Skip to main content

Part of the book series: Developments in Applied Phycology ((DAPH,volume 4))

Abstract

The ecological success of reef-building corals throughout the tropics is due in large part to the endosymbiotic dinoflagellates that reside within the gastrodermal cells of these cnidarian hosts. These algae, belonging to the genus Symbiodinium, are often referred to by the common term of “zooxanthellae.” This mutualism between Symbiodinium spp. and tropical and sub-tropical coral species has been a key component to the evolutionary persistence of reef-building corals since the Triassic (Stanely 2003). The importance of these algae in the long-term success of reef-building corals cannot be over emphasized, as they can contribute a significant portion of photosynthetically derived carbon to the host via translocation. The coral metabolizes this carbon, thereby meeting up to 90 percent or more of the animal’s daily metabolic demand from the byproducts of photosynthesis by the symbionts (Muscatine 1990). The large proportion of respiratory carbon provided by these endosymbionts contributes directly to the energetic demands of coral, with calcification rates that are typically elevated by three times as much when compared to corals held in the dark or species that do not harbor endosymbionts (i.e. aposymbiotic) (Gattuso 1999). Corals also feed heterotrophically; however this energy source cannot be directly monitored using the techniques described in this chapter and consequently will not be discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Allen JF, Bennett J, Steinback KE, Arntzen CJ (1981) Chloroplast protein phosphorylation couples plastoquinone redox state to distribution of excitation energy between photosystems. Nature 291:25–29

    Article  CAS  Google Scholar 

  • Allen JF, Mullineaux CW (2004) Probing the mechanism of state transitions in oxygenic photosynthesis by chlorophyll fluorescence spectroscopy, kinetics and imaging. In: Papageorgiou GC, Govindjee (eds) Chlorophyll a fluorescence: a signature of photosynthesis. Springer, Dordrecht 2:447–461

    Chapter  Google Scholar 

  • Baird A, Bhagooli R, Ralph P, Takahashi S (2009) Coral bleaching: the role of the host. Trends Ecol Evol 24:16–20

    Article  Google Scholar 

  • Baker NR (2008) Chlorophyll fluorescence: a probe of photosynthesis in vivo. Annu Rev Plant Biol 59:89–113

    Article  CAS  Google Scholar 

  • Berkelmans R, van Oppen MJH (2006) The role of zooxanthellae in the thermal tolerance of corals: a ‘nugget of hope’ for coral reefs in an era of climate change. Proc Roy Soc London B 273:2305–2312

    Article  Google Scholar 

  • Bhagooli R, Hidaka M (2004) Photoinhibition, bleaching susceptibility and mortality in two scleractinian corals, Platygyra ryukyuensis and Stylophora pistillata, in response to thermal and light stresses. Comp Biochem Physiol A 137:547–555

    Article  Google Scholar 

  • Behrenfeld M, Prasil O, Kolber Z, Babin M, Falkowski PG (1998) Compensatory changes in photosystem II electron turnover rates protect photosynthesis from photoinhibition. Photosynth Res 58:259–268

    Article  CAS  Google Scholar 

  • Bellafiore S, Barneche F, Peltier G, Rochaix JD (2005) State transitions and light adaptation require chloroplast thylakoid protein kinase STN7. Nature 433:892–895

    Article  CAS  Google Scholar 

  • Brown B, Ambarsari I, Warner ME, Fitt WK, Dunne RP, Gibb SW, Cummings DG (1999) Diurnal changes in photochemical efficiency and xanthophyll concentrations in shallow water reef corals: evidence for photoinhibition and photoprotection. Coral Reefs 18:99–105

    Article  Google Scholar 

  • Brown BE, Dunne RP (2008) Solar radiation modulates bleaching and damage protection in a shallow water coral. Mar Ecol Prog Ser 362:99–107

    Article  Google Scholar 

  • Cardol P, Gloire G, Havaux M, Remacle C, Matagne R, Franck F (2003) Photosynthesis and state transitions in mitochondrial mutants of Chlamydomonas reinhardtii affected in respiration. Plant Physiol 133:2010–2020

    Article  CAS  Google Scholar 

  • Dykens JA, Schick JM (1982) Oxygen production by endosymbiotic algae controls superoxide dismutasae activity in their animal host. Nature 297:579–580

