Skip to main content

A Catalogue of Eukaryotic Transcription Factor Types, Their Evolutionary Origin, and Species Distribution

  • Chapter
  • First Online:
A Handbook of Transcription Factors

Part of the book series: Subcellular Biochemistry ((SCBI,volume 52))

Abstract

Transcription factors (TFs) play key roles in the regulation of gene expression by binding in a sequence-specific manner to genomic DNA. In eukaryotes, DNA binding is achieved by a wide range of structural forms and motifs. TFs are typically classified by their DNA-binding domain (DBD) type. In this chapter, we catalogue and survey 91 different TF DBD types in metazoa, plants, fungi, and protists. We briefly discuss well-characterized TF families representing the major DBD superclasses. We also examine the species distributions and inferred evolutionary histories of the various families, and the potential roles played by TF family expansion and dimerization.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Levine M, Tjian R (2003) Transcription regulation and animal diversity. Nature 424(6945):147–151

    PubMed  CAS  Google Scholar 

  2. Wunderlich Z, Mirny LA (2009) Different gene regulation strategies revealed by analysis of binding motifs. Trends Genet 25(10):434–440

    PubMed  CAS  Google Scholar 

  3. Arnosti DN, Kulkarni MM (2005) Transcriptional enhancers: Intelligent enhanceosomes or flexible billboards? J Cell Biochem 94(5):890–898

    PubMed  CAS  Google Scholar 

  4. Karin M (1990) Too many transcription factors: Positive and negative interactions. New Biol 2(2):126–131

    PubMed  CAS  Google Scholar 

  5. Latchman DS (1997) Transcription factors: An overview. Int J Biochem Cell Biol 29(12):1305–1312

    PubMed  CAS  Google Scholar 

  6. Luscombe NM, Austin SE, Berman HM, Thornton JM (2000) An overview of the structures of protein-DNA complexes. Genome Biol 1(1):REVIEWS001

    PubMed  CAS  Google Scholar 

  7. Reeves R, Nissen MS (1990) The A.T-DNA-binding domain of mammalian high mobility group I chromosomal proteins. A novel peptide motif for recognizing DNA structure. J Biol Chem 265(15):8573–8582

    PubMed  CAS  Google Scholar 

  8. Bottomley MJ, Collard MW, Huggenvik JI, Liu Z, Gibson TJ, Sattler M (2001) The SAND domain structure defines a novel DNA-binding fold in transcriptional regulation. Nat Struct Biol 8(7):626–633

    PubMed  CAS  Google Scholar 

  9. Latchman DS (2008) Eukaryotic transcription factors. Elsevier/Academic Press

    Google Scholar 

  10. Papavassiliou A (1997) Transcription factors in eukaryotes. Landes Bioscience, Austin, TX

    Google Scholar 

  11. Charoensawan V, Wilson D, Teichmann SA (2010) Genomic repertoires of DNA-binding transcription factors across the tree of life. Nucleic Acids Res 38:7364–7377

    PubMed  CAS  Google Scholar 

  12. Fulton DL, Sundararajan S, Badis G, Hughes TR, Wasserman WW, Roach JC, Sladek R (2009) TFCat: The curated catalog of mouse and human transcription factors. Genome Biol 10(3):R29

    PubMed  Google Scholar 

  13. Hu S, Xie Z, Onishi A, Yu X, Jiang L, Lin J, Rho HS, Woodard C, Wang H, Jeong JS, Long S, He X, Wade H, Blackshaw S, Qian J, Zhu H (2009) Profiling the human protein-DNA interactome reveals ERK2 as a transcriptional repressor of interferon signaling. Cell 139(3):610–622

    PubMed  CAS  Google Scholar 

  14. Charoensawan V, Wilson D, Teichmann SA (2010) Lineage-specific expansion of DNA-binding transcription factor families. Trends Genet 26(9):388–393

    PubMed  CAS  Google Scholar 

  15. Schauser L, Wieloch W, Stougaard J (2005) Evolution of NIN-like proteins in Arabidopsis, rice, and Lotus japonicus. J Mol Evol 60(2):229–237

    PubMed  CAS  Google Scholar 

  16. Liu X, Huang J, Parameswaran S, Ito T, Seubert B, Auer M, Rymaszewski A, Jia G, Owen HA, Zhao D (2009) The SPOROCYTELESS/NOZZLE gene is involved in controlling stamen identity in Arabidopsis. Plant Physiol 151(3):1401–1411

    PubMed  CAS  Google Scholar 

  17. Carroll SB (2005) Evolution at two levels: On genes and form. PLoS Biol 3(7):e245

    PubMed  Google Scholar 

  18. Sanges R, Kalmar E, Claudiani P, D’Amato M, Muller F, Stupka E (2006) Shuffling of cis-regulatory elements is a pervasive feature of the vertebrate lineage. Genome Biol 7(7):R56

    PubMed  Google Scholar 

  19. Dermitzakis ET, Clark AG (2002) Evolution of transcription factor binding sites in mammalian gene regulatory regions: Conservation and turnover. Mol Biol Evol 19(7):1114–1121

    PubMed  CAS  Google Scholar 

  20. Vaquerizas JM, Kummerfeld SK, Teichmann SA, Luscombe NM (2009) A census of human transcription factors: Function, expression and evolution. Nat Rev Genet 10(4):252–263

    PubMed  CAS  Google Scholar 

  21. Vinson CR, Sigler PB, McKnight SL (1989) Scissors-grip model for DNA recognition by a family of leucine zipper proteins. Science 246(4932):911–916

    PubMed  CAS  Google Scholar 

  22. Amoutzias GD, Robertson DL, Van de Peer Y, Oliver SG (2008) Choose your partners: Dimerization in eukaryotic transcription factors. Trends Biochem Sci 33(5):220–229

    PubMed  CAS  Google Scholar 

  23. Amoutzias GD, Veron AS, Weiner J 3rd, Robinson-Rechavi M, Bornberg-Bauer E, Oliver SG, Robertson DL (2007) One billion years of bZIP transcription factor evolution: Conservation and change in dimerization and DNA-binding site specificity. Mol Biol Evol 24(3):827–835

    PubMed  CAS  Google Scholar 

  24. Vinson C, Myakishev M, Acharya A, Mir AA, Moll JR, Bonovich M (2002) Classification of human B-ZIP proteins based on dimerization properties. Mol Cell Biol 22(18):6321–6335

    PubMed  CAS  Google Scholar 

  25. Newman JR, Keating AE (2003) Comprehensive identification of human bZIP interactions with coiled-coil arrays. Science 300(5628):2097–2101

    PubMed  CAS  Google Scholar 

  26. Simionato E, Ledent V, Richards G, Thomas-Chollier M, Kerner P, Coornaert D, Degnan BM, Vervoort M (2007) Origin and diversification of the basic helix-loop-helix gene family in metazoans: Insights from comparative genomics. BMC Evol Biol 7:33

    PubMed  Google Scholar 

  27. Murre C, Bain G, van Dijk MA, Engel I, Furnari BA, Massari ME, Matthews JR, Quong MW, Rivera RR, Stuiver MH (1994) Structure and function of helix-loop-helix proteins. Biochim Biophys Acta 1218(2):129–135

    PubMed  CAS  Google Scholar 

  28. Atchley WR, Fitch WM (1997) A natural classification of the basic helix-loop-helix class of transcription factors. Proc Natl Acad Sci U S A 94(10):5172–5176

    PubMed  CAS  Google Scholar 

  29. Rudnicki MA, Jaenisch R (1995) The MyoD family of transcription factors and skeletal myogenesis. Bioessays 17(3):203–209

    PubMed  CAS  Google Scholar 

  30. van Dam H, Castellazzi M (2001) Distinct roles of Jun: Fos and Jun: ATF dimers in oncogenesis. Oncogene 20(19):2453–2464

    PubMed  Google Scholar 

  31. Wolfe SA, Nekludova L, Pabo CO (2000) DNA recognition by Cys2His2 zinc finger proteins. Annu Rev Biophys Biomol Struct 29:183–212

    PubMed  CAS  Google Scholar 

  32. Papworth M, Kolasinska P, Minczuk M (2006) Designer zinc-finger proteins and their applications. Gene 366(1):27–38

    PubMed  CAS  Google Scholar 

  33. Biddie SC, John S, Hager GL (2010) Genome-wide mechanisms of nuclear receptor action. Trends Endocrinol Metab 21(1):3–9

    PubMed  CAS  Google Scholar 

  34. Naar AM, Thakur JK (2009) Nuclear receptor-like transcription factors in fungi. Genes Dev 23(4):419–432

    PubMed  CAS  Google Scholar 

  35. Merika M, Orkin SH (1993) DNA-binding specificity of GATA family transcription factors. Mol Cell Biol 13(7):3999–4010

    PubMed  CAS  Google Scholar 

  36. Evans T, Felsenfeld G (1989) The erythroid-specific transcription factor Eryf1: A new finger protein. Cell 58(5):877–885

    PubMed  CAS  Google Scholar 

  37. King DC, Taylor J, Elnitski L, Chiaromonte F, Miller W, Hardison RC (2005) Evaluation of regulatory potential and conservation scores for detecting cis-regulatory modules in aligned mammalian genome sequences. Genome Res 15(8):1051–1060

    PubMed  CAS  Google Scholar 

  38. Viger RS, Guittot SM, Anttonen M, Wilson DB, Heikinheimo M (2008) Role of the GATA family of transcription factors in endocrine development, function, and disease. Mol Endocrinol 22(4):781–798

