Skip to main content

Chapter 6 Photorespiration: The Bridge to C4 Photosynthesis

  • Chapter
  • First Online:
C4 Photosynthesis and Related CO2 Concentrating Mechanisms

Part of the book series: Advances in Photosynthesis and Respiration ((AIPH,volume 32))

Summary

Photorespiration is one of the major highways of carbon metabolism in C3 plants and hence in the biogeosphere. By mass flow, excelled only by photosynthesis, it actually constitutes the second-most important process in the land-based biosphere. The underlying biochemical pathway, the photorespiratory carbon oxidation or C2 cycle, compensates for the oxygenation of ribulose 1,5-bisphosphate by serving as a carbon-recovery system reconverting 2-phosphoglycolate to 3-phosphoglycerate. While this ancient ancillary metabolic process enables C3 plants to thrive in an oxygen-containing environment, it also sacrifices a significant part of the freshly assimilated carbon to the atmosphere. Biochemically, this sacrifice is made by the decarboxylation of the C2 cycle intermediate Gly.

C3 plants lose much photorespiratory CO2 to the atmosphere. In contrast, photorespiration is very low in C4 plants. C3-C4 intermediate plants, the phylogenetic predecessors of C4 plants, use Gly as a vehicle to transport freshly assimilated carbon from the mesophyll to the bundle sheath where it is released as photorespiratory CO2. Possibly, this extra CO2 supply was a pacemaker for the subsequent substantial accumulation of chloroplasts in the bundle sheath cells of C3-C4 plants. Eventually, this photorespiration-driven CO2 pump was first superimposed and then replaced by the C4 cycle, another auxiliary pathway to the Calvin cycle, which creates even more favorable photosynthetic conditions within the bundle sheath. It thus appears as if photorespiration triggered C4 plant evolution not only indirectly by exerting selective pressure in favor of low-photorespiration carbon assimilation, but primarily by providing the first strategy on how to improve the intercellular CO2 distribution in leaves.

This chapter will review molecular aspects of photorespiration and introduce some measurement techniques. It will then briefly describe current knowledge about C3-C4 photosynthesis and discuss the workings of a photorespiration-driven CO2 concentration mechanism as one of the first steps in the evolution of C4 photosynthesis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

BSC:

Bundle sheath cells;

CAT:

Catalase;

CCM:

CO2-concentrating mechanism;

GGT:

Glu:glyoxylate aminotransferase;

GS:

Gln synthetase;

GOGAT:

Gln:2-oxoglutarate amidotransferase (Glu synthase);

GDC:

Gly decarboxylase;

GLYK:

Glycerate 3-kinase;

3PGA:

Glycerate 3-phosphate;

GOX:

Glycolate oxidase;

2PG:

Glycolate 2-phosphate;

PGLP:

Glycolate 2-phosphate phosphatase;

3HP:

Hydroxypyruvate;

IRGA:

Infrared gas analyzer;

MC:

Mesophyll cell;

HPR1:

NADH-dependent hydroxypyruvate reductase;

HPR2:

NADPH-dependent hydroxypyruvate reductase;

2OG:

2-Oxoglutarate;

PIB:

Post-illumination CO2 burst;

RubP:

Ribulose 1,5-bisphosphate;

Rubisco:

RubP carboxylase/oxygenase;

SHMT:

Ser hydroxymethyltransferase;

SGT (AGT):

Ser:glyoxylate aminotransferase;

S:

Specificity factor of Rubisco;

THF:

Tetrahydrofolate

References

  • Ashida H, Danchin A and Yokota A (2005) Was photosynthetic RuBisCO recruited by acquisitive evolution from RuBisCO-like proteins involved in sulfur metabolism? Res Microbiol 156: 611–618

    PubMed  CAS  Google Scholar 

  • Atkin OK, Millar AH, Gardeström P and Day DA (2000) Photosynthesis, carbohydrate metabolism and respiration in leaves of higher plants. In: Leegood RC, Sharkey TD, and von Caemmerer S (eds) Photosynthesis, Physiology and Metabolism, pp 153–175. Kluwer, Dordrecht, The Netherlands

    Google Scholar 

  • Bardel J, Louwagie M, Jaquinod M, Jourdain A, Luche S, Rabilloud T, Macherel D, Garin J and Bourguignon J (2002) A survey of the plant mitochondrial proteome in relation to development. Proteomics 2: 880–898

    PubMed  CAS  Google Scholar 

  • Bari R, Kebeish R, Kalamajka R, Rademacher T and Peterhänsel C (2004) A glycolate dehydrogenase in the mitochondria of Arabidopsis thaliana. J Exp Bot 55: 623–630

    PubMed  CAS  Google Scholar 

  • Bartsch O, Hagemann M and Bauwe H (2008) Only plant-type (GLYK) glycerate kinases produce D-glycerate 3-phosphate. FEBS Lett 582: 3025–3028

    PubMed  CAS  Google Scholar 

  • Bassüner B, Keerberg O, Bauwe H, Pärnik T and Keerberg H (1984) Photosynthetic CO2 metabolism in C3-C4 intermediate and C4 species of Flaveria (Asteraceae). Biochem Physiol Pflanz 179: 631–634

    Google Scholar 

  • Bauwe H (1983) Comparative phylogenetic age of C3-C4 intermediate species of Moricandia determined by isoelectric focusing and aminoacid composition of small subunit of rubisco. Photosynthetica 17: 442–449

    CAS  Google Scholar 

  • Bauwe H (1984) Photosynthetic enzyme activities and immunofluorescence studies on the localization of ribulose-1, 5-bisphosphate carboxylase/oxygenase in leaves of C3, C4, and C3-C4 intermediate species of Flaveria (Asteraceae). Biochem Physiol Pflanz 179: 253–268