    Article  CAS  Google Scholar 

  • Enriquez S, Méndez ER, Iglesias-Prieto R (2005) Multiple scattering on coral skeletons enhances light absorption by symbiotic algae. Limnol Oceanogr 50:1025–1032

    Article  Google Scholar 

  • Falkowski PG, Wyman K, Ley AC, Mauzerall D (1986) Relationship of steady state photosynthesis to fluorescence in eukaryotic algae. Biochem Biophys Acta 849:183–192

    Article  CAS  Google Scholar 

  • Fitt WK, McFarland FK, Warner ME, Chilcoat GC (2000) Seasonal patterns of tissue biomass and densities of symbiotic dinoflagellates in reef corals and relation to coral bleaching. Limnol Oceanogr 45:677–685

    Article  CAS  Google Scholar 

  • Fitt WK, Brown BE, Warner ME, Dune RP (2001) Coral bleaching: interpretation of thermal tolerance limits and thermal thresholds in tropical corals. Coral Reefs 20:51–65

    Article  Google Scholar 

  • Flameling IA, Kromkamp J (1998) Light dependence of quantum yields for PSII charge separation and oxygen evolution in eukaryotic algae. Limnol Oceanogr 43:284–297

    Article  CAS  Google Scholar 

  • Franklin LA, Badger MR (2001) A comparison of photosynthetic electron transport rates in macroalgae measured by pulse amplitude modulated chlorophyll fluorometry and mass spectrometry. J Phycol 37:756–767

    Article  CAS  Google Scholar 

  • Gardella DJ, Edmunds PJ (1999) The oxygen environment adjacent to the tissue of the scleractinian Dichocoenia stokesii and its effects on symbiont metabolism. Mar Biol 135:289–295

    Article  Google Scholar 

  • Gattuso JP (1999) Photosynthesis and calcification at cellular, organismal and community levels in coral reefs: a review on interactions and control by carbonate chemistry. Am Zool 39:160–183

    CAS  Google Scholar 

  • Geel C, Versluis W, Snel JFH (1997) Estimation of oxygen evolution by marine phytoplankton from measurement of the efficiency of Photosystem II electron flow. Photosynth Res 51:61–70

    Article  CAS  Google Scholar 

  • Gorbunov MY, Kolber ZS, Lesser MP, Falkowski PG (2001) Photosynthesis and photoprotection in symbiotic corals. Limnol Oceanogr 46:75–85

    Article  CAS  Google Scholar 

  • Gorbunov MY, Falkowski PG (2004) Fluorescence induction and relaxation (FIRe) technique and instrumentation for monitoring photosynthetic processes and primary production in aquatic ecosystems. In: van der Est A, Bruce D (eds) Proceedings of the 13th International Congress of Photosynthesis, vol. 2. Allen Press, pp 1029–1031

    Google Scholar 

  • Greene RM, Geider RJ, Falkowski PG (1991) Effect of iron limitation on photosynthesis in a marine diatom. Limnol Oceanogr 36:1772–1782

    Article  CAS  Google Scholar 

  • Hancke K, Hancke TB, Olsen LM, Johnsen G, Glud RN (2008a) Temperature effects on microalgal photosynthesis-light responses measured by O2 production, pulse-amplitude-modulated fluorescence, and 14C assimilation. J Phycol 44:501–514

    Article  CAS  Google Scholar 

  • Hancke TB, Hancke K, Johnsen G, Sakshaug E (2008b) Rate of O2 production derived from pulse-amplitude-modulated fluorescence: testing three biooptical approaches against measured O2-production rate. J Phycol 44:803–813

    Article  CAS  Google Scholar 

  • Hill R, Frankart C, Ralph PJ (2005) Impact of bleaching ­conditions on the components of non-photochemical quenching in the zooxanthellae of a coral. J Exp Mar Biol Ecol 322:83–92

    Article  CAS  Google Scholar 

  • Hill R, Larkum AWD, Frankart C, Kuhl M, Ralph PJ (2004a) Loss of functional photosystem II reaction centers in zooxanthellae of corals exposed to bleaching conditions: using fluorescence rise kinetics. Photosynth Res 82:59–72

