam/Washington, DC, 2000), pp. 115–122

    Google Scholar 

  • M.B. Dias, R. Zlot, N. Kalra, A. Stentz, Market-based multirobot coordination: a survey and analysis. Proc. IEEE 94(7), 1257–1270 (2006)

    Google Scholar 

  • Y. Eun, H. Bang, Cooperative task assignment/path planning of multiple unmanned aerial vehicles using genetic algorithms. J. Aircr. 46(1), 338 (2010)

    Google Scholar 

  • A.M. Farahmand, M. Ghavamzadeh, C. Szepesvári, S. Mannor, Regularized policy iteration, in Advances in Neural Information Processing Systems (NIPS), ed. by D. Koller, D. Schuurmans, Y. Bengio, L. Bottou (MIT, Cambridge, 2008), pp. 441–448

    Google Scholar 

  • J. Fax, R. Murray, Information flow and cooperative control of vehicle formations. IEEE Trans. Autom. Control 49(9), 1465–1476 (2004)

    MathSciNet  Google Scholar 

  • C.A. Floudas, Nonlinear and Mixed-Integer Programming - Fundamentals and Applications (Oxford University Press, New York, 1995)

    Google Scholar 

  • C.S.R. Fraser, L.F. Bertuccelli, J.P. How, Reaching consensus with imprecise probabilities over a network, in AIAA Guidance, Navigation, and Control Conference (GNC), Chicago, 2009. (AIAA-2009-5655)

    Google Scholar 

  • C. S. Fraser, L.F. Bertuccelli, H.-L. Choi, J.P. How, A hyperparameter consensus method for agreement under uncertainty. Automatica 48(2), 374–380 (2012)

    MATH  MathSciNet  Google Scholar 

  • E.W. Frew, B. Argrow, Embedded reasoning for atmospheric science using unmanned aircraft systems, in AAAI 2010 Spring Symposium on Embedded Reasoning: Intelligence in Embedded Systems, Palo Alto (AAAI, Menlo Park, 2010)

    Google Scholar 

  • D. Fudenberg, J. Tirole, Game Theory (MIT, Cambridge, 1991)

    Google Scholar 

  • A. Gelman, J. Carlin, H. Stern, D. Rubin, Bayesian Data Analysis, 2nd edn. (Chapman and Hall, Boca Raton, 2004)

    MATH  Google Scholar 

  • A. Geramifard, F. Doshi, J. Redding, N. Roy, J. How, Online discovery of feature dependencies, in International Conference on Machine Learning (ICML), ed. by L. Getoor, T. Scheffer (ACM, New York, 2011), pp. 881–888

    Google Scholar 

  • B. Gerkey, M. Mataric, Sold!: auction methods for multirobot coordination. IEEE Trans. Robot. Autom 18(5), 758–768 (2002)

    Google Scholar 

  • B.P. Gerkey, M.J. Mataric, A formal analysis and taxonomy of task allocation in multi-robot systems. Int. J. Robot. Res. 23(9), 939–954 (2004)

    Google Scholar 

  • F. Glover, R. Marti, Tabu search, in Metaheuristic Procedures for Training Neutral Networks (Springer, Boston, 2006), pp. 53–69

    Google Scholar 

  • C. Goldman, S. Zilberstein, Optimizing information exchange in cooperative multi-agent systems, in Proceedings of the second international joint conference on Autonomous agents and multiagent systems (ACM, New York, 2003), pp. 137–144

    Google Scholar 

  • C. Goldman, S. Zilberstein, Decentralized control of cooperative systems: categorization and complexity analysis. J. Artif. Intell. Res. 22, 143–174 (2004)

    MATH  MathSciNet  Google Scholar 

  • D. Golovin, A. Krause, Adaptive submodularity: a new approach to active learning and stochastic optimization, Proceedings of the International Conference on Learning Theory (COLT), 2010

    Google Scholar 

  • S. Grime, H. Durrant-Whyte, Data fusion in decentralized sensor networks. Control Eng. Pract. 2(5), 849–863 (1994)