    CAS  Google Scholar 

  • Bauwe H and Apel P (1979) Biochemical characterization of Moricandia arvensis (L.) DC., a species with features intermediate between C3 and C4 photosynthesis, in comparison with the C3 species Moricandia foetida Bourg. Biochem Physiol Pflanz 174: 251–254

    CAS  Google Scholar 

  • Bauwe H and Kolukisaoglu Ãœ (2003) Genetic manipulation of glycine decarboxylation. J Exp Bot 54: 1523–1535

    PubMed  CAS  Google Scholar 

  • Bauwe H, Keerberg O, Bassüner R, Pärnik T and Bassüner B (1987) Reassimilation of carbon dioxide by Flaveria (Asteraceae) species representing different types of photosynthesis. Planta 172: 214–218

    CAS  Google Scholar 

  • Beerling DJ and Berner RA (2000) Impact of a permo-carboniferous high O2 event on the terrestrial carbon cycle. Proc Natl Acad Sci USA 97: 12428–12432

    PubMed  CAS  Google Scholar 

  • Betz H, Gomeza J, Armsen W, Scholze P and Eulenburg V (2006) Glycine transporters: essential regulators of synaptic transmission. Biochem Soc Trans 34: 55–58

    PubMed  CAS  Google Scholar 

  • Blackwell RD, Murray AJS, Lea PJ, Kendall A, Hall NP, Turner JC and Wallsgrove RM (1988) The value of mutants unable to carry out photorespiration. Photosynth Res 16: 155–176

    Google Scholar 

  • Boldt R, Edner C, Kolukisaoglu Ãœ, Hagemann M, Weckwerth W, Wienkoop S, Morgenthal K and Bauwe H (2005) D-Glycerate 3-kinase, the last unknown enzyme in the photorespiratory cycle in Arabidopsis, belongs to a novel kinase family. Plant Cell 17: 2413–2420

    PubMed  CAS  Google Scholar 

  • Bowes G, Ogren WL and Hageman RH (1971) Phosphoglycolate production catalysed by ribulose diphosphate carboxylase. Biochem Biophys Res Commun 45: 716–722

    PubMed  CAS  Google Scholar 

  • Brown RH (1980) Photosynthesis of grass species differing in carbon dioxide fixation pathways. IV. Analysis of reduced oxygen response in Panicum milioides and Panicum schenckii. Plant Physiol 65: 346–349

    PubMed  CAS  Google Scholar 

  • Brown RH and Morgan JA (1980) Photosynthesis of grass species differing in carbon dioxide fixation pathways. VI. Differential effects of temperature and light intensity on photorespiration in C3, C4, and intermediate species. Plant Physiol 66: 541–544

    PubMed  CAS  Google Scholar 

  • Bykova NV, Keerberg O, Pärnik T, Bauwe H and Gardeström P (2005) Interaction between photorespiration and respiration in transgenic potato plants with antisense reduction in glycine decarboxylase. Planta 222: 130–140

    PubMed  CAS  Google Scholar 

  • Canfield DE (2005) The early history of atmospheric oxygen: Homage to Robert M. Garrels. Annu Rev Earth Planet Sci 33: 1

    CAS  Google Scholar 

  • Cederlund E, Lindqvist Y, Soderlund G, Branden CI and Jornvall H (1988) Primary structure of glycolate oxidase from spinach. Eur J Biochem 173: 523–530

    PubMed  CAS  Google Scholar 

  • Cegelski L and Schaefer J (2005) Glycine metabolism in intact leaves by in vivo 13C and 15N labeling. J Biol Chem 280: 39238–39245

    PubMed  CAS  Google Scholar 

  • Cegelski L and Schaefer J (2006) NMR determination of photorespiration in intact leaves using in vivo 13CO2 labeling. J Magn Reson 178: 1–10

    PubMed  CAS  Google Scholar 

  • Cleland WW, Andrews TJ, Gutteridge S, Hartman FC and Lorimer GH (1998) Mechanism of Rubisco: the carbamate as general base. Chem Rev 98: 549–562

    PubMed  CAS  Google Scholar 

  • Collakova E, Goyer A, Naponelli V, Krassovskaya I, Gregory JF, III, Hanson AD and Shachar-Hill Y (2008) Arabidopsis 10-formyl tetrahydrofolate deformylases are essential for photorespiration. Plant Cell 20: 1818–1832

    PubMed  CAS  Google Scholar 

  • Coschigano KT, Melo-Oliveira R, Lim J and Coruzzi GM (1998) Arabidopsis gls mutants and distinct Fd-GOGAT genes: Implications for photorespiration and primary nitrogen assimilation. Plant Cell 10: 741–752

    PubMed  CAS  Google Scholar 

  • Cousins AB, Pracharoenwattana I, Zhou W, Smith SM and Badger MR (2008) Peroxisomal malate dehydrogenase is not essential for photorespiration in Arabidopsis but its absence causes an increase in the stoichiometry of photorespiratory CO2 release. Plant Physiol 148: 786 –795

    Google Scholar 

  • Decker JP (1955) A rapid postillumination deceleration of respiration in green leaves. Plant Physiol 30: 82–84

    PubMed  CAS  Google Scholar 

  • Devi MT, Rajagopalan AV and Raghavendra AS (1995) Predominant localization of mitochondria enriched with glycine-decarboxylating enzymes in bundle-sheath cells of Alternanthera tenella, a C3-C4 intermediate species. Plant Cell Environ 18: 589–594

    CAS  Google Scholar 

  • Douce R, Bourguignon J, Neuburger M and Rebeille F (2001) The glycine decarboxylase system: a fascinating complex. Trends Plant Sci 6: 167–176