    PubMed  CAS  Google Scholar 

  39. Wechsler J, Greene M, McDevitt MA, Anastasi J, Karp JE, Le Beau MM, Crispino JD (2002) Acquired mutations in GATA1 in the megakaryoblastic leukemia of down syndrome. Nat Genet 32(1):148–152

    PubMed  CAS  Google Scholar 

  40. Aravind L, Anantharaman V, Balaji S, Babu MM, Iyer LM (2005) The many faces of the helix-turn-helix domain: Transcription regulation and beyond. FEMS Microbiol Rev 29(2):231–262

    PubMed  CAS  Google Scholar 

  41. Maconochie M, Nonchev S, Morrison A, Krumlauf R (1996) Paralogous Hox genes: Function and regulation. Annu Rev Genet 30:529–556

    PubMed  CAS  Google Scholar 

  42. Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126(4):663–676

    PubMed  CAS  Google Scholar 

  43. Phillips K, Luisi B (2000) The virtuoso of versatility: POU proteins that flex to fit. J Mol Biol 302(5):1023–1039

    PubMed  CAS  Google Scholar 

  44. Gajiwala KS, Burley SK (2000) Winged helix proteins. Curr Opin Struct Biol 10(1):110–116

    PubMed  CAS  Google Scholar 

  45. Hannenhalli S, Kaestner KH (2009) The evolution of Fox genes and their role in development and disease. Nat Rev Genet 10(4):233–240

    PubMed  CAS  Google Scholar 

  46. Lane DP (1992) Cancer. p53, guardian of the genome. Nature 358(6381):15–16

    PubMed  CAS  Google Scholar 

  47. Smith ND, Rubenstein JN, Eggener SE, Kozlowski JM (2003) The p53 tumor suppressor gene and nuclear protein: Basic science review and relevance in the management of bladder cancer. J Urol 169(4):1219–1228

    PubMed  CAS  Google Scholar 

  48. Cho Y, Gorina S, Jeffrey PD, Pavletich NP (1994) Crystal structure of a p53 tumor suppressor-DNA complex: Understanding tumorigenic mutations. Science 265(5170):346–355

    PubMed  CAS  Google Scholar 

  49. Gilmore TD (2006) Introduction to NF-kappaB: Players, pathways, perspectives. Oncogene 25(51):6680–6684

    PubMed  CAS  Google Scholar 

  50. Calo V, Migliavacca M, Bazan V, Macaluso M, Buscemi M, Gebbia N, Russo A (2003) STAT proteins: From normal control of cellular events to tumorigenesis. J Cell Physiol 197(2):157–168

    PubMed  CAS  Google Scholar 

  51. Bycroft M, Hubbard TJ, Proctor M, Freund SM, Murzin AG (1997) The solution structure of the S1 RNA binding domain: A member of an ancient nucleic acid-binding fold. Cell 88(2):235–242

    PubMed  CAS  Google Scholar 

  52. MacDonald GH, Itoh-Lindstrom Y, Ting JP (1995) The transcriptional regulatory protein, YB-1, promotes single-stranded regions in the DRA promoter. J Biol Chem 270(8):3527–3533

    PubMed  CAS  Google Scholar 

  53. Tafuri SR, Wolffe AP (1992) DNA binding, multimerization, and transcription stimulation by the Xenopus Y box proteins in vitro. New Biol 4(4):349–359

    PubMed  CAS  Google Scholar 

  54. Mihailovich M, Militti C, Gabaldon T, Gebauer F (2010) Eukaryotic cold shock domain proteins: Highly versatile regulators of gene expression. Bioessays 32(2):109–118

    PubMed  CAS  Google Scholar 

  55. Skabkin MA, Evdokimova V, Thomas AA, Ovchinnikov LP (2001) The major messenger ribonucleoprotein particle protein p50 (YB-1) promotes nucleic acid strand annealing. J Biol Chem 276(48):44841–44847

    PubMed  CAS  Google Scholar 

  56. Sinha S, Maity SN, Lu J, de Crombrugghe B (1995) Recombinant rat CBF-C, the third subunit of CBF/NFY, allows formation of a protein-DNA complex with CBF-A and CBF-B and with yeast HAP2 and HAP3. Proc Natl Acad Sci U S A 92(5):1624–1628

    PubMed  CAS  Google Scholar 

  57. McNabb DS, Xing Y, Guarente L (1995) Cloning of yeast HAP5: A novel subunit of a heterotrimeric complex required for CCAAT binding. Genes Dev 9(1):47–58

    PubMed  CAS  Google Scholar 

  58. Bucher P, Trifonov EN (1988) CCAAT box revisited: Bidirectionality, location and context. J Biomol Struct Dyn 5(6):1231–1236

    PubMed  CAS  Google Scholar 

  59. Mantovani R (1998) A survey of 178 NF-Y binding CCAAT boxes. Nucleic Acids Res 26(5):1135–1143

    PubMed  CAS  Google Scholar 

  60. Mantovani R (1999) The molecular biology of the CCAAT-binding factor NF-Y. Gene 239(1):15–27

    PubMed  CAS  Google Scholar 

  61. Guth SI, Wegner M (2008) Having it both ways: Sox protein function between conservation and innovation. Cell Mol Life Sci 65(19):3000–3018

    PubMed  CAS  Google Scholar 

  62. Schepers GE, Teasdale RD, Koopman P (2002) Twenty pairs of sox: Extent, homology, and nomenclature of the mouse and human sox transcription factor gene families. Dev Cell 3(2):167–170

    PubMed  CAS  Google Scholar 

  63. Wallis MC, Waters PD, Graves JA (2008) Sex determination in mammals – before and after the evolution of SRY. Cell Mol Life Sci 65(20):3182–3195

    PubMed  CAS  Google Scholar 

  64. Wegner M (2010) All purpose Sox: The many roles of Sox proteins in gene expression. Int J Biochem Cell Biol 42(3):381–390

    PubMed  CAS  Google Scholar 

  65. Badis G, Berger MF, Philippakis AA, Talukder S, Gehrke AR, Jaeger SA, Chan ET, Metzler G, Vedenko A, Chen X, Kuznetsov H, Wang CF, Coburn D, Newburger DE, Morris Q, Hughes TR, Bulyk ML (2009) Diversity and complexity in DNA recognition by transcription factors. Science 324(5935):1720–1723

    PubMed  CAS  Google Scholar 

  66. Lang D, Weiche B, Timmerhaus G, Richardt S, Riano-Pachon DM, Correa LG, Reski R, Mueller-Roeber B, Rensing SA (2010) Genome-wide phylogenetic comparative analysis of plant transcriptional regulation: A timeline of loss, gain, expansion, and correlation with complexity. Genome Biol Evol 2:488–503

    PubMed  Google Scholar 

  67. Yamasaki K, Kigawa T, Inoue M, Watanabe S, Tateno M, Seki M, Shinozaki K, Yokoyama S (2008) Structures and evolutionary origins of plant-specific transcription factor DNA-binding domains. Plant Physiol Biochem 46(3):394–401

    PubMed  CAS  Google Scholar 

  68. Veron AS, Kaufmann K, Bornberg-Bauer E (2007) Evidence of interaction network evolution by whole-genome duplications: A case study in MADS-box proteins. Mol Biol Evol 24(3):670–678

    PubMed  CAS  Google Scholar 

  69. Gramzow L, Theissen G (2010) A hitchhiker’s guide to the MADS world of plants. Genome Biol 11(6):214

    PubMed  Google Scholar 

  70. Messenguy F, Dubois E (2003) Role of MADS box proteins and their cofactors in combinatorial control of gene expression and cell development. Gene 316:1–21

    PubMed  CAS  Google Scholar 

  71. Gramzow L, Ritz MS, Theissen G (2010) On the origin of MADS-domain transcription factors. Trends Genet 26(4):149–153

    PubMed  CAS  Google Scholar 

  72. Yamasaki K, Kigawa T, Inoue M, Tateno M, Yamasaki T, Yabuki T, Aoki M, Seki E, Matsuda T, Tomo Y, Hayami N, Terada T, Shirouzu M, Osanai T, Tanaka A, Seki M, Shinozaki K, Yokoyama S (2004) Solution structure of the B3 DNA binding domain of the Arabidopsis cold-responsive transcription factor RAV1. Plant Cell 16(12):3448–3459

    PubMed  CAS  Google Scholar 

  73. Desveaux D, Marechal A, Brisson N (2005) Whirly transcription factors: Defense gene regulation and beyond. Trends Plant Sci 10(2):95–102

    PubMed  CAS  Google Scholar 

  74. Desveaux D, Allard J, Brisson N, Sygusch J (2002) A new family of plant transcription factors displays a novel ssDNA-binding surface. Nat Struct Biol 9(7):512–517

    PubMed  CAS  Google Scholar 

  75. Yamasaki K, Kigawa T, Inoue M, Tateno M, Yamasaki T, Yabuki T, Aoki M, Seki E, Matsuda T, Tomo Y, Hayami N, Terada T, Shirouzu M, Tanaka A, Seki M, Shinozaki K, Yokoyama S (2005) Solution structure of an Arabidopsis WRKY DNA binding domain. Plant Cell 17(3):944–956

    PubMed  CAS  Google Scholar 

  76. Eulgem T, Rushton PJ, Robatzek S, Somssich IE (2000) The WRKY superfamily of plant transcription factors. Trends Plant Sci 5(5):199–206

