Skip to main content

3D On-Demand Bioprinting for the Creation of Engineered Tissues

  • Chapter
  • First Online:
Cell and Organ Printing

Abstract

Three-dimensional freeform fabrication, a technique which capitalizes on the ability to print various biological materials and cells along with various tissue scaffold materials, is gaining popularity in tissue engineering due to its potential role in the creation of biomimetic tissues and organs. The flexibility to design and create various 3D cell-scaffold composites gives direct bioprinting a significant advantage over conventional lithography-based approaches in tissue engineering. In this chapter, we present our computer-assisted 3D biological printer, which allows dispensing of various types of hydrogel-based scaffold materials and cells, as well as the techniques to construct multi-layered cell-hydrogel composites. The strategies to generate hydrogel channels and to embed hydrogel matrix to time-release water-soluble factors are introduced together with several production examples using adult mammalian cells and stem cells for the on-demand composition of artificial tissues.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Griffith LG, Naughton G (2002) Tissue engineering–current challenges and expanding opportunities. Science 295(5557):1009–1014

    Article  PubMed  CAS  Google Scholar 

  2. Langer R, Vacanti JP (1993) Tissue engineering. Science 260(5110):920–926

    Article  PubMed  CAS  Google Scholar 

  3. Orive G, Anitua E, Pedraz JL et al (2009) Biomaterials for promoting brain protection, repair and regeneration. Nat Rev Neurosci 10(9):682–692

    Article  PubMed  CAS  Google Scholar 

  4. Martin I, Smith T, Wendt D (2009) Bioreactor-based roadmap for the translation of tissue engineering strategies into clinical products. Trends Biotechnol 27(9):495–502

    Article  PubMed  CAS  Google Scholar 

  5. Hutmacher DW, Sittinger M, Risbud MV (2004) Scaffold-based tissue engineering: rationale for computer-aided design and solid free-form fabrication systems. Trends Biotechnol 22(7):354–362

    Article  PubMed  CAS  Google Scholar 

  6. Yeh J, Ling Y, Karp JM et al (2006) Micromolding of shape-controlled, harvestable cell-laden hydrogels. Biomaterials 27(31):5391–5398

    Article  PubMed  CAS  Google Scholar 

  7. Hwang NS, Varghese S, Elisseeff J (2007) Cartilage tissue engineering: directed differentiation of embryonic stem cells in three-dimensional hydrogel culture. Methods Mol Biol 407:351–373

    Article  PubMed  CAS  Google Scholar 

  8. Underhill GH, Chen AA, Albrecht DR et al (2007) Assessment of hepatocellular function within PEG hydrogels. Biomaterials 28(2):256–270

    Article  PubMed  CAS  Google Scholar 

  9. Mata A, Kim EJ, Boehm CA et al (2009) A three-dimensional scaffold with precise micro-architecture and surface micro-textures. Biomaterials 30(27):4610–4617

    Article  PubMed  CAS  Google Scholar 

  10. Whitesides GM, Ostuni E, Takayama S et al (2001) Soft lithography in biology and biochemistry. Annu Rev Biomed Eng 3:335–373

    Article  PubMed  CAS  Google Scholar 

  11. Boland T, Xu T, Damon B et al (2006) Application of inkjet printing to tissue engineering. Biotechnol J 1(9):910–917

    Article  PubMed  CAS  Google Scholar 

  12. Mironov V (2003) Printing technology to produce living tissue. Expert Opin Biol Ther 3(5):701–704

    Article  PubMed  Google Scholar 

  13. Sachlos E, Czernuszka JT (2003) Making tissue engineering scaffolds work. Review on the application of solid freeform fabrication. Eur Cell Mater 5:29–40

    PubMed  CAS  Google Scholar 

  14. Yeong WY, Chua CK, Leong KF et al (2004) Rapid prototyping in tissue engineering: challenges and potential. Trends Biotechnol 22(12):643–652

    Article  PubMed  CAS  Google Scholar 

  15. Barron JA, Wu P, Ladouceur HD et al (2004) Biological laser printing: a novel technique for creating heterogeneous 3-dimensional cell patterns. Biomed Microdevices 6(2):139–147

    Article  PubMed  CAS  Google Scholar 

  16. Ringeisen BR, Kim H, Barron JA et al (2004) Laser printing of pluripotent embryonal carcinoma cells. Tissue Eng 10(3–4):483–491

    Article  PubMed  CAS  Google Scholar 

  17. Hwang MJ, Suh JM, Bae YH et al (2005) Caprolactonic poloxamer analog: PEG-PCL-PEG. Biomacromolecules 6(2):885–890

    Article  PubMed  CAS  Google Scholar 

  18. Lee W, Debasitis JC, Lee VK et al (2009a) Multi-layered culture of human skin fibroblasts and keratinocytes through three-dimensional freeform fabrication. Biomaterials 30(8):1587–1595

    Article  PubMed  CAS  Google Scholar 

  19. Lee W, Pinckney J, Lee V et al (2009b) Three-dimensional bioprinting of rat embryonic neural cells. Neuroreport 20(8):798–803

    Article  PubMed  Google Scholar 

  20. Golden AP, Tien J (2007) Fabrication of microfluidic hydrogels using molded gelatin as a sacrificial element. Lab Chip 7(6):720–725

    Article  PubMed  CAS  Google Scholar 

  21. Schmidt NO, Przylecki W, Yang W et al (2005) Brain tumor tropism of transplanted human neural stem cells is induced by vascular endothelial growth factor. Neoplasia 7(6):623–629

    Article  PubMed  CAS  Google Scholar 

  22. Willerth SM, Rader A, Sakiyama-Elbert SE et al (2008) The effect of controlled growth factor delivery on embryonic stem cell differentiation inside fibrin scaffolds. Stem Cell Res 1(3):205–218

    Article  PubMed  CAS  Google Scholar 

  23. Fan J, Varshney RR, Ren L et al (2009) Synovium-derived mesenchymal stem cells: a new cell source for musculoskeletal regeneration. Tissue Eng Part B Rev 15(1):75–86

    Article  PubMed  CAS  Google Scholar 

  24. Dravid G, Hammond H, Cheng L (2006) Culture of human embryonic stem cells on human and mouse feeder cells. Methods Mol Biol 331:91–104

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seung-Schik Yoo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Yoo, SS., Polio, S. (2010). 3D On-Demand Bioprinting for the Creation of Engineered Tissues. In: Ringeisen, B., Spargo, B., Wu, P. (eds) Cell and Organ Printing. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-9145-1_1

Download citation

Publish with us

Policies and ethics