    PubMed  CAS  Google Scholar 

  • Edwards GE and Ku MSB (1987) Biochemistry of C3-C4 intermediates. In: Hatch MD and Boardman NK (eds) The Biochemistry of Plants, pp 275–325. Academic Press, London

    Google Scholar 

  • Eickenbusch JD and Beck E (1973) Evidence for involvement of 2 types of reaction in glycolate formation during photosynthesis in isolated spinach chloroplasts. FEBS Lett 31: 225–228

    PubMed  CAS  Google Scholar 

  • Eisenhut M, Kahlon S, Hasse D, Ewald R, Lieman-Hurwitz J, Ogawa T, Ruth W, Bauwe H, Kaplan A and Hagemann M (2006) The plant-like C2 glycolate pathway and the bacterial-like glycerate cycle cooperate in phosphoglycolate metabolism in cyanobacteria. Plant Physiol 142: 333–342

    PubMed  CAS  Google Scholar 

  • Eisenhut M, Bauwe H and Hagemann M (2007) Glycine accumulation is toxic for the cyanobacterium Synechocystis sp. strain PCC 6803, but can be compensated by supplementation with magnesium ions. FEMS Microbiol Lett 277: 232–237

    PubMed  CAS  Google Scholar 

  • Eisenhut M, Ruth W, Haimovich M, Bauwe H, Kaplan A and Hagemann M (2008) The photorespiratory glycolate metabolism is essential for cyanobacteria and might have been conveyed endosymbiontically to plants. Proc Natl Acad Sci USA 105: 17199–17204

    PubMed  CAS  Google Scholar 

  • Engel N, van den Daele K, Kolukisaoglu Ãœ, Morgenthal K, Weckwerth W, Pärnik T, Keerberg O and Bauwe H (2007) Deletion of glycine decarboxylase in Arabidopsis is lethal under non-photorespiratory conditions. Plant Physiol 144: 1328–1335

    PubMed  CAS  Google Scholar 

  • Ewald R, Kolukisaoglu Ãœ, Bauwe U, Mikkat S and Bauwe H (2007) Mitochondrial protein lipoylation does not exclusively depend on the mtKAS pathway of de-novo fatty acid synthesis in Arabidopsis. Plant Physiol 145: 41–48

    PubMed  CAS  Google Scholar 

  • Farquhar GD, von Caemmerer S and Berry JA (1980) A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species. Planta 149: 78–90

    CAS  Google Scholar 

  • Givan CV and Kleczkowski LA (1992) The enzymatic reduction of glyoxylate and hydroxypyruvate in leaves of higher plants. Plant Physiol 100: 552–556

    PubMed  CAS  Google Scholar 

  • Goyal A and Tolbert NE (1996) Association of glycolate oxidation with photosynthetic electron transport in plant and algal chloroplasts. Proc Natl Acad Sci USA 93: 3319–3324

    PubMed  CAS  Google Scholar 

  • Goyer A, Collakova E, Diaz de la Garza R, Quinlivan EP, Williamson J, Jesse F, Shachar-Hill Y and Hanson AD (2005) 5-Formyltetrahydrofolate is an inhibitory but well tolerated metabolite in Arabidopsis leaves. J Biol Chem 280: 26142

    Google Scholar 

  • Gueguen V, Macherel D, Jaquinod M, Douce R and Bourguignon J (2000) Fatty acid and lipoic acid biosynthesis in higher plant mitochondria. J Biol Chem 275: 5016–5025

    PubMed  CAS  Google Scholar 

  • Guilhaudis L, Simorre JP, Blackledge M, Neuburger M, Bourguignon J, Douce R, Marion D and Gans P (1999) Investigation of the local structure and dynamics of the H subunit of the mitochondrial glycine decarboxylase using heteronuclear NMR spectroscopy. Biochemistry 38: 8334–8346

    PubMed  CAS  Google Scholar 

  • Guilhaudis L, Simorre JP, Blackledge M, Marion D, Gans P, Neuburger M and Douce R (2000) Combined structural and biochemical analysis of the H-T complex in the glycine decarboxylase cycle: evidence for a destabilization mechanism of the H-protein. Biochemistry 39: 4259–4266

    PubMed  CAS  Google Scholar 

  • Hackenberg C, Engelhardt A, Matthijs HC, Wittink F, Bauwe H, Kaplan A and Hagemann M (2009) Photorespiratory 2-phosphoglycolate metabolism and photoreduction of O2 cooperate in high-light acclimation of Synechocystis sp. strain PCC 6803. Planta 230: 625–637

    PubMed  CAS  Google Scholar 

  • Hanson KR and Peterson RB (1985) The stoichiometry of photorespiration during C3-photosynthesis is not fixed: evidence from combined physical and stereochemical methods. Arch Biochem Biophys 237: 300–313

    PubMed  CAS  Google Scholar 

  • Hanson AD and Roje S (2001) One-carbon metabolism in higher plants. Annu Rev Plant Physiol Plant Mol Biol 52: 119–137

    PubMed  CAS  Google Scholar 

  • Haupt-Herting S, Klug K and Fock HP (2001) A new approach to measure gross CO2 fluxes in leaves. Gross CO2 assimilation, photorespiration, and mitochondrial respiration in the light in tomato under drought stress. Plant Physiol 126: 388–396

    PubMed  CAS  Google Scholar 

  • Holaday AS, Lee KW and Chollet R (1984) C3-C4 intermediate species in the genus Flaveria: leaf anatomy, ultrastructure, and the effect of O2 on the CO2 compensation concentration. Planta 160: 25–32

    CAS  Google Scholar 

  • Holbrook GP, Jordan DB and Chollet R (1985) Reduced apparent photorespiration by the C3-C4 intermediate species, Moricandia arvensis and Panicum milioides. Plant Physiol 77: 578–583