    PubMed  CAS  Google Scholar 

  77. Babu MM, Iyer LM, Balaji S, Aravind L (2006) The natural history of the WRKY-GCM1 zinc fingers and the relationship between transcription factors and transposons. Nucleic Acids Res 34(22):6505–6520

    PubMed  CAS  Google Scholar 

  78. Ulker B, Somssich IE (2004) WRKY transcription factors: From DNA binding towards biological function. Curr Opin Plant Biol 7(5):491–498

    PubMed  Google Scholar 

  79. Cardon G, Hohmann S, Klein J, Nettesheim K, Saedler H, Huijser P (1999) Molecular characterisation of the Arabidopsis SBP-box genes. Gene 237(1):91–104

    PubMed  CAS  Google Scholar 

  80. Schwarz S, Grande AV, Bujdoso N, Saedler H, Huijser P (2008) The microRNA regulated SBP-box genes SPL9 and SPL15 control shoot maturation in Arabidopsis. Plant Mol Biol 67(1–2):183–195

    PubMed  CAS  Google Scholar 

  81. Yamasaki K, Kigawa T, Inoue M, Tateno M, Yamasaki T, Yabuki T, Aoki M, Seki E, Matsuda T, Nunokawa E, Ishizuka Y, Terada T, Shirouzu M, Osanai T, Tanaka A, Seki M, Shinozaki K, Yokoyama S (2004) A novel zinc-binding motif revealed by solution structures of DNA-binding domains of Arabidopsis SBP-family transcription factors. J Mol Biol 337(1):49–63

    PubMed  CAS  Google Scholar 

  82. Umemura Y, Ishiduka T, Yamamoto R, Esaka M (2004) The Dof domain, a zinc finger DNA-binding domain conserved only in higher plants, truly functions as a Cys2/Cys2 Zn finger domain. Plant J 37(5):741–749

    PubMed  CAS  Google Scholar 

  83. Yanagisawa S (2002) The Dof family of plant transcription factors. Trends Plant Sci 7(12):555–560

    PubMed  CAS  Google Scholar 

  84. Moreno-Risueno MA, Martinez M, Vicente-Carbajosa J, Carbonero P (2007) The family of DOF transcription factors: From green unicellular algae to vascular plants. Mol Genet Genomics 277(4):379–390

    PubMed  CAS  Google Scholar 

  85. Lijavetzky D, Carbonero P, Vicente-Carbajosa J (2003) Genome-wide comparative phylogenetic analysis of the rice and Arabidopsis Dof gene families. BMC Evol Biol 3:17

    PubMed  Google Scholar 

  86. Balaji S, Babu MM, Iyer LM, Aravind L (2005) Discovery of the principal specific transcription factors of Apicomplexa and their implication for the evolution of the AP2-integrase DNA binding domains. Nucleic Acids Res 33(13):3994–4006

    PubMed  CAS  Google Scholar 

  87. Wojciak JM, Connolly KM, Clubb RT (1999) NMR structure of the Tn916 integrase-DNA complex. Nat Struct Biol 6(4):366–373

    PubMed  CAS  Google Scholar 

  88. Wojciak JM, Sarkar D, Landy A, Clubb RT (2002) Arm-site binding by lambda -integrase: Solution structure and functional characterization of its amino-terminal domain. Proc Natl Acad Sci U S A 99(6):3434–3439

    PubMed  CAS  Google Scholar 

  89. Moure CM, Gimble FS, Quiocho FA (2002) Crystal structure of the intein homing endonuclease PI-SCEI bound to its recognition sequence. Nat Struct Biol 9(10):764–770

    PubMed  CAS  Google Scholar 

  90. Gutterson N, Reuber TL (2004) Regulation of disease resistance pathways by AP2/ERF transcription factors. Curr Opin Plant Biol 7(4):465–471

    PubMed  CAS  Google Scholar 

  91. Ernst HA, Olsen AN, Larsen S, Lo Leggio L (2004) Structure of the conserved domain of ANAC, a member of the NAC family of transcription factors. EMBO Rep 5(3):297–303

    PubMed  CAS  Google Scholar 

  92. Ogata K, Morikawa S, Nakamura H, Sekikawa A, Inoue T, Kanai H, Sarai A, Ishii S, Nishimura Y (1994) Solution structure of a specific DNA complex of the Myb DNA-binding domain with cooperative recognition helices. Cell 79(4):639–648

    PubMed  CAS  Google Scholar 

  93. Du H, Zhang L, Liu L, Tang XF, Yang WJ, Wu YM, Huang YB, Tang YX (2009) Biochemical and molecular characterization of plant MYB transcription factor family. Biochemistry (Mosc) 74(1):1–11

    CAS  Google Scholar 

  94. Aharoni A, De Vos CH, Wein M, Sun Z, Greco R, Kroon A, Mol JN, O’Connell AP (2001) The strawberry FaMYB1 transcription factor suppresses anthocyanin and flavonol accumulation in transgenic tobacco. Plant J 28(3):319–332

    PubMed  CAS  Google Scholar 

  95. Quattrocchio F, Wing J, van der Woude K, Souer E, de Vetten N, Mol J, Koes R (1999) Molecular analysis of the anthocyanin2 gene of petunia and its role in the evolution of flower color. Plant Cell 11(8):1433–1444

    PubMed  CAS  Google Scholar 

  96. Ramsay RG, Gonda TJ (2008) MYB function in normal and cancer cells. Nat Rev Cancer 8(7):523–534

    PubMed  CAS  Google Scholar 

  97. Dujon B, Sherman D, Fischer G, Durrens P, Casaregola S, Lafontaine I, De Montigny J, Marck C, Neuveglise C, Talla E, Goffard N, Frangeul L, Aigle M, Anthouard V, Babour A, Barbe V, Barnay S, Blanchin S, Beckerich JM, Beyne E, Bleykasten C, Boisrame A, Boyer J, Cattolico L, Confanioleri F, De Daruvar A, Despons L, Fabre E, Fairhead C, Ferry-Dumazet H, Groppi A, Hantraye F, Hennequin C, Jauniaux N, Joyet P, Kachouri R, Kerrest A, Koszul R, Lemaire M, Lesur I, Ma L, Muller H, Nicaud JM, Nikolski M, Oztas S, Ozier-Kalogeropoulos O, Pellenz S, Potier S, Richard GF, Straub ML, Suleau A, Swennen D, Tekaia F, Wesolowski-Louvel M, Westhof E, Wirth B, Zeniou-Meyer M, Zivanovic I, Bolotin-Fukuhara M, Thierry A, Bouchier C, Caudron B, Scarpelli C, Gaillardin C, Weissenbach J, Wincker P, Souciet JL (2004) Genome evolution in yeasts. Nature 430(6995):35–44

    PubMed  Google Scholar 

  98. Baldauf SL, Roger AJ, Wenk-Siefert I, Doolittle WF (2000) A kingdom-level phylogeny of eukaryotes based on combined protein data. Science 290(5493):972–977

    PubMed  CAS  Google Scholar 

  99. MacPherson S, Larochelle M, Turcotte B (2006) A fungal family of transcriptional regulators: The zinc cluster proteins. Microbiol Mol Biol Rev 70(3):583–604

    PubMed  CAS  Google Scholar 

  100. Traven A, Jelicic B, Sopta M (2006) Yeast Gal4: A transcriptional paradigm revisited. EMBO Rep 7(5):496–499

    PubMed  CAS  Google Scholar 

  101. Iyer LM, Anantharaman V, Wolf MY, Aravind L (2008) Comparative genomics of transcription factors and chromatin proteins in parasitic protists and other eukaryotes. Int J Parasitol 38(1):1–31

    PubMed  CAS  Google Scholar 

  102. Dameron CT, Winge DR, George GN, Sansone M, Hu S, Hamer D (1991) A copper-thiolate polynuclear cluster in the ACE1 transcription factor. Proc Natl Acad Sci U S A 88(14):6127–6131

    PubMed  CAS  Google Scholar 

  103. Iyer LM, Koonin EV, Aravind L (2002) Extensive domain shuffling in transcription regulators of DNA viruses and implications for the origin of fungal APSES transcription factors. Genome Biol 3(3):RESEARCH0012

    PubMed  Google Scholar 

  104. Pritham EJ, Putliwala T, Feschotte C (2007) Mavericks, a novel class of giant transposable elements widespread in eukaryotes and related to DNA viruses. Gene 390(1–2):3–17

    PubMed  CAS  Google Scholar 

  105. Simpson AG, Inagaki Y, Roger AJ (2006) Comprehensive multigene phylogenies of excavate protists reveal the evolutionary positions of “Primitive” Eukaryotes. Mol Biol Evol 23(3):615–625

    PubMed  CAS  Google Scholar 

  106. Gardner MJ, Hall N, Fung E, White O, Berriman M, Hyman RW, Carlton JM, Pain A, Nelson KE, Bowman S, Paulsen IT, James K, Eisen JA, Rutherford K, Salzberg SL, Craig A, Kyes S, Chan MS, Nene V, Shallom SJ, Suh B, Peterson J, Angiuoli S, Pertea M, Allen J, Selengut J, Haft D, Mather MW, Vaidya AB, Martin DM, Fairlamb AH, Fraunholz MJ, Roos DS, Ralph SA, McFadden GI, Cummings LM, Subramanian GM, Mungall C, Venter JC, Carucci DJ, Hoffman SL, Newbold C, Davis RW, Fraser CM, Barrell B (2002) Genome sequence of the human malaria parasite Plasmodium falciparum. Nature 419(6906):498–511