    Article  CAS  Google Scholar 

  • Hill R, Schreiber U, Gademann R, Larkum AWD, Kühl M, Ralph PJ (2004b) Spatial heterogeneity of photosynthesis and the effect of temperature-induced bleaching conditions in three species of corals. Mar Biol 144:633–640

    Article  Google Scholar 

  • Hill R, Ralph PJ (2005) Diel Seasonal changes in fluorescence rise kinetics of three scleractinian corals. Funct Plant Biol 32:549–559

    Article  Google Scholar 

  • Hill R, Ralph PJ (2006) Photosystem II heterogeneity of in hospite zooxanthellae in scleractinian corals exposed to bleaching conditions. Photochem Photobiol 82:1577–1585

    CAS  Google Scholar 

  • Hill R, Ralph PJ (2008a) Dark-induced reduction of the plastoquinone pool in zooxanthellae of scleractinian corals and implications for measurements of chlorophyll a fluorescence. Symbiosis 46:45–56

    CAS  Google Scholar 

  • Hill R, Ralph PJ (2008b) Impact of bleaching stress on the function of the oxygen evolving complex of zooxanthellae from scleractinian corals. J Phycol 44:299–310

    Article  Google Scholar 

  • Hoegh-Guldberg O, Jones RJ (1999) Photoinhibition and photoprotection in symbiotic dinoflagellates from reef-building corals. Mar Ecol Prog Ser 183:73–86

    Article  Google Scholar 

  • Hoegh-Guldberg O (1999) Climate change, coral bleaching and the future of the world’s coral reefs. Mar Fresh Res 50:839–866

    Article  Google Scholar 

  • Hoogenboom MO, Anthony KRN, Connolly SR (2006) Energetic cost of photoinhibition in corals. Mar Ecol Prog Ser 313:1–12

    Article  CAS  Google Scholar 

  • Iglesias-Prieto R, Matta JL, Robins WA, Trench RK (1992) Photosynthetic response to elevated temperature in the symbiotic dinoflagellate Symbiodinium microadriaticum in culture. Proc Natl Acad Sci 89:10302–10305

    Article  CAS  Google Scholar 

  • Iglesias-Prieto R (1997) Temperature-dependent inactivation of photosystem II in symbiotic dinoflagellates. In: Lessios HA, Macintyre IG (eds) Proc 8th Int Coral Reef Symp 2:1313–1318

    Google Scholar 

  • Iglesias-Prieto R, Beltran VH, LaJeunesse TC, Reyes-Bonilla H, Thome PE (2004) Different algal symbionts explain the vertical distribution of dominant reef corals in the eastern pacific. Proc Roy Soc Lond Ser B 271:1757–1763

    Article  CAS  Google Scholar 

  • Jones RJ, Hoegh-Guldberg O, Larkum AWD, Schreiber U (1998) Temperature-induced bleaching of corals begins with impairment of the CO2 fixation mechanism in zooxanthellae. Plant Cell Environ 21:1219–1230

    Article  CAS  Google Scholar 

  • Jones RJ, Kildea T, Hoegh-Guldberg O (1999) PAM chlorophyll fluorometry: a new in situ technique for stress assessment in scleractinian corals, used to examine the effects of cyanide fishing. Mar Poll Bull 38:864–874

    Article  CAS  Google Scholar 

  • Jones RJ, Hoegh-Guldberg O (2001) Diurnal changes in photochemical efficiency of the symbiotic dinoflagellates (Dinophyceae) of corals: photoprotection, photoinactivation, and the relationship to coral bleaching. Plant Cell Environ 24:89–99

    Article  CAS  Google Scholar 

  • Jones RJ, Kerswell (2003) Phytotoxicity of photosystem II (PSII) herbicides to coral. Mar Ecol Prog Ser 261:149–159

    Article  CAS  Google Scholar 

  • Kerswell AP, Jones RJ (2003) Effects of hypo-osmosis on the coral Stylophora pistillata: Nature and cause of ‘low salinity bleaching. Mar Ecol Prog Ser 253:145–154

    Article  Google Scholar 

  • Kolber Z, Prasil O, Falkowski PG (1998) Measurements of variable chlorophyll fluorescence using fast repetition rate techniques: defining methodology and experimental protocols. Biochem Biophys Acta 1367:88–106