    PubMed  CAS  Google Scholar 

  • Howitz KT and McCarty RE (1991) Solubilization, partial purification and reconstitution of the glycolate/glycerate transporter from chloroplast inner envelope membranes. Plant Physiol 96: 1060–1069

    PubMed  CAS  Google Scholar 

  • Hylton CM, Rawsthorne S, Smith AM and Jones DA (1988) Glycine decarboxylase is confined to the bundle-sheath cells of leaves of C3-C4 intermediate species. Planta 175: 452–459

    CAS  Google Scholar 

  • Igamberdiev AU and Gardeström P (2003) Regulation of NAD- and NADP-dependent isocitrate dehydrogenases by reduction levels of pyridine nucleotides in mitochondria and cytosol of pea leaves. Biochim Biophys Acta-Bioenerg 1606: 117–125

    CAS  Google Scholar 

  • Igamberdiev AU and Lea PJ (2002) The role of peroxisomes in the integration of metabolism and evolutionary diversity of photosynthetic organisms. Phytochemistry 60: 651–674

    PubMed  CAS  Google Scholar 

  • Igarashi D, Miwa T, Seki M, Kobayashi M, Kato T, Tabata S, Shinozaki K and Ohsumi C (2003) Identification of photorespiratory glutamate:glyoxylate aminotransferase (GGAT) gene in Arabidopsis. Plant J 33: 975–987

    PubMed  CAS  Google Scholar 

  • Igarashi D, Tsuchida H, Miyao M and Ohsumi C (2006) Glutamate:glyoxylate aminotransferase modulates amino acid content during photorespiration. Plant Physiol 142: 901–910

    PubMed  CAS  Google Scholar 

  • Jamai A, Salome PA, Schilling SH, Weber APM and McClung CR (2009) Arabidopsis photorespiratory serine hydroxymethyltransferase activity requires the mitochondrial accumulation of ferredoxin-dependent glutamate synthase. Plant Cell 21:595–606

    PubMed  CAS  Google Scholar 

  • Kaplan A, Hagemann M, Bauwe H, Kahlon S and Ogawa T (2007) Carbon acquisition by cyanobacteria: mechanisms, comparative genomics and evolution. In: The Cyanobacteria: Molecular Biology, Genomics and Evolution, Herrero, A. and Flores, E. (Eds.), pp 305–334, Caister Academic Press, Norfolk

    Google Scholar 

  • Kebeish R, Niessen M, Thiruveedhi K, Bari R, Hirsch HJ, Rosenkranz R, Stabler N, Schönfeld B, Kreuzaler F and Peterhänsel C (2007) Chloroplastic photorespiratory bypass increases photosynthesis and biomass production in Arabidopsis thaliana. Nat Biotechnol 25: 593–599

    PubMed  CAS  Google Scholar 

  • Kennedy RA and Laetsch WM (1974) Plant species intermediate for C3, C4 photosynthesis. Science 184: 1087–1089

    PubMed  CAS  Google Scholar 

  • Kennedy M, Droser M, Mayer LM, Pevear D and Mrofka D (2006) Late Precambrian oxygenation: inception of the clay mineral factory. Science 311: 1446–1449

    PubMed  CAS  Google Scholar 

  • Keys AJ (2006) The re-assimilation of ammonia produced by photorespiration and the nitrogen economy of C3 higher plants. Photosynth Res 87: 165–175

    PubMed  CAS  Google Scholar 

  • Keys AJ, Bird IF, Cornelius MJ, Lea PJ, Wallsgrove RM and Miflin BJ (1978) Photorespiratory nitrogen cycle. Nature 275: 741–743

    Google Scholar 

  • Kopriva S and Bauwe H (1995) H-protein of glycine decarboxylase is encoded by multigene families in Flaveria pringlei and F. cronquistii (Asteraceae). Mol Gen Genet 248: 111–116

    Google Scholar 

  • Kopriva S, Chu CC and Bauwe H (1996a) H-protein of the glycine cleavage system in Flaveria: Alternative splicing of the pre-mRNA occurs exclusively in advanced C4 species of the genus. Plant J 10: 369–373

    PubMed  CAS  Google Scholar 

  • Kopriva S, Chu CC and Bauwe H (1996b) Molecular phylogeny of Flaveria as deduced from the analysis of nucleotide sequences encoding H-protein of the glycine cleavage system. Plant Cell Environ 19: 1028–1036

    CAS  Google Scholar 

  • Ku MSB and Edwards GE (1978) Photosynthetic efficiency of Panicum hians and Panicum milioides in relation to C3 and C4 plants. Plant Cell Physiol 19: 665–675

    CAS  Google Scholar 

  • Laisk A and Oja V (1998) Dynamics of leaf photosynthesis. Rapid response measurements and their interpretation. CSIRO Publishing, Collingwood

    Google Scholar 

  • Liepman AH and Olsen LJ (2001) Peroxisomal alanine: glyoxylate aminotransferase (AGT1) is a photorespiratory enzyme with multiple substrates in Arabidopsis thaliana. Plant J 25: 487–498

    PubMed  CAS  Google Scholar 

  • Liepman AH and Olsen LJ (2003) Alanine aminotransferase homologs catalyze the glutamate:glyoxylate aminotransferase reaction in peroxisomes of Arabidopsis. Plant Physiol 131: 215–227

    PubMed  CAS  Google Scholar 

  • Linka M and Weber APM (2005) Shuffling ammonia between mitochondria and plastids during photorespiration. Trends Plant Sci 10: 461–465

    PubMed  CAS  Google Scholar 

  • Long SP and Bernacchi CJ (2003) Gas exchange measurements, what can they tell us about the underlying limitations to photosynthesis? Procedures and sources of error. J Exp Bot 54: 2393–2401

