Skip to main content

Low CO2 Stress: Glaucocystophytes May Have Found a Unique Solution

  • Chapter
  • First Online:
Symbioses and Stress

Part of the book series: Cellular Origin, Life in Extreme Habitats and Astrobiology ((COLE,volume 17))

Abstract

Glaucocystophytes maintain a special position among the archaeplastida: their cyanelles constitute the “missing link” in plastid evolution. They are considered to be the most ancient phototrophic eukaryotes known to date and can be assigned the status of “living fossils” (Löffelhardt and Bohnert, 2002). The plastids of the archaeplastida, i.e., the cyanelles, the rhodoplasts of red algae, and the chloroplasts of green algae and higher plants, are surrounded by two membranes and are thought to result from a single primary endosymbiotic event between a heterotrophic protist and a cyanobacterium. This postulated monophyly of the kingdom “Plantae” is supported by concatenated phylogenetic analyses of plastid and nuclear genes (Martin et al., 2002; Rodríguez-Ezpeleta et al., 2005) and by the demonstration of homologous protein import apparatus in cyanelles, rhodoplasts, and chloroplasts (Steiner and Löffelhardt, 2005). The denomination “cyanelle,” though incorrect, is kept for historical reasons.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Badger, M.R. and Price, G.D. (2003) CO2 concentrating mechanisms in cyanobacteria: molecular components, their diversity and evolution. J. Exp. Bot. 54: 609–622.

    Article  PubMed  CAS  Google Scholar 

  • Badger, M.R., Price, G.D., Long, B.M. and Woodger, F.J. (2005) The environmental plasticity and ecological genomics of the cyanobacterial CO2 concentrating mechanism. J. Exp. Bot. 57: 249–265.

    Article  PubMed  Google Scholar 

  • Burey, S.C., Fathinejad, S., Poroyko, V., Steiner, J.M., Löffelhardt, W. and Bohnert, H.J. (2005) The central body of the cyanelles of Cyanophora paradoxa: a eukaryotic carboxysome? Can. J. Bot. 83: 758–764.

    Article  CAS  Google Scholar 

  • Burey, S.C., Poroyko, V., Ozturk, Z.N., Fathi-Nejad, S., Schüller, C., Ohnishi, N., Fukuzawa, H., Bohnert, H.J. and Löffelhardt, W. (2007) Acclimation to low [CO2] by an inorganic carbon concentrating mechanism in Cyanophora paradoxa. Plant Cell Environ. 30: 1422–1435.

    Article  CAS  Google Scholar 

  • Dou, Z.C., Heinhorst, S., Williams, E.B., Murin, C.D., Shively, J.M. and Cannon, G.C. (2008) CO2 fixation kinetics of Halothiobacillus neapolitanus mutant carboxysomes lacking carbonic anhydrase suggest the shell acts as a diffusional barrier for CO2. J. Biol. Chem. 283: 10377–10384.

    Article  PubMed  CAS  Google Scholar 

  • Fathinejad, S., Steiner, J.M., Reipert, S., Marchetti, M., Allmaier, G., Burey, S.C., Ohnishi, N., Fukuzawa, H., Löffelhardt, W. and Bohnert, H.J. (2008) A carboxysomal CCM in the cyanelles of the “coelacanth” of the algal world, Cyanophora paradoxa? Physiol. Plant 133: 27–32.

    Article  PubMed  CAS  Google Scholar 

  • Giordano, M., Beardall, J. and Raven, J.A. (2005) CO2 concentrating mechanisms in algae: mechanisms, environmental modulation, and evolution. Annu. Rev. Plant Biol. 56: 99–131.

    Article  PubMed  CAS  Google Scholar 

  • Kaneko,Y., Danev, R., Nagayama, K. and Nakamoto, H. (2006) Intact carboxysomes in a cyanobacterial cell visualized by Hilbert differential contrast transmission electron microscopy. J. Bacteriol. 188: 805–808.

    Article  PubMed  CAS  Google Scholar 

  • Karlsson, J., Clarke, K.A.K., Chen, Z.Y., Huggins, S.Y., Park, Y.I., Husic, H.D., Moroney, J.V. and Samuelsson, G (1998) A novel alpha-type carbonic anhdrase associated with the thylakoid membrane in Chlamydomonas reinhardtii is required for growth at ambient CO2. EMBO J. 10: 1208–1216.