    Article  CAS  Google Scholar 

  • Kühl M, Yehuda C, Dalsgaard T, Jørgensen BB, Revsbech NP (1995) Microenvironment and photosynthesis of zooxanthellae in scleractinian corals studied with microsensors for O2, pH and light. Mar Ecol Prog Ser 117:159–172

    Article  Google Scholar 

  • Lavergne J, Trissl HW (1995) Theory of fluorescence induction in photosystem II: Derivation of analytical expressions in a model including excitation-radical-pair equilibrium and restricted energy transfer between photosynthetic units. Biophys J 68:2474–2492

    Article  CAS  Google Scholar 

  • Leggat W, Whitney S, Yellowlees D (2004) Is coral bleaching due to the instability of the zooxanthellae dark reactions? Symbiosis 37:137–153

    CAS  Google Scholar 

  • Levy O, Dubinsky Z, Schneider K, Achituv Y, Zakai D, Gorbunov M (2004) Diurnal hysteresis in coral photosynthesis. Mar Ecol Prog Ser 268:105–117

    Article  Google Scholar 

  • Levy O, Achituv Y, Yacobi YZ, Dubinsky Z, Stambler N (2006) Diel ‘tuning’ of coral metabolism: physiological responses to light cues. J Exp Biol 209:273–283

    Article  CAS  Google Scholar 

  • Lesser MP (1996) Elevated temperatures and ultraviolet radiation cause oxidative stress and inhibit photosynthesis in symbiotic dinoflagellates. Limnol Oceanogr 41:271–283

    Article  CAS  Google Scholar 

  • Lesser MP, Gorbunov MY (2001) Diurnal and bathymetric changes in chlorophyll fluorescence yields of reef corals measured in situ with a fast repetition rate fluorometer. Mar Ecol Prog Ser 212:69–77

    Article  CAS  Google Scholar 

  • Lesser MP, Farrell JH (2004) Exposure to solar radiation increases damage to both host tissue and algal symbionts of corals during thermal stress. Coral Reefs 16:187–192

    Article  Google Scholar 

  • Lesser MP (2004) Experimental biology of coral reef ecosystems. J Exp Mar Biol Ecol 300:217–252

    Article  Google Scholar 

  • Lesser MP (2006) Oxidative stress in marine environments: biochemistry and physiological ecology. Annu Rev Physiol 68:253–278

    Article  CAS  Google Scholar 

  • Levy O, Dubinsky Z, Achituv Y (2003) Photobehavior of stony corals: responses to light spectra and intensity. J Exp Biol 206:4041–4049

    Article  CAS  Google Scholar 

  • Maxwell DP, Falk S, Huner NPA (1995) Photosystem II excitation pressure and development of resistance to photoinhibition. I. Light-harvesting complex II abundance and zeaxanthin content in Chlorella vulgaris. Plant Physiol 107:687–694

    CAS  Google Scholar 

  • McCabe-Reynolds JC, Bruns BU, Fitt WK, Schmidt GW (2008) Enhanced photoprotection pathways in symbiotic dinoflagellates of shallow-water corals and other cnidarians. Proc Natl Acad Sci USA 105:13674–13678

    Article  Google Scholar 

  • Müller P, Li XP, Niyogi KK (2001) Non-photochemical ­quenching. A response to excess light energy. Plant Physiol 125:1558–1566

    Article  Google Scholar 

  • Muscatine L (1990) The role of symbiotic algae in carbon and energy flux in reef corals. In: Dubinsky Z (ed) Ecosystems of the world: coral reefs. Elsevier, Amsterdam, pp 1–9

    Google Scholar 

  • Olaizola M, LaRouche J, Kolber Z, Falkowski PG (1994) Non-photochemical fluorescence quenching and the diadinoxanthin cycle in a marine diatom. Photosynthesis Research 41:357–370

    Google Scholar 

  • Peltier G, Cournac L (2002) Chlororespiration. Annu Rev Plant Biol 53:523–550

    Article  CAS  Google Scholar 

  • Philipp E, Fabricius K (2003) Photophysiological stress in scleractinian corals in response to short-term sedimentation. J Exp Mar Biol Ecol 299:57–78

    Article  Google Scholar 

  • Platt JR (1964) Strong inference. Science 146:347–353

    Article  CAS  Google Scholar 

  • Ralph PJ, Gademann R, Larkum AWD, Schreiber U (1999) In situ underwater measurements of photosynthetic activity of coral zooxanthellae and other reef-dwelling dinoflagellate endosymbionts. Mar Ecol Prog Ser 180:139–147