    PubMed  CAS  Google Scholar 

  • Lorimer GH (1981) The carboxylation and oxygenation of ribulose 1,5 bisphosphate: The primary events in photosynthesis and photorespiration. Ann Rev Plant Physiol 32: 349–383

    CAS  Google Scholar 

  • Lorimer GH and Andrews TJ (1973) Plant photorespiration – an inevitable consequence of the existence of atmospheric oxygen. Nature 248: 359–360

    Google Scholar 

  • Lutziger I and Oliver DJ (2000) Molecular evidence of a unique lipoamide dehydrogenase in plastids: analysis of plastidic lipoamide dehydrogenase from Arabidopsis thaliana. FEBS Lett 484: 12–16

    PubMed  CAS  Google Scholar 

  • Lutziger I and Oliver DJ (2001) Characterization of two cDNAs encoding mitochondrial lipoamide dehydrogenase from Arabidopsis. Plant Physiol 127: 615–623

    PubMed  CAS  Google Scholar 

  • Ma L, Li J, Qu L, Hager J, Chen Z, Zhao H and Deng XW (2001) Light control of Arabidopsis development entails coordinated regulation of genome expression and cellular pathways. Plant Cell 13: 2589–2607

    PubMed  CAS  Google Scholar 

  • Mano S, Hayashi M, Kondo M and Nishimura M (1997) Hydroxypyruvate reductase with a carboxy-terminal targeting signal to microbodies is expressed in Arabidopsis. Plant Cell Physiol 38: 449–455

    PubMed  CAS  Google Scholar 

  • Mano S, Hayashi M and Nishimura M (1999) Light regulates alternative splicing of hydroxypyruvate reductase in pumpkin. Plant J 17: 309–320

    PubMed  CAS  Google Scholar 

  • Marshall DM, Muhaidat R, Brown NJ, Liu Z, Stanley S, Griffiths H, Sage RF and Hibberd JM (2007) Cleome, a genus closely related to Arabidopsis, contains species spanning a developmental progression from C3 to C4 photosynthesis. Plant J 51: 886–896

    PubMed  CAS  Google Scholar 

  • Marti MC, Olmos E, Calvete JJ, Diaz I, Barranco-Medina S, Whelan J, Lazaro JJ, Sevilla F and Jimenez A (2009) Mitochondrial and nuclear localization of a novel pea thioredoxin: identification of its mitochondrial target proteins. Plant Physiol 150: 646–657

    PubMed  CAS  Google Scholar 

  • Masclaux-Daubresse C, Reisdorf-Cren M, Pageau K, Lelandais M, Grandjean O, Kronenberger J, Valadier MH, Feraud M, Jouglet T and Suzuki A (2006) Glutamine synthetase-glutamate synthase pathway and glutamate dehydrogenase play distinct roles in the sink-source nitrogen cycle in tobacco. Plant Physiol 140: 444–456

    PubMed  CAS  Google Scholar 

  • Mattsson M, Häusler RE, Leegood RC, Lea PJ and Schjoerring JK (1997) Leaf-atmosphere NH3 exchange in barley mutants with reduced activities of glutamine synthetase. Plant Physiol 114: 1307–1312

    PubMed  CAS  Google Scholar 

  • McKown AD and Dengler NG (2007) Key innovations in the evolution of Kranz anatomy and C4 vein pattern in Flaveria (Asteraceae). Am J Bot 94: 382–399

    PubMed  Google Scholar 

  • McKown AD, Moncalvo JM and Dengler NG (2005) Phylogeny of Flaveria (Asteraceae) and inference of C4 photosynthesis evolution. Am J Bot 92: 1911–1928

    PubMed  CAS  Google Scholar 

  • Monson RK and Jaeger CH (1991) Photosynthetic characteristics of C3-C4 intermediate Flaveria floridana (Asteraceae) in natural habitats: Evidence of advantages to C3-C4 photosynthesis at high leaf temperature. Am J Bot 78: 795–800

    Google Scholar 

  • Mooney BP, Miernyk JA and Randall DD (2002) The complex fate of a-ketoacids. Annu Rev Plant Biol 53: 357–375

    PubMed  CAS  Google Scholar 

  • Moore BD, Ku MSB and Edwards GE (1989) Expression of C4-like photosynthesis in several species of Flaveria. Plant Cell Environ 12: 541–549

    Google Scholar 

  • Moreno JI, Martin R and Castresana C (2005) Arabidopsis SHMT1, a serine hydroxymethyltransferase that functions in the photorespiratory pathway influences resistance to biotic and abiotic stress. Plant J 41: 451–463

    PubMed  CAS  Google Scholar 

  • Morgan CL, Turner SR and Rawsthorne S (1993) Coordination of the cell-specific distribution of the four subunits of glycine decarboxylase and of serine hydroxymethyltransferase in leaves of C3-C4 intermediate species from different genera. Planta 190: 468–473

    CAS  Google Scholar 

  • Mouillon JM, Aubert S, Bourguignon J, Gout E, Douce R and Rebeille F (1999) Glycine and serine catabolism in non-photosynthetic higher plant cells: their role in C1 metabolism. Plant J 20: 197–205

    PubMed  CAS  Google Scholar 

  • Mueller-Cajar O and Whitney SM (2008) Directing the evolution of Rubisco and Rubisco activase: first impressions of a new tool for photosynthesis research. Photosynth Res 98: 667–675

    PubMed  CAS  Google Scholar 

  • Murray AJS, Blackwell RD and Lea PJ (1989) Metabolism of hydroxypyruvate in a mutant of barley lacking NADH-dependent hydroxypyruvate reductase, an important ­photorespiratory enzyme activity. Plant Physiol 91: 395–400

    PubMed  CAS  Google Scholar 

  • Nakamura Y and Tolbert NE (1983) Serine:glyoxylate, alanine:glyoxylate, and glutamate:glyoxylate aminotransferase reactions in peroxisomes from spinach leaves. J Biol Chem 258: 7631–7638