    PubMed  CAS  Google Scholar 

  107. Templeton TJ, Iyer LM, Anantharaman V, Enomoto S, Abrahante JE, Subramanian GM, Hoffman SL, Abrahamsen MS, Aravind L (2004) Comparative analysis of apicomplexa and genomic diversity in eukaryotes. Genome Res 14(9):1686–1695

    PubMed  CAS  Google Scholar 

  108. Schumacher MA, Lau AO, Johnson PJ (2003) Structural basis of core promoter recognition in a primitive eukaryote. Cell 115(4):413–424

    PubMed  CAS  Google Scholar 

  109. Lau AO, Smith AJ, Brown MT, Johnson PJ (2006) Trichomonas vaginalis initiator binding protein (IBP39) and RNA polymerase II large subunit carboxy terminal domain interaction. Mol Biochem Parasitol 150(1):56–62

    PubMed  CAS  Google Scholar 

  110. Clayton CE (2002) Life without transcriptional control? From fly to man and back again. Embo J 21(8):1881–1888

    PubMed  CAS  Google Scholar 

  111. Bozdech Z, Llinas M, Pulliam BL, Wong ED, Zhu J, DeRisi JL (2003) The transcriptome of the intraerythrocytic developmental cycle of Plasmodium falciparum. PLoS Biol 1(1):E5

    PubMed  Google Scholar 

  112. Abrahamsen MS, Templeton TJ, Enomoto S, Abrahante JE, Zhu G, Lancto CA, Deng M, Liu C, Widmer G, Tzipori S, Buck GA, Xu P, Bankier AT, Dear PH, Konfortov BA, Spriggs HF, Iyer L, Anantharaman V, Aravind L, Kapur V (2004) Complete genome sequence of the apicomplexan, Cryptosporidium parvum. Science 304(5669):441–445

    PubMed  CAS  Google Scholar 

  113. Hall N, Karras M, Raine JD, Carlton JM, Kooij TW, Berriman M, Florens L, Janssen CS, Pain A, Christophides GK, James K, Rutherford K, Harris B, Harris D, Churcher C, Quail MA, Ormond D, Doggett J, Trueman HE, Mendoza J, Bidwell SL, Rajandream MA, Carucci DJ, Yates JR 3rd, Kafatos FC, Janse CJ, Barrell B, Turner CM, Waters AP, Sinden RE (2005) A comprehensive survey of the Plasmodium life cycle by genomic, transcriptomic, and proteomic analyses. Science 307(5706):82–86

    PubMed  CAS  Google Scholar 

  114. Oakley MS, Kumar S, Anantharaman V, Zheng H, Mahajan B, Haynes JD, Moch JK, Fairhurst R, McCutchan TF, Aravind L (2007) Molecular factors and biochemical pathways induced by febrile temperature in intraerythrocytic Plasmodium falciparum parasites. Infect Immun 75(4):2012–2025

    PubMed  CAS  Google Scholar 

  115. Roger AJ, Hug LA (2006) The origin and diversification of eukaryotes: Problems with molecular phylogenetics and molecular clock estimation. Philos Trans R Soc Lond B Biol Sci 361(1470):1039–1054

    PubMed  CAS  Google Scholar 

  116. Adl SM, Simpson AG, Farmer MA, Andersen RA, Anderson OR, Barta JR, Bowser SS, Brugerolle G, Fensome RA, Fredericq S, James TY, Karpov S, Kugrens P, Krug J, Lane CE, Lewis LA, Lodge J, Lynn DH, Mann DG, McCourt RM, Mendoza L, Moestrup O, Mozley-Standridge SE, Nerad TA, Shearer CA, Smirnov AV, Spiegel FW, Taylor MF (2005) The new higher level classification of eukaryotes with emphasis on the taxonomy of protists. J Eukaryot Microbiol 52(5):399–451

    PubMed  Google Scholar 

  117. Derelle R, Lopez P, Le Guyader H, Manuel M (2007) Homeodomain proteins belong to the ancestral molecular toolkit of eukaryotes. Evol Dev 9(3):212–219

    PubMed  CAS  Google Scholar 

  118. Babu MM, Luscombe NM, Aravind L, Gerstein M, Teichmann SA (2004) Structure and evolution of transcriptional regulatory networks. Curr Opin Struct Biol 14(3):283–291

    PubMed  CAS  Google Scholar 

  119. Aravind L, Iyer LM, Koonin EV (2006) Comparative genomics and structural biology of the molecular innovations of eukaryotes. Curr Opin Struct Biol 16(3):409–419

    PubMed  CAS  Google Scholar 

  120. Izsvak Z, Khare D, Behlke J, Heinemann U, Plasterk RH, Ivics Z (2002) Involvement of a bifunctional, paired-like DNA-binding domain and a transpositional enhancer in Sleeping Beauty transposition. J Biol Chem 277(37):34581–34588

    PubMed  CAS  Google Scholar 

  121. Tanaka Y, Nureki O, Kurumizaka H, Fukai S, Kawaguchi S, Ikuta M, Iwahara J, Okazaki T, Yokoyama S (2001) Crystal structure of the CENP-B protein-DNA complex: The DNA-binding domains of CENP-B induce kinks in the CENP-B box DNA. Embo J 20(23):6612–6618

    PubMed  CAS  Google Scholar 

  122. Magnani E, Sjolander K, Hake S (2004) From endonucleases to transcription factors: Evolution of the AP2 DNA binding domain in plants. Plant Cell 16(9):2265–2277

    PubMed  CAS  Google Scholar 

  123. Marino-Ramirez L, Lewis KC, Landsman D, Jordan IK (2005) Transposable elements donate lineage-specific regulatory sequences to host genomes. Cytogenet Genome Res 110(1–4):333–341

    PubMed  CAS  Google Scholar 

  124. Jordan IK, Rogozin IB, Glazko GV, Koonin EV (2003) Origin of a substantial fraction of human regulatory sequences from transposable elements. Trends Genet 19(2):68–72

    PubMed  CAS  Google Scholar 

  125. Degnan BM, Vervoort M, Larroux C, Richards GS (2009) Early evolution of metazoan transcription factors. Curr Opin Genet Dev 19(6):591–599

    PubMed  CAS  Google Scholar 

  126. Larroux C, Fahey B, Degnan SM, Adamski M, Rokhsar DS, Degnan BM (2007) The NK homeobox gene cluster predates the origin of Hox genes. Curr Biol 17(8):706–710

    PubMed  CAS  Google Scholar 

  127. Wolfe KH, Shields DC (1997) Molecular evidence for an ancient duplication of the entire yeast genome. Nature 387(6634):708–713

    PubMed  CAS  Google Scholar 

  128. Garcia-Fernandez J (2005) The genesis and evolution of homeobox gene clusters. Nat Rev Genet 6(12):881–892

    PubMed  CAS  Google Scholar 

  129. Ferrier DE, Holland PW (2001) Ancient origin of the Hox gene cluster. Nat Rev Genet 2(1):33–38

    PubMed  CAS  Google Scholar 

  130. Ogishima S, Tanaka H (2007) Missing link in the evolution of Hox clusters. Gene 387(1–2):21–30

    PubMed  CAS  Google Scholar 

  131. Lespinet O, Wolf YI, Koonin EV, Aravind L (2002) The role of lineage-specific gene family expansion in the evolution of eukaryotes. Genome Res 12(7):1048–1059

    PubMed  CAS  Google Scholar 

  132. Robinson-Rechavi M, Maina CV, Gissendanner CR, Laudet V, Sluder A (2005) Explosive lineage-specific expansion of the orphan nuclear receptor HNF4 in nematodes. J Mol Evol 60(5):577–586

    PubMed  CAS  Google Scholar 

  133. Reece-Hoyes JS, Deplancke B, Shingles J, Grove CA, Hope IA, Walhout AJ (2005) A compendium of Caenorhabditis elegans regulatory transcription factors: A resource for mapping transcription regulatory networks. Genome Biol 6(13):R110

    PubMed  Google Scholar 

  134. Riechmann JL, Heard J, Martin G, Reuber L, Jiang C, Keddie J, Adam L, Pineda O, Ratcliffe OJ, Samaha RR, Creelman R, Pilgrim M, Broun P, Zhang JZ, Ghandehari D, Sherman BK, Yu G (2000) Arabidopsis transcription factors: Genome-wide comparative analysis among eukaryotes. Science 290(5499):2105–2110

    PubMed  CAS  Google Scholar 

  135. Riano-Pachon DM, Correa LG, Trejos-Espinosa R, Mueller-Roeber B (2008) Green transcription factors: A chlamydomonas overview. Genetics 179(1):31–39

    PubMed  CAS  Google Scholar 

  136. Shiu SH, Shih MC, Li WH (2005) Transcription factor families have much higher expansion rates in plants than in animals. Plant Physiol 139(1):18–26

    PubMed  CAS  Google Scholar 

  137. Paterson AH, Chapman BA, Kissinger JC, Bowers JE, Feltus FA, Estill JC (2006) Many gene and domain families have convergent fates following independent whole-genome duplication events in Arabidopsis, Oryza, Saccharomyces and Tetraodon. Trends Genet 22(11):597–602

    PubMed  CAS  Google Scholar 

  138. Edger PP, Pires JC (2009) Gene and genome duplications: The impact of dosage-sensitivity on the fate of nuclear genes. Chromosome Res 17(5):699–717

    PubMed  CAS  Google Scholar 

  139. Van de Peer Y, Maere S, Meyer A (2009) The evolutionary significance of ancient genome duplications. Nat Rev Genet 10(10):725–732