    Google Scholar 

  • C. Guestrin, D. Koller, R. Parr, Multiagent planning with factored MDPs, in NIPS, ed. by T.G. Dietterich, S. Becker, Z. Ghahramani (MIT, Cambridge, 2001), pp. 1523–1530

    Google Scholar 

  • Y. Hatano, M. Mesbahi, Agreement over random networks. IEEE Trans. Autom. Control 50(11), 1867–1872 (2005)

    MathSciNet  Google Scholar 

  • ILOG, CPLEX (2006), http://www.ilog.com/products/cplex/

  • A. Jadbabaie, J. Lin, A.S. Morse, Coordination of groups of mobile autonomous agents using nearest neighbor rules. IEEE Trans. Autom. Control 48(6), 988–1001 (2003)

    MathSciNet  Google Scholar 

  • L.B. Johnson, S.S. Ponda, H.-L. Choi, J.P. How, Asynchronous decentralized task allocation for dynamic environments, in Proceedings of the AIAA Infotech@Aerospace Conference, St. Louis (AIAA, Reston, 2011)

    Google Scholar 

  • L.B. Johnson, H.-L. Choi, S.S. Ponda, J.P. How, Allowing non-submodular score functions in distributed task allocation, in IEEE Conference on Decision and Control (CDC), 2012 (submitted)

    Google Scholar 

  • Y. Kim, D. Gu, I. Postlethwaite, Real-time optimal mission scheduling and flight path selection. IEEE Trans. Autom. Control 52(6), 1119–1123 (2007)

    MathSciNet  Google Scholar 

  • E. King, Y. Kuwata, M. Alighanbari, L. Bertuccelli, J.P. How, Coordination and control experiments on a multi-vehicle testbed, in American Control Conference (ACC), Boston, (American Automatic Control Council, Evanston; IEEE, Piscataway, 2004), pp. 5315–5320

    Google Scholar 

  • A. Krause, C. Guestrin, A. Gupta, J. Kleinberg, Near-optimal sensor placements: maximizing information while minimizing communication cost, in Information Processing in Sensor Neworks, 2006. IPSN 2006. The Fifth International Conference on (ACM, New York, 2006), pp. 2–10, 0–0

    Google Scholar 

  • M.G. Lagoudakis, R. Parr, Least-squares policy iteration. J. Mach. Learn. Res. 4, 1107–1149 (2003)

    MathSciNet  Google Scholar 

  • G. Laporte, F. Semet, Classical heuristics for the capacitated VRP, in The Vehicle Routing Problem, ed. by P. Toth, D. Vigo (Society for Industrial Mathematics, Philadelphia, 2002)

    Google Scholar 

  • S. Leary, M. Deittert, J. Bookless, Constrained UAV mission planning: a comparison of approaches, in Computer Vision Workshops (ICCV Workshops), 2011 IEEE International Conference on, Barcelona (IEEE, Piscataway, 2011), pp. 2002–2009

    Google Scholar 

  • T. Lemaire, R. Alami, S. Lacroix, A distributed task allocation scheme in multi-UAV context. IEEE Int. Conf. Robot. Autom. 4, 3622–3627 (2004)

    Google Scholar 

  • J. Lin, A. Morse, B. Anderson, The multi-agent rendezvous problem. IEEE Conf. Decis. Control 2, 1508–1513 (2003)

    Google Scholar 

  • S. Mahadevan, M. Maggioni, C. Guestrin, Proto-value functions: a Laplacian framework for learning representation and control in Markov decision processes. J. Mach. Learn. Res. 8, 2007 (2006)

    Google Scholar 

  • A. Makarenko, H. Durrant-Whyte, Decentralized Bayesian algorithms for active sensor networks. Int. Conf. Inf. Fusion 7(4), 418–433 (2006)