    PubMed  CAS  Google Scholar 

  • Nishimura MDG and Akazawa T (1975) Effect of Oxygen on Photosynthesis by Spinach Leaf Protoplasts. Plant Physiol 56: 718–722

    PubMed  CAS  Google Scholar 

  • Noguchi K and Yoshida K (2008) Interaction between photosynthesis and respiration in illuminated leaves. Mitochondrion 8: 87–99

    PubMed  CAS  Google Scholar 

  • Nunes-Nesi A, Sweetlove LJ and Fernie AR (2007) Operation and function of the tricarboxylic acid cycle in the illuminated leaf. Physiol Plant 129: 45–56

    CAS  Google Scholar 

  • Okamura-Ikeda K, Kameoka N, Fujiwara K and Motokawa Y (2003) Probing the H-protein-induced conformational change and the function of the N-terminal region of Escherichia coli T-protein of the glycine cleavage system by limited proteolysis. J Biol Chem 278: 10067–10072

    PubMed  CAS  Google Scholar 

  • Okinaka Y, Yang CH, Herman E, Kinney A and Keen NT (2002) The P34 syringolide elicitor receptor interacts with a soybean photorespiration enzyme, NADH-dependent hydroxypyruvate reductase. Mol Plant Microbe Interact 15: 1213–1218

    PubMed  CAS  Google Scholar 

  • Oliver MJ, Ferguson DL and Burke JJ (1995) Interspecific gene transfer. Implications for broadening temperature characteristics of plant metabolic processes. Plant Physiol 107: 429–434

    PubMed  CAS  Google Scholar 

  • Orsomando G, de la Garza RD, Green BJ, Peng M, Rea PA, Ryan TJ, Gregory JF, III and Hanson AD (2005) Plant gamma-glutamyl hydrolases and folate polyglutamates: characterization, compartmentation, and co-occurrence in vacuoles. J Biol Chem 280: 28877–28884

    PubMed  CAS  Google Scholar 

  • Osmond CB (1981) Photorespiration and photoinhibition. Some implications for the energetics of photosynthesis. Biochim Biophys Acta 639: 77–98

    CAS  Google Scholar 

  • Osmond CB, Badger M, Maxwell K, Björkman O and Leegood R (1997) Too many photons: photorespiration, photoinhibition and photooxidation. Trends Plant Sci 2: 119–121

    Google Scholar 

  • Palenik B, Grimwood J, Aerts A, Rouze P, Salamov A, Putnam N, Dupont C, Jorgensen R, Derelle E, Rombauts S, et al (2007) The tiny eukaryote Ostreococcus provides genomic insights into the paradox of plankton speciation. Proc Natl Acad Sci USA 104: 7705–7710

    PubMed  CAS  Google Scholar 

  • Pärnik T and Keerberg O (2007) Advanced radiogasometric method for the determination of the rates of photorespiratory and respiratory decarboxylations of primary and stored photosynthates under steady-state photosynthesis. Physiol Plant 129: 34–44

    Google Scholar 

  • Pearson PN and Palmer MR (2000) Atmospheric carbon dioxide concentrations over the past 60 million years. Nature 406: 695–699

    PubMed  CAS  Google Scholar 

  • Penuelas J and Llusia J (2003) BVOCs: plant defense against climate warming? Trends Plant Sci 8: 105–109

    PubMed  CAS  Google Scholar 

  • Petersen J, Teich R, Becker B, Cerff R and Brinkmann H (2006) The GapA/B gene duplication marks the origin of Streptophyta (Charophytes and land plants). Mol Biol Evol 23: 1109–1118

    PubMed  CAS  Google Scholar 

  • Picault N, Hodges M, Palmieri L and Palmieri F (2004) The growing family of mitochondrial carriers in Arabidopsis. Trends Plant Sci 9: 138–146

    PubMed  CAS  Google Scholar 

  • Portis AR and Parry M (2007) Discoveries in Rubisco (Ribulose 1,5-bisphosphate carboxylase/oxygenase): a historical perspective. Photosynth Res 94: 121–143

    PubMed  CAS  Google Scholar 

  • Portis AR, Li C, Wang D and Salvucci ME (2008) Regulation of Rubisco activase and its interaction with Rubisco. J Exp Bot 59:1597–604

    PubMed  CAS  Google Scholar 

  • Powell AM (1978) Systematics of Flaveria (Flaveriinae-Asteraceae). Ann Mo Bot Gard 65: 590–636

    Google Scholar 

  • Queval G, Issakidis-Bourguet E, Hoeberichts FA, Vandorpe M, Gakiere B, Vanacker H, Miginiac-Maslow M, Van Breusegem F and Noctor G (2007) Conditional oxidative stress responses in the Arabidopsis photorespiratory mutant cat2 demonstrate that redox state is a key modulator of daylength-dependent gene expression, and define photoperiod as a crucial factor in the regulation of H2O2-induced cell death. Plant J 52: 640–657

    PubMed  CAS  Google Scholar 

  • Rachmilevitch S, Cousins AB and Bloom AJ (2004) Nitrate assimilation in plant shoots depends on photorespiration. Proc Natl Acad Sci USA 101: 11506–11510

    PubMed  CAS  Google Scholar 

  • Raghavendra AS, Rajendrudu G and Das VSR (1978) Simultaneous occurrence of C3 and C4 photosyntheses in relation to leaf position in Mollugo nudicaulis. Nature 273: 143–144

    CAS  Google Scholar 

  • Rajinikanth M, Harding SA and Tsai CJ (2007) The glycine decarboxylase complex multienzyme family in Populus. J Exp Bot 58: 1761–1770