    PubMed  Google Scholar 

  140. Makarova KS, Wolf YI, Mekhedov SL, Mirkin BG, Koonin EV (2005) Ancestral paralogs and pseudoparalogs and their role in the emergence of the eukaryotic cell. Nucleic Acids Res 33(14):4626–4638

    PubMed  CAS  Google Scholar 

  141. Hsia CC, McGinnis W (2003) Evolution of transcription factor function. Curr Opin Genet Dev 13(2):199–206

    PubMed  CAS  Google Scholar 

  142. Moraitis AN, Giguere V (1999) Transition from monomeric to homodimeric DNA binding by nuclear receptors: Identification of RevErbAalpha determinants required for RORalpha homodimer complex formation. Mol Endocrinol 13(3):431–439

    PubMed  CAS  Google Scholar 

  143. Tron AE, Welchen E, Gonzalez DH (2004) Engineering the loop region of a homeodomain-leucine zipper protein promotes efficient binding to a monomeric DNA binding site. Biochemistry 43(50):15845–15851

    PubMed  CAS  Google Scholar 

  144. de Lumley M, Hart DJ, Cooper MA, Symeonides S, Blackburn JM (2004) A biophysical characterisation of factors controlling dimerisation and selectivity in the NF-kappaB and NFAT families. J Mol Biol 339(5):1059–1075

    PubMed  Google Scholar 

  145. Amoutzias GD, Robertson DL, Bornberg-Bauer E (2004) The evolution of protein interaction networks in regulatory proteins. Comp Funct Genomics 5(1):79–84

    PubMed  CAS  Google Scholar 

  146. Amoutzias GD, Pichler EE, Mian N, De Graaf D, Imsiridou A, Robinson-Rechavi M, Bornberg-Bauer E, Robertson DL, Oliver SG (2007) A protein interaction atlas for the nuclear receptors: Properties and quality of a hub-based dimerisation network. BMC Syst Biol 1:34

    PubMed  Google Scholar 

  147. Williams T, Tjian R (1991) Characterization of a dimerization motif in AP-2 and its function in heterologous DNA-binding proteins. Science 251(4997):1067–1071

    PubMed  CAS  Google Scholar 

  148. Mohibullah N, Donner A, Ippolito JA, Williams T (1999) SELEX and missing phosphate contact analyses reveal flexibility within the AP-2[alpha] protein: DNA binding complex. Nucleic Acids Res 27(13):2760–2769

    PubMed  CAS  Google Scholar 

  149. Mitchell PJ, Wang C, Tjian R (1987) Positive and negative regulation of transcription in vitro: Enhancer-binding protein AP-2 is inhibited by SV40 T antigen. Cell 50(6):847–861

    PubMed  CAS  Google Scholar 

  150. Ma PC, Rould MA, Weintraub H, Pabo CO (1994) Crystal structure of MyoD bHLH domain-DNA complex: Perspectives on DNA recognition and implications for transcriptional activation. Cell 77(3):451–459

    PubMed  CAS  Google Scholar 

  151. Longo A, Guanga GP, Rose RB (2008) Crystal structure of E47-NeuroD1/beta2 bHLH domain-DNA complex: Heterodimer selectivity and DNA recognition. Biochemistry 47(1):218–229

    PubMed  CAS  Google Scholar 

  152. Miller M, Shuman JD, Sebastian T, Dauter Z, Johnson PF (2003) Structural basis for DNA recognition by the basic region leucine zipper transcription factor CCAAT/enhancer-binding protein alpha. J Biol Chem 278(17):15178–15184

    PubMed  CAS  Google Scholar 

  153. Glover JN, Harrison SC (1995) Crystal structure of the heterodimeric bZIP transcription factor c-Fos-c-Jun bound to DNA. Nature 373(6511):257–261

    PubMed  CAS  Google Scholar 

  154. Deppmann CD, Alvania RS, Taparowsky EJ (2006) Cross-species annotation of basic leucine zipper factor interactions: Insight into the evolution of closed interaction networks. Mol Biol Evol 23(8):1480–1492

    PubMed  CAS  Google Scholar 

  155. He JX, Gendron JM, Sun Y, Gampala SS, Gendron N, Sun CQ, Wang ZY (2005) BZR1 is a transcriptional repressor with dual roles in brassinosteroid homeostasis and growth responses. Science 307(5715):1634–1638

    PubMed  CAS  Google Scholar 

  156. Yin Y, Vafeados D, Tao Y, Yoshida S, Asami T, Chory J (2005) A new class of transcription factors mediates brassinosteroid-regulated gene expression in Arabidopsis. Cell 120(2):249–259

    PubMed  CAS  Google Scholar 

  157. Vullhorst D, Buonanno A (2003) Characterization of general transcription factor 3, a transcription factor involved in slow muscle-specific gene expression. J Biol Chem 278(10):8370–8379

    PubMed  CAS  Google Scholar 

  158. Vullhorst D, Buonanno A (2005) Multiple GTF2I-like repeats of general transcription factor 3 exhibit DNA binding properties. Evidence for a common origin as a sequence-specific DNA interaction module. J Biol Chem 280(36):31722–31731

    PubMed  CAS  Google Scholar 

  159. Gupta M, Mungai PT, Goldwasser E (2000) A new transacting factor that modulates hypoxia-induced expression of the erythropoietin gene. Blood 96(2):491–497

    PubMed  CAS  Google Scholar 

  160. Curaba J, Herzog M, Vachon G (2003) GeBP, the first member of a new gene family in Arabidopsis, encodes a nuclear protein with DNA-binding activity and is regulated by KNAT1. Plant J 33(2):305–317

    PubMed  CAS  Google Scholar 

  161. Zourelidou M, de Torres-Zabala M, Smith C, Bevan MW (2002) Storekeeper defines a new class of plant-specific DNA-binding proteins and is a putative regulator of patatin expression. Plant J 30(4):489–497

    PubMed  CAS  Google Scholar 

  162. Chevalier F, Perazza D, Laporte F, Le Henanff G, Hornitschek P, Bonneville JM, Herzog M, Vachon G (2008) GeBP and geBP-like proteins are noncanonical leucine-zipper transcription factors that regulate cytokinin response in Arabidopsis. Plant Physiol 146(3):1142–1154

    PubMed  CAS  Google Scholar 

  163. Kosugi S, Ohashi Y (1997) PCF1 and PCF2 specifically bind to cis elements in the rice proliferating cell nuclear antigen gene. Plant Cell 9(9):1607–1619

    PubMed  CAS  Google Scholar 

  164. Kosugi S, Ohashi Y (2002) DNA binding and dimerization specificity and potential targets for the TCP protein family. Plant J 30(3):337–348

    PubMed  CAS  Google Scholar 

  165. Dehesh K, Hung H, Tepperman JM, Quail PH (1992) GT-2: A transcription factor with twin autonomous DNA-binding domains of closely related but different target sequence specificity. Embo J 11(11):4131–4144

    PubMed  CAS  Google Scholar 

  166. Ayadi M, Delaporte V, Li YF, Zhou DX (2004) Analysis of GT-3a identifies a distinct subgroup of trihelix DNA-binding transcription factors in Arabidopsis. FEBS Lett 562(1–3):147–154

    PubMed  CAS  Google Scholar 

  167. Hiratsuka K, Wu X, Fukuzawa H, Chua NH (1994) Molecular dissection of GT-1 from Arabidopsis. Plant Cell 6(12):1805–1813

    PubMed  CAS  Google Scholar 

  168. Villain P, Mache R, Zhou DX (1996) The mechanism of GT element-mediated cell type-specific transcriptional control. J Biol Chem 271(51):32593–32598

    PubMed  CAS  Google Scholar 

  169. Ulmasov T, Hagen G, Guilfoyle TJ (1999) Dimerization and DNA binding of auxin response factors. Plant J 19(3):309–319

    PubMed  CAS  Google Scholar 

  170. da Costa e Silva O (1994) CG-1, a parsley light-induced DNA-binding protein. Plant Mol Biol 25(5):921–924

    PubMed  Google Scholar 

  171. Bouche N, Scharlat A, Snedden W, Bouchez D, Fromm H (2002) A novel family of calmodulin-binding transcription activators in multicellular organisms. J Biol Chem 277(24):21851–21861

    PubMed  CAS  Google Scholar 

  172. Doherty CJ, Van Buskirk HA, Myers SJ, Thomashow MF (2009) Roles for Arabidopsis CAMTA transcription factors in cold-regulated gene expression and freezing tolerance. Plant Cell 21(3):972–984

    PubMed  CAS  Google Scholar 

  173. Kloks CP, Spronk CA, Lasonder E, Hoffmann A, Vuister GW, Grzesiek S, Hilbers CW (2002) The solution structure and DNA-binding properties of the cold-shock domain of the human Y-box protein YB-1. J Mol Biol 316(2):317–326

    PubMed  CAS  Google Scholar 

  174. Kloks CP, Tessari M, Vuister GW, Hilbers CW (2004) Cold shock domain of the human Y-box protein YB-1. Backbone dynamics and equilibrium between the native state and a partially unfolded state. Biochemistry 43(31):10237–10246

    PubMed  CAS  Google Scholar 

  175. Kovall RA, Hendrickson WA (2004) Crystal structure of the nuclear effector of Notch signaling, CSL, bound to DNA. Embo J 23(17):3441–3451

    PubMed  CAS  Google Scholar 

  176. Chung CN, Hamaguchi Y, Honjo T, Kawaichi M (1994) Site-directed mutagenesis study on DNA binding regions of the mouse homologue of Suppressor of Hairless, RBP-J kappa. Nucleic Acids Res 22(15):2938–2944