    Article  Google Scholar 

  • Kerfeld, C.A., Sawaya, M.R., Tanaka, S., Nguyen, C.V., Phillips, M., Beeby, M. and Yeates, T.O. (2005) Protein structures forming the shell of primitive bacterial organelles. Science 309: 936–938.

    Article  PubMed  CAS  Google Scholar 

  • Kies, L. (1992). Glaucocystophyceae and other protists harboring prokaryotic endosymbionts, In: W. Reisser (ed.) Algae and Symbioses. Biopress, Bristol, pp. 353–377.

    Google Scholar 

  • Kugrens, P., Clay, B.L., Meyer, C.J. and Lee, R.E. (1999) Ultrastructure and description of Cyanophora biloba, sp. nov., with additional observations on C. paradoxa (Glaucophyta). J. Phycol. 35: 844–854

    Article  Google Scholar 

  • Li, L.A., Zianni, M.R. and Tabita, F.R. (1999) Inactivation of the monocistronic rca gene in Anabaena variabilis suggests a physiological ribulose bisphosphate carboxylase/oxygenase activase-like function in heterocystous cyanobacteria. Plant Mol. Biol. 40: 467–478.

    Article  PubMed  CAS  Google Scholar 

  • Löffelhardt, W. and Bohnert, H.J. (2002) The cyanelle (muroplast) of Cyanophora paradoxa: a paradigm for endosymbiotic organelle evolution, In: J. Seckbach (ed.) Symbiosis: Mechanism and Model Systems. Kluwer Academic Publishers, Dordrecht, pp. 111–130.

    Google Scholar 

  • Long, B.M., Price, G.D. and Badger, M.R. (2005) Proteomic assessment of an established technique for carboxysome enrichment from Synechococcus PCC7942. Can. J. Bot. 83: 746–757.

    Article  CAS  Google Scholar 

  • Ludwig, M., Sültemeyer, D. and Price, G.D. (2000) Isolation of ccmKLMN genes from the marine cyanobacterium, Synechococcus sp. PCC7002 (cyanophyceae), and evidence that CcmM is essential for carboxysome assembly. J. Phycol. 36: 1109–1118.

    Article  CAS  Google Scholar 

  • Mangeney, E. and Gibbs, S.P. (1987) Immunocytochemical localization of ribulose-1, 5-bisphosphate carboxylase/oxygenase in the cyanelles of Cyanophora paradoxa and Glaucocystis nostochinearum. Eur. J. Cell Biol. 43: 65–70.

    CAS  Google Scholar 

  • Martin, W., Rujan, T., Richly, E., Hansen, A., Cornelsen, S., Lins, T., Leister, D., Stoebe, B., Hasegawa, M. and Penny, D. (2002) Evolutionary analysis of Arabidopsis, cyanobacterial, and chloroplast genomes reveals plastid phylogeny and thousands of cyanobacterial genes in the nucleus. Proc. Natl. Acad. Sci. U.S.A. 99: 12246–12251.

    Article  PubMed  CAS  Google Scholar 

  • McKay, R.M.L., Gibbs, S.P. and Vaughn, K.C. (1991) RubisCo activase is present in the pyrenoid of green algae. Protoplasma 162: 38–45.

    Article  CAS  Google Scholar 

  • Mitra, M., Mason, C.B., Xiao, Y., Ynalvez, R.A., Lato, S.M. and Moroney, J.V. (2005) The carbonic anhydrase gene families of Chlamydomonas reinhardtii. Can. J. Bot. 83: 780–795.

    Article  CAS  Google Scholar 

  • Miura, K., Yamano, T., Yoshioka, S., Kohinata, T., Inoue, Y., Taniguchi, F., Asamizu, E., Nakamura, Y., Tabata, S., Yamato, K.T., Ohyama, K. and Fukuzawa, H. (2004) Expression profiling-based identification of CO2-responsive genes regulated by CCM1 controlling a carbon-concentrating mechanism in Chlamydomonas reinhardtii. Plant Physiol. 135: 1–13.

    Article  Google Scholar 

  • Moroney, J.V. and Ynalvez, R.A. (2005) Proposed carbon dioxide concentrating mechanism in Chlamydomonas reinhardtii. Eukaryotic Cell 6: 1251–1259.