    PubMed  CAS  Google Scholar 

  • Rawsthorne S (1992) C3-C4 intermediate photosynthesis – Linking physiology to gene expression. Plant J 2: 267–274

    CAS  Google Scholar 

  • Rawsthorne S, Hylton CM, Smith AM and Woolhouse HW (1988) Distribution of photorespiratory enzymes between bundle-sheath and mesophyll cells in leaves of the C3-C4 intermediate species Moricandia arvensis (L.) DC. Planta 176: 527–532

    CAS  Google Scholar 

  • Rébeillé F, Alban C, Bourguignon J, Ravanel S and Douce R (2007) The role of plant mitochondria in the biosynthesis of coenzymes. Photosynth Res 92: 149–162

    PubMed  Google Scholar 

  • Reumann S (2000) The structural properties of plant peroxisomes and their metabolic significance. Biol Chem 381: 639–648

    PubMed  CAS  Google Scholar 

  • Reumann S and Weber AP (2006) Plant peroxisomes respire in the light: Some gaps of the photorespiratory C2 cycle have become filled – others remain. Biochim Biophys Acta 1763: 1496–1510

    PubMed  CAS  Google Scholar 

  • Reumann S, Ma C, Lemke S and Babujee L (2004) AraPerox. A database of putative Arabidopsis proteins from plant peroxisomes. Plant Physiol 136: 2587–2608

    PubMed  CAS  Google Scholar 

  • Sabale AB and Bhosale LJ (1984) C3-C4 photosynthesis in Bougainvillea cv. Palmer, Mary. Photosynthetica 18: 84–89

    CAS  Google Scholar 

  • Sage RF, Li M and Monson RK (1999) The taxonomic distribution of C4 photosynthesis. In: Sage RF and Monson RK (eds) C4 Plant Biology, pp 551–584. Academic Press, San Diego, CA

    Google Scholar 

  • Saito Y, Ashida H, Sakiyama T, de Marsac NT, Danchin A, Sekowska A and Yokota A (2009) Structural and functional similarities between a ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO)-like protein from Bacillus subtilis and photosynthetic RuBisCO. J Biol Chem 284: 13256–13264

    PubMed  CAS  Google Scholar 

  • Sarojini G and Oliver DJ (1983) Extraction and partial characterization of the glycine decarboxylase multienzyme complex from pea leaf mitochondria. Plant Physiol 72: 194–199

    PubMed  CAS  Google Scholar 

  • Schwarte S and Bauwe H (2007) Identification of the ­photorespiratory 2-phosphoglycolate phosphatase, PGLP1, in Arabidopsis. Plant Physiol 144: 1580–1586

    PubMed  CAS  Google Scholar 

  • Sharkey TD (1988) Estimating the rate of photorespiration in leaves. Physiol Plant 73: 147–152

    CAS  Google Scholar 

  • Shen W, Wei Y, Dauk M, Tan Y, Taylor DC, Selvaraj G and Zou J (2006) Involvement of a glycerol-3-phosphate dehydrogenase in modulating the NADH/NAD+ ratio provides evidence of a mitochondrial glycerol-3-phosphate shuttle in Arabidopsis. Plant Cell 18: 422–441

    PubMed  CAS  Google Scholar 

  • Simon A, Glockner G, Felder M, Melkonian M and Becker B (2006) EST analysis of the scaly green flagellate ­Mesostigma viride (Streptophyta): Implications for the evolution of green plants (Viridiplantae). BMC Plant Biol 6: 2

    PubMed  Google Scholar 

  • Somerville CR (2001) An early Arabidopsis demonstration resolvinsg a few issues concerning photorespiration. Plant Physiol 125: 20–24

    PubMed  CAS  Google Scholar 

  • Somerville CR and Ogren WL (1982) Genetic modification of photorespiration. Trends Biochem Sci 7: 171–174

    CAS  Google Scholar 

  • Stabenau H and Winkler U (2005) Glycolate metabolism in green algae. Physiol Plant 123: 235–245

    CAS  Google Scholar 

  • Suzuki A and Knaff DB (2005) Glutamate synthase: structural, mechanistic and regulatory properties, and role in the amino acid metabolism. Photosynth Res 83: 191–217

    PubMed  CAS  Google Scholar 

  • Sweetlove LJ, Lytovchenko A, Morgan M, Nunes-Nesi A, Taylor NL, Baxter CJ, Eickmeier I and Fernie AR (2006) Mitochondrial uncoupling protein is required for efficient photosynthesis. Proc Natl Acad Sci USA, 0607751103

    Google Scholar 

  • Tabita FR, Satagopan S, Hanson TE, Kreel NE and Scott SS (2008) Distinct form I, II, III, and IV Rubisco proteins from the three kingdoms of life provide clues about Rubisco evolution and structure/function relationships. J Exp Bot 59: 1515–1524

    PubMed  CAS  Google Scholar 

  • Taira M, Valtersson U, Burkhardt B and Ludwig RA (2004) Arabidopsis thaliana GLN2-encoded glutamine synthetase is dual targeted to leaf mitochondria and chloroplasts. Plant Cell 16: 2048–2058

    PubMed  CAS  Google Scholar 

  • Takahashi S, Bauwe H and Badger M (2007) Impairment of the photorespiratory pathway accelerates photoinhibition of photosystem II by suppression of repair but not acceleration of damage processes in Arabidopsis. Plant Physiol 144: 487–494

    PubMed  CAS  Google Scholar 

  • Taler D, Galperin M, Benjamin I, Cohen Y and Kenigsbuch D (2004) Plant eR genes that encode photorespiratory enzymes confer resistance against disease. Plant Cell 16: 172–184