    PubMed  CAS  Google Scholar 

  177. Tun T, Hamaguchi Y, Matsunami N, Furukawa T, Honjo T, Kawaichi M (1994) Recognition sequence of a highly conserved DNA binding protein RBP-J kappa. Nucleic Acids Res 22(6):965–971

    PubMed  CAS  Google Scholar 

  178. Kokoszynska K, Ostrowski J, Rychlewski L, Wyrwicz LS (2008) The fold recognition of CP2 transcription factors gives new insights into the function and evolution of tumor suppressor protein p53. Cell Cycle 7(18):2907–2915

    PubMed  CAS  Google Scholar 

  179. Uv AE, Thompson CR, Bray SJ (1994) The Drosophila tissue-specific factor Grainyhead contains novel DNA-binding and dimerization domains which are conserved in the human protein CP2. Mol Cell Biol 14(6):4020–4031

    PubMed  CAS  Google Scholar 

  180. Shirra MK, Hansen U (1998) LSF and NTF-1 share a conserved DNA recognition motif yet require different oligomerization states to form a stable protein-DNA complex. J Biol Chem 273(30):19260–19268

    PubMed  CAS  Google Scholar 

  181. Kim CG, Swendeman SL, Barnhart KM, Sheffery M (1990) Promoter elements and erythroid cell nuclear factors that regulate alpha-globin gene transcription in vitro. Mol Cell Biol 10(11):5958–5966

    PubMed  CAS  Google Scholar 

  182. Dynlacht BD, Attardi LD, Admon A, Freeman M, Tjian R (1989) Functional analysis of NTF-1, a developmentally regulated Drosophila transcription factor that binds neuronal cis elements. Genes Dev 3(11):1677–1688

    PubMed  CAS  Google Scholar 

  183. Pellegrini L, Tan S, Richmond TJ (1995) Structure of serum response factor core bound to DNA. Nature 376(6540):490–498

    PubMed  CAS  Google Scholar 

  184. Huang K, Louis JM, Donaldson L, Lim FL, Sharrocks AD, Clore GM (2000) Solution structure of the MEF2A-DNA complex: Structural basis for the modulation of DNA bending and specificity by MADS-box transcription factors. Embo J 19(11):2615–2628

    PubMed  CAS  Google Scholar 

  185. Kaufmann K, Melzer R, Theissen G (2005) MIKC-type MADS-domain proteins: Structural modularity, protein interactions and network evolution in land plants. Gene 347(2):183–198

    PubMed  CAS  Google Scholar 

  186. Ohki I, Shimotake N, Fujita N, Jee J, Ikegami T, Nakao M, Shirakawa M (2001) Solution structure of the methyl-CpG binding domain of human MBD1 in complex with methylated DNA. Cell 105(4):487–497

    PubMed  CAS  Google Scholar 

  187. Fujita N, Shimotake N, Ohki I, Chiba T, Saya H, Shirakawa M, Nakao M (2000) Mechanism of transcriptional regulation by methyl-CpG binding protein MBD1. Mol Cell Biol 20(14):5107–5118

    PubMed  CAS  Google Scholar 

  188. Lamoureux JS, Stuart D, Tsang R, Wu C, Glover JN (2002) Structure of the sporulation-specific transcription factor Ndt80 bound to DNA. Embo J 21(21):5721–5732

    PubMed  CAS  Google Scholar 

  189. Chu S, Herskowitz I (1998) Gametogenesis in yeast is regulated by a transcriptional cascade dependent on Ndt80. Mol Cell 1(5):685–696

    PubMed  CAS  Google Scholar 

  190. McLure KG, Lee PW (1998) How p53 binds DNA as a tetramer. Embo J 17(12):3342–3350

    PubMed  CAS  Google Scholar 

  191. el-Deiry WS, Kern SE, Pietenpol JA, Kinzler KW, Vogelstein B (1992) Definition of a consensus binding site for p53. Nat Genet 1(1):45–49

    PubMed  CAS  Google Scholar 

  192. Chen FE, Huang DB, Chen YQ, Ghosh G (1998) Crystal structure of p50/p65 heterodimer of transcription factor NF-kappaB bound to DNA. Nature 391(6665):410–413

    PubMed  CAS  Google Scholar 

  193. Ghosh G, van Duyne G, Ghosh S, Sigler PB (1995) Structure of NF-kappa B p50 homodimer bound to a kappa B site. Nature 373(6512):303–310

    PubMed  CAS  Google Scholar 

  194. Muller CW, Rey FA, Sodeoka M, Verdine GL, Harrison SC (1995) Structure of the NF-kappa B p50 homodimer bound to DNA. Nature 373(6512):311–317

    PubMed  CAS  Google Scholar 

  195. Zabel U, Schreck R, Baeuerle PA (1991) DNA binding of purified transcription factor NF-kappa B. Affinity, specificity, Zn2+ dependence, and differential half-site recognition. J Biol Chem 266(1):252–260

    PubMed  CAS  Google Scholar 

  196. Nagata T, Gupta V, Sorce D, Kim WY, Sali A, Chait BT, Shigesada K, Ito Y, Werner MH (1999) Immunoglobulin motif DNA recognition and heterodimerization of the PEBP2/CBF Runt domain. Nat Struct Biol 6(7):615–619

    PubMed  CAS  Google Scholar 

  197. Wheeler JC, Shigesada K, Gergen JP, Ito Y (2000) Mechanisms of transcriptional regulation by Runt domain proteins. Semin Cell Dev Biol 11(5):369–375

    PubMed  CAS  Google Scholar 

  198. Chen X, Vinkemeier U, Zhao Y, Jeruzalmi D, Darnell JE Jr., Kuriyan J (1998) Crystal structure of a tyrosine phosphorylated STAT-1 dimer bound to DNA. Cell 93(5):827–839

    PubMed  CAS  Google Scholar 

  199. Horvath CM (2000) STAT proteins and transcriptional responses to extracellular signals. Trends Biochem Sci 25(10):496–502

    PubMed  CAS  Google Scholar 

  200. Kim JL, Nikolov DB, Burley SK (1993) Co-crystal structure of TBP recognizing the minor groove of a TATA element. Nature 365(6446):520–527

    PubMed  CAS  Google Scholar 

  201. Nikolov DB, Chen H, Halay ED, Hoffman A, Roeder RG, Burley SK (1996) Crystal structure of a human TATA box-binding protein/TATA element complex. Proc Natl Acad Sci U S A 93(10):4862–4867

    PubMed  CAS  Google Scholar 

  202. Kim JL, Burley SK (1994) 1.9 A resolution refined structure of TBP recognizing the minor groove of TATAAAAG. Nat Struct Biol 1(9):638–653

    PubMed  CAS  Google Scholar 

  203. Kim Y, Geiger JH, Hahn S, Sigler PB (1993) Crystal structure of a yeast TBP/TATA-box complex. Nature 365(6446):512–520

    PubMed  CAS  Google Scholar 

  204. Burley SK (1996) The TATA box binding protein. Curr Opin Struct Biol 6(1):69–75

    PubMed  CAS  Google Scholar 

  205. Muller CW, Herrmann BG (1997) Crystallographic structure of the T domain-DNA complex of the Brachyury transcription factor. Nature 389(6653):884–888

    PubMed  CAS  Google Scholar 

  206. Coll M, Seidman JG, Muller CW (2002) Structure of the DNA-bound T-box domain of human TBX3, a transcription factor responsible for ulnar-mammary syndrome. Structure 10(3):343–356

    PubMed  CAS  Google Scholar 

  207. Kispert A, Herrmann BG (1993) The Brachyury gene encodes a novel DNA binding protein. Embo J 12(8):3211–3220

    PubMed  CAS  Google Scholar 

  208. Wilson V, Conlon FL (2002) The T-box family. Genome Biol 3(6):REVIEWS3008

    PubMed  Google Scholar 

  209. Desveaux D, Despres C, Joyeux A, Subramaniam R, Brisson N (2000) PBF-2 is a novel single-stranded DNA binding factor implicated in PR-10a gene activation in potato. Plant Cell 12(8):1477–1489

    PubMed  CAS  Google Scholar 

  210. Xu RM, Koch C, Liu Y, Horton JR, Knapp D, Nasmyth K, Cheng X (1997) Crystal structure of the DNA-binding domain of Mbp1, a transcription factor important in cell-cycle control of DNA synthesis. Structure 5(3):349–358

    PubMed  CAS  Google Scholar 

  211. Taylor IA, Treiber MK, Olivi L, Smerdon SJ (1997) The X-ray structure of the DNA-binding domain from the Saccharomyces cerevisiae cell-cycle transcription factor Mbp1 at 2.1 A resolution. J Mol Biol 272(1):1–8

    PubMed  CAS  Google Scholar 

  212. Nair M, McIntosh PB, Frenkiel TA, Kelly G, Taylor IA, Smerdon SJ, Lane AN (2003) NMR structure of the DNA-binding domain of the cell cycle protein Mbp1 from Saccharomyces cerevisiae. Biochemistry 42(5):1266–1273

    PubMed  CAS  Google Scholar 

  213. Johnston LH, Lowndes NF (1992) Cell cycle control of DNA synthesis in budding yeast. Nucleic Acids Res 20(10):2403–2410

    PubMed  CAS  Google Scholar 

  214. Iwahara J, Iwahara M, Daughdrill GW, Ford J, Clubb RT (2002) The structure of the Dead ringer-DNA complex reveals how AT-rich interaction domains (ARIDs) recognize DNA. Embo J 21(5):1197–1209