    Article  Google Scholar 

  • Osafune, T., Yokota, A., Sumida, S. and Hase, E. (1990) Immunogold localization of ribulose-1, 5-bisphosphate carboxylase with reference to pyrenoid morphology in chloroplasts of synchronized Euglena gracilis cells. Plant Physiol. 92: 802–808.

    Article  PubMed  CAS  Google Scholar 

  • Pearce, F.G. (2006) Catalytic by-product formation and ligand binding by ribulose bisphosphate carboxylases from different phylogenies. Biochem. J. 399: 525–534.

    Article  PubMed  CAS  Google Scholar 

  • Pfanzagl, B., Allmaier, G., Schmid, E.R., de Pedro, M.A. and Löffelhardt, W. (1996) N-Acetylputrescine as a characteristic constituent of cyanelle peptidoglycan in glaucocystophyte algae. J. Bacteriol. 179: 6994–6997.

    Google Scholar 

  • Pollock, S.V., Colombo, S.L., Prout, D.L., Godfrey, A.C. and Moroney, J.V. (2003) Rubisco activase is required for optimal photosynthesis in the green alga Chlamydomonas reinhardtii in a low-CO2 atmosphere. Plant Physiol. 133: 1854–1861.

    Article  PubMed  CAS  Google Scholar 

  • Portis, A.R. (2003) Rubisco activase – Rubisco’s catalytic chaperone. Photosynth. Res. 75: 11–27.

    Article  PubMed  CAS  Google Scholar 

  • Raven, J.A. (2003) Carboxysomes and peptidoglycan walls of cyanelles: possible physiological functions. Europ. J. Phycol. 38: 47–53.

    Article  Google Scholar 

  • Rodríguez-Buey, M.L., Marco, E. and Orus, M.I. (2005) Isolation of Synechococcus PCC7942 carboxysomes. Ann. Microbiol. 55: 81–84.

    Google Scholar 

  • Rodríguez-Ezpeleta, N., Brinkmann, H., Burey, S.C., Roure, B., Burger, G., Löffelhardt, W., Bohnert, H.J., Philippe, H. and Lang, B.F. (2005) Monophyly of primary photosynthetic eukaryotes: green plants, red algae and glaucophytes. Curr. Biol. 15: 1325–1330.

    Article  PubMed  Google Scholar 

  • So, A.K.C., Espie, G.S., Williams, E.B., Shively, J.M., Heinhorst, S. and Cannon, G.C. (2004) A novel evolutionary lineage of carbonic anhydrase (epsilon class) is a component of the carboxysome shell. J. Bacteriol. 186: 623–630.

    Article  PubMed  CAS  Google Scholar 

  • Steiner, J.M. and Löffelhardt, W. (2005) Protein translocation into and within cyanelles. Mol. Memb. Biol. 22: 123–132.

    Article  CAS  Google Scholar 

  • Stoyneva, M.P., Ingolic, E., Gärtner, G. and Vyverman, W. (2009) The pyrenoid ultrastructure in Oocystis lacustris CHODAT (Chlorophyta, Trebouxiophyceae). Fottea 9: 149–154.

    Google Scholar 

  • Tanaka, S., Sawaya, M.R., Phillips, M. and Yeates, T.O. (2009) Insights from multiple structures of the shell proteins from the beta-carboxysome. Prot. Sci. 18: 108–120.

    CAS  Google Scholar 

  • Wang, H.L., Postier, B.L. and Burnap, R.L. (2004) Alterations in global patterns of gene expression in Synechocystis sp. PCC 6803 in response to inorganic carbon limitation and the inactivation of ndhR, a LysR family regulator. J. Biol. Chem. 279: 5739–5751.

    Article  PubMed  CAS  Google Scholar 

  • Yamano, T. and Fukuzawa, H. (2009) Carbon-concentrating mechanism in a green alga, Chlamydomonas reinhardtii, revealed by transcriptome analyses. J. Basic Microbiol. 49: 42–51.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wolfgang Löffelhardt .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Löffelhardt, W. (2010). Low CO2 Stress: Glaucocystophytes May Have Found a Unique Solution. In: Seckbach, J., Grube, M. (eds) Symbioses and Stress. Cellular Origin, Life in Extreme Habitats and Astrobiology, vol 17. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-9449-0_5

Download citation

Publish with us

Policies and ethics