    PubMed  CAS  Google Scholar 

  • Taylor NL, Day DA and Millar AH (2004) Targets of stress-induced oxidative damage in plant mitochondria and their impact on cell carbon/nitrogen metabolism. J Exp Bot 55: 1–10

    PubMed  CAS  Google Scholar 

  • Tcherkez GGB, Farquhar GD and Andrews TJ (2006) Despite slow catalysis and confused substrate specificity, all ribulose bisphosphate carboxylases may be nearly perfectly optimized. Proc Natl Acad Sci USA 103: 7246–7251

    PubMed  CAS  Google Scholar 

  • Tcherkez G, Bligny R, Gout E, Mahe A, Hodges M and Cornic G (2008) Respiratory metabolism of illuminated leaves depends on CO2 and O2 conditions. Proc Natl Acad Sci USA 105: 797–802

    PubMed  CAS  Google Scholar 

  • Timm S, Nunes-Nesi A, Pärnik T, Morgenthal K, Wienkoop S, Keerberg O, Weckwerth W, Kleczkowski LA, Fernie AR and Bauwe H (2008) A cytosolic pathway for the conversion of hydroxypyruvate to glycerate during photorespiration in Arabidopsis. Plant Cell 20: 2848–2859

    PubMed  CAS  Google Scholar 

  • Tolbert NE, Yamazaki RK and Oeser A (1970) Localization and properties of hydroxypyruvate and glyoxylate reductases in spinach leaf particles. J Biol Chem 245: 5129–5136

    PubMed  CAS  Google Scholar 

  • Tovar-Mendez A, Miernyk JA and Randall DD (2003) Regulation of pyruvate dehydrogenase complex activity in plant cells. Eur J Biochem 270: 1043–1049

    PubMed  CAS  Google Scholar 

  • Ueno O, Bang SW, Wada Y, Kondo A, Ishihara K, Kaneko Y and Matsuzawa Y (2003) Structural and biochemical dissection of photorespiration in hybrids differing in genome constitution between Diplotaxis tenuifolia (C3-C4) and radish (C3). Plant Physiol 132: 1550–1559

    PubMed  CAS  Google Scholar 

  • Vogan PJ, Frohlich MW and Sage RF (2007) The functional significance of C3-C4 intermediate traits in Heliotropium L. (Boraginaceae): gas exchange perspectives. Plant Cell Environ 30: 1337–1345

    PubMed  CAS  Google Scholar 

  • Voll LM, Jamai A, Renné P, Voll H, McClung CR and Weber APM (2006) The photorespiratory Arabidopsis shm1 mutant is deficient in SHM1. Plant Physiol 140: 59–66

    PubMed  CAS  Google Scholar 

  • von Caemmerer S (1989) A model of photosynthetic CO2 assimilation and carbon-isotope discrimination in leaves of certain C3-C4 intermediates. Planta 178: 463–474

    Google Scholar 

  • von Caemmerer S (2000) Biochemical models of leaf photosynthesis. CSIRO Publishing, Collingwood

    Google Scholar 

  • Voznesenskaya EV, Artyusheva EG, Franceschi VR, Pyankov VI, Kiirats O, Ku MSB and Edwards GE (2001) Salsola arbusculiformis, a C3-C4 intermediate in ­Salsoleae (Chenopodiaceae). Ann Bot 88: 337–348

    Google Scholar 

  • Voznesenskaya EV, Koteyeva NK, Chuong SDX, Ivanova AN, Barroca J, Craven LA and Edwards GE (2007) Physiological, anatomical and biochemical characterisation of photosynthetic types in genus Cleome (Cleomaceae). Funct Plant Biol 34: 247–267

    CAS  Google Scholar 

  • Walker GH, Sarojini G and Oliver DJ (1982) Identification of a glycine transporter from pea leaf mitochondria. ­Biochem Biophys Res Commun 107: 856–861

    PubMed  CAS  Google Scholar 

  • Wang YS, Harding SA and Tsai CJ (2004) Expression of a glycine decarboxylase complex H-protein in non-photosynthetic tissues of Populus tremuloides. Biochim Biophys Acta 1676: 266–272

    PubMed  CAS  Google Scholar 

  • Weber APM and Fischer K (2007) Making the connections – The crucial role of metabolite transporters at the interface between chloroplast and cytosol. FEBS Lett 581: 2215–2222

    PubMed  CAS  Google Scholar 

  • Yamaguchi K and Nishimura M (2000) Reduction to below threshold levels of glycolate oxidase activities in transgenic tobacco enhances photoinhibition during irradiation. Plant Cell Physiol 41: 1397–1406

    PubMed  CAS  Google Scholar 

  • Yu C and Huang AH (1986) Conversion of serine to glycerate in intact spinach leaf peroxisomes: role of malate dehydrogenase. Arch Biochem Biophys 245: 125–133

    PubMed  CAS  Google Scholar 

  • Zelitch I, Schultes NP, Peterson RB, Brown P and Brutnell TP (2009) High glycolate oxidase activity is required for survival of maize in normal air. Plant Physiol 149: 195–204

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

My apologies to the many authors whose research was not specifically mentioned owing to space constraints. Special thanks to two anonymous reviewers who helped to improve this article. Part of this manuscript was prepared during a visit to the Murray Badger laboratory at the Australian National University, Canberra, which was generously supported by the Plant Energy Biology ARC Center of Excellence. Our own research received much financial support from the Deutsche Forschungsgemeinschaft.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hermann Bauwe .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Netherlands

About this chapter

Cite this chapter

Bauwe, H. (2010). Chapter 6 Photorespiration: The Bridge to C4 Photosynthesis. In: Raghavendra, A., Sage, R. (eds) C4 Photosynthesis and Related CO2 Concentrating Mechanisms. Advances in Photosynthesis and Respiration, vol 32. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-9407-0_6

Download citation

Publish with us

Policies and ethics