    Article  Google Scholar 

  • Ralph PJ, Gademann R, Larkum AWD, Kühl M (2002) Spatial heterogeneity in active chlorophyll fluorescence and PSII activity of coral tissues. Mar Biol 141:639–646

    Article  CAS  Google Scholar 

  • Ralph PJ, Gademann R (2005) Rapid light curves: a powerful tool for the assessment of photosynthetic activity. Aquat Bot 82:222–237

    Article  CAS  Google Scholar 

  • Rintamäki E, Salonen M, Suoranta U-M, Carlberg I, Andersson B, Aro E-M (1997) Phosphorylation of light-harvesting complex II and photosystem II core proteins shows different irradiance-dependent regulation in vivo. J Biol Chem 272:30476–30482

    Article  Google Scholar 

  • Robison JD, Warner ME (2006) Differential impacts of photoacclimation and thermal stress on the photobiology of four different phylotypes of Symbiodinium (Pyrrhophyta). J Phycol 42:568–579

    Article  CAS  Google Scholar 

  • Rodriguez-Román A, Hernánedez-Pech X, Thomé PE, Enriquez S, Iglesias-Prieto R (2006) Photosynthesis and light utilization in the Caribbean coral Montastraea faveolata recovering from a bleaching event. Limnol Oceanogr 51:2702–2710

    Article  Google Scholar 

  • Samson G, Bruce D (1996) Origins of the low yield of chlorophyll a fluorescence induced by single turnover flash in spinach thylakoids. Biochem Biophys Acta 1276:147–153

    Article  Google Scholar 

  • Samson G, Prasil O, Yaakoubd B (1999) Photochemical and thermal phases of chlorophyll a fluorescence. Photosyn­thetica 37:163–182

    Article  CAS  Google Scholar 

  • Samuelsson G, Öquist G (1977) A method for studying photosynthetic capacities of unicellular algae based on in vivo chlorophyll fluorescence. Plant Physiol 40:315–319

    Article  CAS  Google Scholar 

  • Smith DJ, Suggett DJ, Baker NR (2005) Is photoinhibition of zooxanthellae photosynthesis the primary cause of thermal bleaching in corals? Global Change Biol 11:1–11

    Article  Google Scholar 

  • Stanely GD (2003) The evolution of modern corals and their early history. Earth Sci Rev 60:195–225

    Article  Google Scholar 

  • Strasser RJ, Srivastava A, Govindjee (1995) Polyphasic chlorophyll a fluorescence transient in plants and cyanobacteria. Photochem Photobiol 61:32–42

    Article  CAS  Google Scholar 

  • Strasser RJ, Tsimilli-Michael M, Srivastava A (2004) Analysis of the chlorophyll a fluorescence transient. In: Papageorgiou GC, Govindjee (eds) Chlorophyll a fluorescence: a signature of photosynthesis. Springer, Dordrecht, pp 321–362

    Chapter  Google Scholar 

  • Suggett DG, Oxborough K, Baker NR, Macintyre H, Kana TM, Geider RJ (2003) Fast repetition rate and pulse amplitude modulation chlorophyll a fluorescence measurements for assessment of photosynthetic electron transport in marine phytoplankton. Eur J Phycol 38:371–384

    Article  Google Scholar 

  • Suggett DG, Warner ME, Smith DJ, Davey P, Hennige S, Baker NR (2008) Photosynthesis and production of hydrogen peroxide by Symbiodinium (Pyrrhophyta) phylotypes with different thermal tolerances. J Phycol 44:948–956

    Article  CAS  Google Scholar 

  • Takahashi S, Whitney S, Itoh S, Maruyama T, Badger M (2008) Heat stress causes inhibition of the de novo synthesis of antenna proteins and photobleaching in cultured Symbiodinium. Proc Natl Acad Sci 105:4203–4208

    Article  CAS  Google Scholar 

  • Tchernov D, Gorbunov MY, de Vargas C, Yadav SN, Milligan AJ, Haggblom M, Falkowski PG (2004) Membrane lipids of symbiotic algae are diagnostic of sensitivity to thermal bleaching in corals. Proc Nat Acad Sci USA 101:13531–13535