    Google Scholar 

  • N.D. Manh, L.T.H. An, P.D. Tao, A cross-entropy method for nonlinear UAV task assignment problem, in IEEE International Conference on Computing and Communication Technologies, Research, Innovation, and Vision for the Future (RIVF) (IEEE, Piscataway, 2010), pp. 1–5

    Google Scholar 

  • J. Marden, A. Wierman, Overcoming limitations of game-theoretic distributed control, in Joint 48th IEEE Conference on Decision and Control and 28th Chinese Control Conference (IEEE, Piscataway, 2009)

    Google Scholar 

  • J. Marden, G. Arslan, J. Shamma, Cooperative control and potential games. IEEE Trans. Syst. Man Cybern. Part B Cybern. 39(6), 1393–1407 (2009)

    Google Scholar 

  • M.J. Mataric, G.S. Sukhatme, E.H. Ostergaard, Multi-robot task allocation in uncertain environments. Auton. Robots 142–3), 255–263 (2003)

    MATH  Google Scholar 

  • I. Maza, F. Caballero, J. Capitan, J. Martínez-de Dios, A. Ollero, Experimental results in multi- UAV coordination for disaster management and civil security applications. J. Intell. Robot. Syst. 61(1), 563–585 (2011)

    Google Scholar 

  • T.W. McLain, R.W. Beard, Coordination variables, coordination functions, and cooperative-timing missions. J. Guid. Control Dyn. 28(1), 150–161 (2005)

    Google Scholar 

  • F.S. Melo, M. Veloso, Decentralized MDPs with sparse interactions. Artif. Intell. 175, 1757–1789 (2011)

    MATH  MathSciNet  Google Scholar 

  • C.C. Moallemi, B.V. Roy, Consensus propagation. IEEE Trans. Inf. Theory 52(11), 4753–4766 (2006)

    Google Scholar 

  • D. Monderer, L. Shapley, Potential games. Games Econ. Behav. 14, 124–143 (1996)

    MATH  MathSciNet  Google Scholar 

  • R. Murphey, Target-based weapon target assignment problems. Nonlinear Assign. Probl. Algorithms Appl. 7, 39–53 (1999)

    MathSciNet  Google Scholar 

  • A. Nemirovski, A. Shapiro, Convex approximations of chance constrained programs. SIAM J. Optim. 17(4), 969–996 (2007)

    MathSciNet  Google Scholar 

  • I. Nikolos, E. Zografos, A. Brintaki, UAV path planning using evolutionary algorithms, in Innovations in Intelligent Machines-1 (Springer, Berlin/New York, 2007), pp. 77–111

    Google Scholar 

  • Office of the Secretary of Defense, Unmanned aircraft systems roadmap, Technical report, OSD (2007), http://www.acq.osd.mil/usd/UnmannedSystemsRoadmap.2007-2032.pdf

  • R. Olfati-saber, Distributed Kalman filtering and sensor fusion in sensor networks, in Network Embedded Sensing and Control, vol. 331 (Springer, Berlin, 2006), pp. 157–167

    Google Scholar 

  • R. Olfati-Saber, R.M. Murray, Consensus problems in networks of agents with switching topology and time-delays. IEEE Trans. Autom. Control 49(9), 1520–1533 (2004)

    MathSciNet  Google Scholar 

  • R. Olfati-Saber, A. Fax, R.M. Murray, Consensus and cooperation in networked multi-agent systems. IEEE Trans. Autom. Control 95(1), 215–233 (2007)

    Google Scholar 

  • A. Olshevsky, J.N. Tsitsiklis, Convergence speed in distributed consensus and averaging, in IEEE Conference on Decision and Control (CDC) (IEEE, Piscataway, 2006), pp. 3387–3392

    Google Scholar 

  • C. Papadimitriou, Computational Complexity (Wiley, Chichester, 2003)

    Google Scholar 

  • C. H. Papadimitriou, J.N. Tsitsiklis, The complexity of Markov decision processes. Math. Oper. Res. 12(3), 441–450 (1987)