    PubMed  CAS  Google Scholar 

  215. Cordier F, Hartmann B, Rogowski M, Affolter M, Grzesiek S (2006) DNA recognition by the brinker repressor – an extreme case of coupling between binding and folding. J Mol Biol 361(4):659–672

    PubMed  CAS  Google Scholar 

  216. Sivasankaran R, Vigano MA, Muller B, Affolter M, Basler K (2000) Direct transcriptional control of the Dpp target omb by the DNA binding protein Brinker. Embo J 19(22):6162–6172

    PubMed  CAS  Google Scholar 

  217. Iwahara J, Kigawa T, Kitagawa K, Masumoto H, Okazaki T, Yokoyama S (1998) A helix-turn-helix structure unit in human centromere protein B (CENP-B). Embo J 17(3):827–837

    PubMed  CAS  Google Scholar 

  218. Yoda K, Kitagawa K, Masumoto H, Muro Y, Okazaki T (1992) A human centromere protein, CENP-B, has a DNA binding domain containing four potential alpha helices at the NH2 terminus, which is separable from dimerizing activity. J Cell Biol 119(6):1413–1427

    PubMed  CAS  Google Scholar 

  219. Muro Y, Masumoto H, Yoda K, Nozaki N, Ohashi M, Okazaki T (1992) Centromere protein B assembles human centromeric alpha-satellite DNA at the 17-bp sequence, CENP-B box. J Cell Biol 116(3):585–596

    PubMed  CAS  Google Scholar 

  220. Yoda K, Nakamura T, Masumoto H, Suzuki N, Kitagawa K, Nakano M, Shinjo A, Okazaki T (1996) Centromere protein B of African green monkey cells: Gene structure, cellular expression, and centromeric localization. Mol Cell Biol 16(9):5169–5177

    PubMed  CAS  Google Scholar 

  221. Yamasaki K, Akiba T, Yamasaki T, Harata K (2007) Structural basis for recognition of the matrix attachment region of DNA by transcription factor SATB1. Nucleic Acids Res 35(15):5073–5084

    PubMed  CAS  Google Scholar 

  222. Galande S, Dickinson LA, Mian IS, Sikorska M, Kohwi-Shigematsu T (2001) SATB1 cleavage by caspase 6 disrupts PDZ domain-mediated dimerization, causing detachment from chromatin early in T-cell apoptosis. Mol Cell Biol 21(16):5591–5604

    PubMed  CAS  Google Scholar 

  223. Zheng N, Fraenkel E, Pabo CO, Pavletich NP (1999) Structural basis of DNA recognition by the heterodimeric cell cycle transcription factor E2F-DP. Genes Dev 13(6):666–674

    PubMed  CAS  Google Scholar 

  224. Mo Y, Vaessen B, Johnston K, Marmorstein R (1998) Structures of SAP-1 bound to DNA targets from the E74 and c-fos promoters: Insights into DNA sequence discrimination by Ets proteins. Mol Cell 2(2):201–212

    PubMed  CAS  Google Scholar 

  225. Kodandapani R, Pio F, Ni CZ, Piccialli G, Klemsz M, McKercher S, Maki RA, Ely KR (1996) A new pattern for helix-turn-helix recognition revealed by the PU.1 ETS-domain-DNA complex. Nature 380(6573):456–460

    PubMed  CAS  Google Scholar 

  226. Wei GH, Badis G, Berger MF, Kivioja T, Palin K, Enge M, Bonke M, Jolma A, Varjosalo M, Gehrke AR, Yan J, Talukder S, Turunen M, Taipale M, Stunnenberg HG, Ukkonen E, Hughes TR, Bulyk ML, Taipale J (2010) Genome-wide analysis of ETS-family DNA-binding in vitro and in vivo. Embo J 29(13):2147–2160

    PubMed  CAS  Google Scholar 

  227. Logan N, Delavaine L, Graham A, Reilly C, Wilson J, Brummelkamp TR, Hijmans EM, Bernards R, La Thangue NB (2004) E2F-7: A distinctive E2F family member with an unusual organization of DNA-binding domains. Oncogene 23(30):5138–5150

    PubMed  CAS  Google Scholar 

  228. Di Stefano L, Jensen MR, Helin K (2003) E2F7, a novel E2F featuring DP-independent repression of a subset of E2F-regulated genes. Embo J 22(23):6289–6298

    PubMed  CAS  Google Scholar 

  229. Li J, Ran C, Li E, Gordon F, Comstock G, Siddiqui H, Cleghorn W, Chen HZ, Kornacker K, Liu CG, Pandit SK, Khanizadeh M, Weinstein M, Leone G, de Bruin A (2008) Synergistic function of E2F7 and E2F8 is essential for cell survival and embryonic development. Dev Cell 14(1):62–75

    PubMed  CAS  Google Scholar 

  230. Kosugi S, Ohashi Y (2002) E2Ls, E2F-like repressors of Arabidopsis that bind to E2F sites in a monomeric form. J Biol Chem 277(19):16553–16558

    PubMed  CAS  Google Scholar 

  231. Jin C, Marsden I, Chen X, Liao X (1999) Dynamic DNA contacts observed in the NMR structure of winged helix protein-DNA complex. J Mol Biol 289(4):683–690

    PubMed  CAS  Google Scholar 

  232. Kaufmann E, Müller D, Knöchel W (1995) DNA recognition site analysis of Xenopus winged helix proteins. J Mol Biol 248(2):239–254

    PubMed  CAS  Google Scholar 

  233. Pierrou S, Hellqvist M, Samuelsson L, Enerback S, Carlsson P (1994) Cloning and characterization of seven human forkhead proteins: Binding site specificity and DNA bending. Embo J 13(20):5002–5012

    PubMed  CAS  Google Scholar 

  234. Biggs WH 3rd, Cavenee WK, Arden KC (2001) Identification and characterization of members of the FKHR (FOX O) subclass of winged-helix transcription factors in the mouse. Mamm Genome 12(6):416–425

    PubMed  CAS  Google Scholar 

  235. Windhovel A, Hein I, Dabrowa R, Stockhaus J (2001) Characterization of a novel class of plant homeodomain proteins that bind to the C4 phosphoenolpyruvate carboxylase gene of Flaveria trinervia. Plant Mol Biol 45(2):201–214

    PubMed  CAS  Google Scholar 

  236. Park HC, Kim ML, Lee SM, Bahk JD, Yun DJ, Lim CO, Hong JC, Lee SY, Cho MJ, Chung WS (2007) Pathogen-induced binding of the soybean zinc finger homeodomain proteins GmZF-HD1 and GmZF-HD2 to two repeats of ATTA homeodomain binding site in the calmodulin isoform 4 (GmCaM4) promoter. Nucleic Acids Res 35(11):3612–3623

    PubMed  CAS  Google Scholar 

  237. Tan QK, Irish VF (2006) The Arabidopsis zinc finger-homeodomain genes encode proteins with unique biochemical properties that are coordinately expressed during floral development. Plant Physiol 140(3):1095–1108

    PubMed  CAS  Google Scholar 

  238. Vuister GW, Kim SJ, Orosz A, Marquardt J, Wu C, Bax A (1994) Solution structure of the DNA-binding domain of Drosophila heat shock transcription factor. Nat Struct Biol 1(9):605–614

    PubMed  CAS  Google Scholar 

  239. Perisic O, Xiao H, Lis JT (1989) Stable binding of Drosophila heat shock factor to head-to-head and tail-to-tail repeats of a conserved 5 bp recognition unit. Cell 59(5):797–806

    PubMed  CAS  Google Scholar 

  240. LaRonde-LeBlanc NA, Wolberger C (2003) Structure of HoxA9 and Pbx1 bound to DNA: Hox hexapeptide and DNA recognition anterior to posterior. Genes Dev 17(16):2060–2072

    PubMed  CAS  Google Scholar 

  241. Kissinger CR, Liu BS, Martin-Blanco E, Kornberg TB, Pabo CO (1990) Crystal structure of an engrailed homeodomain-DNA complex at 2.8 Å resolution: A framework for understanding homeodomain-DNA interactions. Cell 63(3):579–590

    PubMed  CAS  Google Scholar 

  242. Berger MF, Badis G, Gehrke AR, Talukder S, Philippakis AA, Pena-Castillo L, Alleyne TM, Mnaimneh S, Botvinnik OB, Chan ET, Khalid F, Zhang W, Newburger D, Jaeger SA, Morris QD, Bulyk ML, Hughes TR (2008) Variation in homeodomain DNA binding revealed by high-resolution analysis of sequence preferences. Cell 133(7):1266–1276

    PubMed  CAS  Google Scholar 

  243. Escalante CR, Yie J, Thanos D, Aggarwal AK (1998) Structure of IRF-1 with bound DNA reveals determinants of interferon regulation. Nature 391(6662):103–106

    PubMed  CAS  Google Scholar 

  244. Fujii Y, Shimizu T, Kusumoto M, Kyogoku Y, Taniguchi T, Hakoshima T (1999) Crystal structure of an IRF-DNA complex reveals novel DNA recognition and cooperative binding to a tandem repeat of core sequences. Embo J 18(18):5028–5041

    PubMed  CAS  Google Scholar 

  245. Hames C, Ptchelkine D, Grimm C, Thevenon E, Moyroud E, Gerard F, Martiel JL, Benlloch R, Parcy F, Muller CW (2008) Structural basis for LEAFY floral switch function and similarity with helix-turn-helix proteins. Embo J 27(19):2628–2637