    Article  CAS  Google Scholar 

  • Ulstrup KE, Hill R, Ralph PJ (2005) Photosynthetic impact of hypoxia on in hospite zooxanthellae in the scleractinian coral Pocillopora damicornis. Mar Ecol Prog Ser 286:125–132

    Article  Google Scholar 

  • Ulstrup KE, Berkelmans R, Ralph PJ, van Oppen MJH (2006) Variation in bleaching sensitivity of two coral species across a latitudinal gradient on the Great Barrier Reef: the role of zooxanthellae. Mar Ecol Prog Ser 314:135–148

    Article  Google Scholar 

  • Vasil’ev S, Bruce D (1998) Non-photochemical quenching of excitation energy in photosystem II. A picosecond time-resolved study of the low yield of chlorophyll a fluorescence induced by single-turnover flash in isolated spinach thylakoids. Biochem 37:11046–11054

    Google Scholar 

  • Warner ME, Fitt WK, Schmidt GW (1996) The effects of elevated temperature on the photosynthetic efficiency of zooxanthellae in hospite from four different species of reef coral: a novel approach. Plant Cell Environ 19:291–299

    Article  Google Scholar 

  • Warner ME, Fitt WK, Schmidt GW (1999) Damage to photosystem II in symbiotic dinoflagellates: a determinant of coral bleaching. Proc Natl Acad Sci USA 96:283–292

    Google Scholar 

  • Warner ME, Chilcoat GC, McFarland FK, Fitt WK (2002) Seasonal fluctuations in the photosynthetic capacity of photosystem II in symbiotic dinoflagellates in the Caribbean reef-building coral Montastraea. Mar Biol 141:31–38

    Article  CAS  Google Scholar 

  • Warner ME, Berry-Lowe S (2006) Differential xanthophyll cycling and photochemical activity in symbiotic dinoflagellates in multiple locations of three species of Caribbean coral. J Exp Mar Biol Ecol 339:86–95

    Article  CAS  Google Scholar 

  • Warner ME, LaJeunesse TC, Robison JD, Thur RM (2006) The ecological distribution and comparative photobiology of symbiotic dinoflagellates from reef corals in Belize: potential implications for coral bleaching. Limnol Oceanogr 51:1887–1897

    Article  Google Scholar 

  • Weis E, Berry JA (1987) Quantum efficiency of photosystem II in relation to energy-dependent quenching of chlorophyll fluorescence. Biochem Biophys Acta 894:198–208

    Article  CAS  Google Scholar 

  • Winters G, Loya Y, Rottgers R, Beer S (2003) Photoinhibition in shallow-water colonies in the coral Stylophora pistillata in situ. Limnol Oceanogr 48:1388–1393

    Article  Google Scholar 

  • Wollman FA (2001) State transitions reveal the dynamics and flexibility of the photosynthetic apparatus. EMBO J 20:3623–3630

    Article  CAS  Google Scholar 

  • Yakovleva I, Hidaka M (2004) Differential recovery of PSII function and electron transport rate in symbiotic dinoflagellates as a possible determinant of bleaching susceptibility of corals. Mar Ecol Prog Ser 43:43–53

    Article  Google Scholar 

Download references

Acknowledgements

Support to M. Warner was provided by the National Science Foundation (IOB 544765) and from the Australian Research Council for P. Ralph. Elements of this chapter were a direct result of several fruitful discussions among many colleagues who attended the AquaFluo, Chlorophyll Fluorescence in Aquatic Sciences meeting in 2007, as well as the UNESCO-IOC-World Bank Coral Reef Targeted Research Group workshop, “Understanding the stress response of corals and Symbiodinium in a rapidly changing environment,” in 2005 in Puerto Morelos, Mexico.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark E. Warner .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Netherlands

About this chapter

Cite this chapter

Warner, M.E., Lesser, M.P., Ralph, P.J. (2010). Chlorophyll Fluorescence in Reef Building Corals. In: Suggett, D., Prášil, O., Borowitzka, M. (eds) Chlorophyll a Fluorescence in Aquatic Sciences: Methods and Applications. Developments in Applied Phycology, vol 4. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-9268-7_10

Download citation

Publish with us

Policies and ethics