    MATH  MathSciNet  Google Scholar 

  • S. Paquet, L. Tobin, B. Chaib-draa, Real-time decision making for large POMDPs. Adv. Artif. Intell. 3501, 450–455 (2005)

    Google Scholar 

  • K. Passino, M. Polycarpou, D. Jacques, M. Pachter, Y. Liu, Y. Yang, M. Flint, M. Baum, Cooperative control for autonomous air vehicles, in Cooperative control and optimization (Kluwer, Dordrecht/Boston, 2002), pp. 233–271

    Google Scholar 

  • S.S Ponda, J. Redding, H.-L. Choi, J.P. How, M.A. Vavrina, J. Vian, Decentralized planning for complex missions with dynamic communication constraints, in American Control Conference (ACC), Baltimore, 2010

    Google Scholar 

  • S.S Ponda, L.B. Johnson, H.-L. Choi, J.P. How, Ensuring network connectivity for decentralized planning in dynamic environments, in Proceedings of the AIAA Infotech@Aerospace Conference, St. Louis (AIAA, Reston, 2011)

    Google Scholar 

  • S.S Ponda, L.B. Johnson, J.P. How, Distributed chance-constrained task allocation for autonomous multi-agent teams, in American Control Conference (ACC), 2012

    Google Scholar 

  • A. Pongpunwattana, R. Rysdyk, J. Vagners, D. Rathbun, Market-based co-evolution planning for multiple autonomous vehicles, in Proceedings of the AIAA Unmanned Unlimited Conference, San Diego (AIAA, Reston, 2003)

    Google Scholar 

  • D. Pynadath, M. Tambe, The communicative multiagent team decision problem: analyzing teamwork theories and models. J. Artif. Intell. Res. 16(1), 389–423 (2002)

    MATH  MathSciNet  Google Scholar 

  • S. Rathinam, R. Sengupta, S. Darbha, A resource allocation algorithm for multivehicle systems with nonholonomic constraints. IEEE Trans. Autom. Sci. Eng. 4(1), 98–104 (2007)

    Google Scholar 

  • J. Redding, A. Geramifard, A. Undurti, H. Choi, J. How, An intelligent cooperative control architecture, in American Control Conference (ACC), Baltimore, 2010, pp. 57–62

    Google Scholar 

  • J.D. Redding, N.K. Ure, J.P. How, M. Vavrina, J. Vian, Scalable, MDP-based planning for multiple, cooperating agents, in American Control Conference (ACC) (2012, to appear)

    Google Scholar 

  • W. Ren, Consensus based formation control strategies for multi-vehicle systems, in American Control Conference (ACC) (American Automatic Control Council, Evanston; IEEE, Piscataway, 2006), pp. 6–12

    Google Scholar 

  • W. Ren, R. Beard, Consensus seeking in multiagent systems under dynamically changing interaction topologies. IEEE Trans. Autom. Control 50(5), 655–661 (2005)

    MathSciNet  Google Scholar 

  • W. Ren, R.W. Beard, D.B. Kingston, Multi-agent Kalman consensus with relative uncertainty. Am. Control Conf. 3, 1865–1870 (2005)

    Google Scholar 

  • W. Ren, R.W. Beard, E.M. Atkins, Information consensus in multivehicle cooperative control. IEEE Control Syst. Mag. 27(2), 71–82 (2007)

    Google Scholar 

  • A. Richards, J. Bellingham, M. Tillerson, J.P. How, Coordination and control of multiple UAVs, in AIAA Guidance, Navigation, and Control Conference (GNC), Monterey (AIAA, Reston, 2002). AIAA Paper 2002–4588

    Google Scholar 

  • G.A. Rummery, M. Niranjan, Online Q-learning using connectionist systems (Technical Report No. CUED/F-INFENG/TR 166), Cambridge University Engineering Department (1994)

    Google Scholar 

  • R.O. Saber, W.B. Dunbar, R.M. Murray, Cooperative control of multi-vehicle systems using cost graphs and optimization, in Proceedings of the 2003 American Control Conference, 2003, vol. 3 (IEEE, Piscataway, 2003), pp. 2217–2222

    Google Scholar 

  • A. Salman, I. Ahmad, S. Al-Madani, Particle swarm optimization for task assignment problem. Microprocess. Microsyst. 26(8), 363–371 (2002)

    Google Scholar 

  • S. Sariel, T. Balch, Real time auction based allocation of tasks for multi-robot exploration problem in dynamic environments, in AIAA Workshop on Integrating Planning Into Scheduling (AAAI, Menlo Park, 2005)

    Google Scholar 

  • K. Savla, E. Frazzoli, F. Bullo, On the point-to-point and traveling salesperson problems for Dubins’ vehicle, in American Control Conference (ACC), June 2005. pp. 786–791

    Google Scholar 

  • B. Scherrer, Should one compute the temporal difference fix point or minimize the Bellman Residual? The unified oblique projection view, International Conference on Machine Learning (ICML) (IEEE, Los Alamitos, 2010)

    Google Scholar 

  • D.G. Schmale, B. Dingus, C. Reinholtz, Development and application of an autonomous unmanned aerial vehicle for precise aerobiological sampling above agricultural fields. J. Field Robot. 25(3), 133–147 (2008)

    Google Scholar 

  • C. Schumacher, P.R. Chandler, S. Rasmussen, Task allocation for wide area search munitions via network flow optimization, in Proceedings of the American Control Conference, Anchorage, 2002, pp. 1917–1922

    Google Scholar 

  • S. Seuken, S. Zilberstein, Formal models and algorithms for decentralized decision making under uncertainty. Auton. Agents Multi-Agent Syst. 17(2), 190–250 (2008)

    Google Scholar 

  • T. Shima, S.J. Rasmussen, UAV Cooperative Decision and Control: Challenges and Practical Approaches, vol. 18 (Society for Industrial Mathematics, Philadelphia, 2009)

    Google Scholar 

  • T. Shima, S. Rasmussen, A. Sparks, K. Passino, Multiple task assignments for cooperating uninhabited aerial vehicles using genetic algorithms. Comput. Oper. Res. 33(11), 3252–3269 (2006)

    MATH  Google Scholar 

  • A. Singh, A. Krause, W. Kaiser, Nonmyopic adaptive informative path planning for multiple robots, in International Joint Conference on Artificial Intelligence (IJCAI) (AAAI, Menlo Park, 2009)

    Google Scholar 

  • R.G. Smith, R. Davis, Frameworks for cooperation in distributed problem solving. IEEE Trans. Syst. Man Cybern. 11(1), 61–70 (1981)

    Google Scholar 

  • M.T.J. Spaan, N. Vlassis, Perseus: randomized point-based value iteration for POMDPs. Int. J. Robot. Res. 24, 195–220 (2005)

    MATH  Google Scholar 

  • P. Stone, R.S. Sutton, G. Kuhlmann, Reinforcement learning for RoboCup-Soccer keepaway. Int. Soc. Adapt. Behav. 13(3), 165–188 (2005)

    Google Scholar 

  • P.B. Sujit, D. Kingston, R. Beard, Cooperative forest fire monitoring using multiple UAVs, in IEEE Conference on Decision and Control, New Orleans (IEEE, Piscataway, 2007), pp. 4875–4880

    Google Scholar 

  • R.S. Sutton, Generalization in reinforcement learning: successful examples using sparse coarse coding, in Advances in Neural Information Processing Systems 8 (MIT, Cambridge/London, 1996), pp. 1038–1044

    Google Scholar 

  • R.S. Sutton, A.G. Barto, Reinforcement Learning: An Introduction (MIT, Cambridge, 1998)

    Google Scholar 

  • R.S. Sutton, H.R. Maei, D. Precup, S. Bhatnagar, D. Silver, C. Szepesvari, E. Wiewiora, Fast gradient-descent methods for temporal-difference learning with linear function approximation, in International Conference on Machine Learning (ICML), ICML ’09 (ACM, New York, 2009), pp. 993–1000

    Google Scholar 

  • A. Tahbaz-Salehi, A. Jadbabaie, On consensus over random networks, in 44th Annual Allerton Conference, 2006

    Google Scholar 

  • P. Toth, D. Vigo, The Vehicle Routing Problem (Society for Industrial and Applied Mathematics, Philadelphia, 2001)

    Google Scholar 

  • J.N. Tsitsiklis, B.V. Roy, An analysis of temporal difference learning with function approximation. IEEE Trans. Autom. Control 42(5), 674–690 (1997)

    MATH  Google Scholar 

  • K. Tumer, D. Wolpert, A survey of collectives, in Collectives and the Design of Complex Systems (Springer, New York, 2004), pp. 1–42

    Google Scholar 

  • A. Undurti, J.P. How, A Cross-entropy based approach for UAV task allocation with nonlinear reward, in AIAA Guidance, Navigation, and Control Conference (GNC) (AIAA, Reston, 2010). AIAA-2010-7731

    Google Scholar 

  • U.S. Air Force Chief Scientist (AF/ST), Technology horizons: a vision for air force science & technology during 2010-2030, Technical report, United States Air Force (2010)

    Google Scholar 

  • U.S. Army UAS Center of Excellence, Eyes of the Army: U.S. Army unmanned aircraft systems roadmap 2010–2035, Technical report (2010), http://www.fas.org/irp/program/collect/uas-army.pdf

  • M. Valenti, B. Bethke, J.P. How, D.P. de Farias, J. Vian, Embedding health management into mission tasking for UAV teams, in American Control Conference (ACC), New York (IEEE, New York, 2007), pp. 5777–5783

    Google Scholar 

  • E. Waltz, J. Llinas, Multisensor Data Fusion (Artech House, Boston/London, 1990)

    Google Scholar 

  • R.V. Welch, G.O. Edmonds, Applying robotics to HAZMAT, in The Fourth National Technology Transfer Conference and Exposition, vol. 2 (2003), pp. 279–287

    Google Scholar 

  • A. K. Whitten, H.-L. Choi, L. Johnson, J.P. How, Decentralized task allocation with coupled constraints in complex missions, in American Control Conference (ACC), 2011, pp. 1642–1649

    Google Scholar 

  • C.W. Wu, Synchronization and convergence of linear dynamics in random directed networks. IEEE Trans. Autom. Control 51(7), 1207–1210 (2006)

    Google Scholar 

  • L. Xiao, S. Boyd, S. Lall, A scheme for robust distributed sensor fusion based on average consensus, in International Symposium on Information Processing in Sensor NeWorks (ACM, New York, 2005), pp. 63–70

    Google Scholar 

  • R. Zhou, E.A. Hansen, An improved grid-based approximation algorithm for POMDPs, in International Joint Conference on Artificial Intelligence, vol. 17, number 1 (Morgan Kaufmann, San Francisco, 2001), pp. 707–716

    Google Scholar 

Download references

Acknowledgments

This work was supported in part by the AFOSR and USAF under grant (FA9550-08-1-0086) and MURI (FA9550-08-1-0356). The views and conclusions contained herein are those of the authors and should not be interpreted as necessarily representing the official policies or endorsements, either expressed or implied, of the Air Force Office of Scientific Research or the U.S. government.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Sameera S. Ponda , Luke B. Johnson , Alborz Geramifard or Jonathan P. How .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media Dordrecht

About this entry

Cite this entry

Ponda, S.S., Johnson, L.B., Geramifard, A., How, J.P. (2015). Cooperative Mission Planning for Multi-UAV Teams. In: Valavanis, K., Vachtsevanos, G. (eds) Handbook of Unmanned Aerial Vehicles. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-9707-1_16

Download citation

Publish with us

Policies and ethics