    PubMed  CAS  Google Scholar 

  246. William DA, Su Y, Smith MR, Lu M, Baldwin DA, Wagner D (2004) Genomic identification of direct target genes of LEAFY. Proc Natl Acad Sci U S A 101(6):1775–1780

    PubMed  CAS  Google Scholar 

  247. Cutler G, Perry KM, Tjian R (1998) Adf-1 is a nonmodular transcription factor that contains a TAF-binding Myb-like motif. Mol Cell Biol 18(4):2252–2261

    PubMed  CAS  Google Scholar 

  248. England BP, Heberlein U, Tjian R (1990) Purified Drosophila transcription factor, Adh distal factor-1 (Adf-1), binds to sites in several Drosophila promoters and activates transcription. J Biol Chem 265(9):5086–5094

    PubMed  CAS  Google Scholar 

  249. Bhaskar V, Courey AJ (2002) The MADF-BESS domain factor Dip3 potentiates synergistic activation by Dorsal and Twist. Gene 299(1–2):173–184

    PubMed  CAS  Google Scholar 

  250. Bender A, Sprague GF Jr. (1987) MAT alpha 1 protein, a yeast transcription activator, binds synergistically with a second protein to a set of cell-type-specific genes. Cell 50(5):681–691

    PubMed  CAS  Google Scholar 

  251. Biedenkapp H, Borgmeyer U, Sippel AE, Klempnauer KH (1988) Viral myb oncogene encodes a sequence-specific DNA-binding activity. Nature 335(6193):835–837

    PubMed  CAS  Google Scholar 

  252. Romero I, Fuertes A, Benito MJ, Malpica JM, Leyva A, Paz-Ares J (1998) More than 80 R2R3-MYB regulatory genes in the genome of Arabidopsis thaliana. Plant J 14(3):273–284

    PubMed  CAS  Google Scholar 

  253. Xu W, Rould MA, Jun S, Desplan C, Pabo CO (1995) Crystal structure of a paired domain-DNA complex at 2.5 A resolution reveals structural basis for Pax developmental mutations. Cell 80(4):639–650

    PubMed  CAS  Google Scholar 

  254. Lehmann M, Siegmund T, Lintermann KG, Korge G (1998) The pipsqueak protein of Drosophila melanogaster binds to GAGA sequences through a novel DNA-binding domain. J Biol Chem 273(43):28504–28509

    PubMed  CAS  Google Scholar 

  255. Siegmund T, Lehmann M (2002) The Drosophila Pipsqueak protein defines a new family of helix-turn-helix DNA-binding proteins. Dev Genes Evol 212(3):152–157

    PubMed  CAS  Google Scholar 

  256. Klemm JD, Rould MA, Aurora R, Herr W, Pabo CO (1994) Crystal structure of the Oct-1 POU domain bound to an octamer site: DNA recognition with tethered DNA-binding modules. Cell 77(1):21–32

    PubMed  CAS  Google Scholar 

  257. Cook AL, Sturm RA (2008) POU domain transcription factors: BRN2 as a regulator of melanocytic growth and tumourigenesis. Pigment Cell Melanoma Res 21(6):611–626

    PubMed  CAS  Google Scholar 

  258. Yousef MS, Matthews BW (2005) Structural basis of Prospero-DNA interaction: Implications for transcription regulation in developing cells. Structure 13(4):601–607

    PubMed  CAS  Google Scholar 

  259. Hassan B, Li L, Bremer KA, Chang W, Pinsonneault J, Vaessin H (1997) Prospero is a panneural transcription factor that modulates homeodomain protein activity. Proc Natl Acad Sci U S A 94(20):10991–10996

    PubMed  CAS  Google Scholar 

  260. Cook T, Pichaud F, Sonneville R, Papatsenko D, Desplan C (2003) Distinction between color photoreceptor cell fates is controlled by Prospero in Drosophila. Dev Cell 4(6):853–864

    PubMed  CAS  Google Scholar 

  261. Konig P, Giraldo R, Chapman L, Rhodes D (1996) The crystal structure of the DNA-binding domain of yeast RAP1 in complex with telomeric DNA. Cell 85(1):125–136

    PubMed  CAS  Google Scholar 

  262. Henry YA, Chambers A, Tsang JS, Kingsman AJ, Kingsman SM (1990) Characterisation of the DNA binding domain of the yeast RAP1 protein. Nucleic Acids Res 18(9):2617–2623

    PubMed  CAS  Google Scholar 

  263. Vignais ML, Huet J, Buhler JM, Sentenac A (1990) Contacts between the factor TUF and RPG sequences. J Biol Chem 265(24):14669–14674

    PubMed  CAS  Google Scholar 

  264. Gajiwala KS, Chen H, Cornille F, Roques BP, Reith W, Mach B, Burley SK (2000) Structure of the winged-helix protein hRFX1 reveals a new mode of DNA binding. Nature 403(6772):916–921

    PubMed  CAS  Google Scholar 

  265. Siegrist CA, Durand B, Emery P, David E, Hearing P, Mach B, Reith W (1993) RFX1 is identical to enhancer factor C and functions as a transactivator of the hepatitis B virus enhancer. Mol Cell Biol 13(10):6375–6384

    PubMed  CAS  Google Scholar 

  266. Emery P, Strubin M, Hofmann K, Bucher P, Mach B, Reith W (1996) A consensus motif in the RFX DNA binding domain and binding domain mutants with altered specificity. Mol Cell Biol 16(8):4486–4494

    PubMed  CAS  Google Scholar 

  267. Lysenko EA (2007) Plant sigma factors and their role in plastid transcription. Plant Cell Rep 26(7):845–859

    PubMed  CAS  Google Scholar 

  268. Hakimi MA, Privat I, Valay JG, Lerbs-Mache S (2000) Evolutionary conservation of C-terminal domains of primary sigma(70)-type transcription factors between plants and bacteria. J Biol Chem 275(13):9215–9221

    PubMed  CAS  Google Scholar 

  269. Campbell EA, Muzzin O, Chlenov M, Sun JL, Olson CA, Weinman O, Trester-Zedlitz ML, Darst SA (2002) Structure of the bacterial RNA polymerase promoter specificity sigma subunit. Mol Cell 9(3):527–539

    PubMed  CAS  Google Scholar 

  270. Anbanandam A, Albarado DC, Nguyen CT, Halder G, Gao X, Veeraraghavan S (2006) Insights into transcription enhancer factor 1 (TEF-1) activity from the solution structure of the TEA domain. Proc Natl Acad Sci U S A 103(46):17225–17230

    PubMed  CAS  Google Scholar 

  271. Hwang JJ, Chambon P, Davidson I (1993) Characterization of the transcription activation function and the DNA binding domain of transcriptional enhancer factor-1. Embo J 12(6):2337–2348

    PubMed  CAS  Google Scholar 

  272. Weider M, Machnik A, Klebl F, Sauer N (2006) Vhr1p, a new transcription factor from budding yeast, regulates biotin-dependent expression of VHT1 and BIO5. J Biol Chem 281(19):13513–13524

    PubMed  CAS  Google Scholar 

  273. Yamaguchi-Iwai Y, Stearman R, Dancis A, Klausner RD (1996) Iron-regulated DNA binding by the AFT1 protein controls the iron regulon in yeast. Embo J 15(13):3377–3384

    PubMed  CAS  Google Scholar 

  274. Allen MD, Yamasaki K, Ohme-Takagi M, Tateno M, Suzuki M (1998) A novel mode of DNA recognition by a beta-sheet revealed by the solution structure of the GCC-box binding domain in complex with DNA. Embo J 17(18):5484–5496

    PubMed  CAS  Google Scholar 

  275. Lindner SE, De Silva EK, Keck JL, Llinas M (2010) Structural determinants of DNA binding by a P. falciparum ApiAP2 transcriptional regulator. J Mol Biol 395(3):558–567

    PubMed  CAS  Google Scholar 

  276. Ohme-Takagi M, Shinshi H (1995) Ethylene-inducible DNA binding proteins that interact with an ethylene-responsive element. Plant Cell 7(2):173–182

    PubMed  CAS  Google Scholar 

  277. De Silva EK, Gehrke AR, Olszewski K, Leon I, Chahal JS, Bulyk ML, Llinas M (2008) Specific DNA-binding by apicomplexan AP2 transcription factors. Proc Natl Acad Sci U S A 105(24):8393–8398

    PubMed  Google Scholar 

  278. Huth JR, Bewley CA, Nissen MS, Evans JN, Reeves R, Gronenborn AM, Clore GM (1997) The solution structure of an HMG-I(Y)-DNA complex defines a new architectural minor groove binding motif. Nat Struct Biol 4(8):657–665

    PubMed  CAS  Google Scholar 

  279. Xing Y, Fikes JD, Guarente L (1993) Mutations in yeast HAP2/HAP3 define a hybrid CCAAT box binding domain. Embo J 12(12):4647–4655

    PubMed  CAS  Google Scholar 

  280. Olesen JT, Guarente L (1990) The HAP2 subunit of yeast CCAAT transcriptional activator contains adjacent domains for subunit association and DNA recognition: Model for the HAP2/3/4 complex. Genes Dev 4(10):1714–1729

    PubMed  CAS  Google Scholar 

  281. Romier C, Cocchiarella F, Mantovani R, Moras D (2003) The NF-YB/NF-YC structure gives insight into DNA binding and transcription regulation by CCAAT factor NF-Y. J Biol Chem 278(2):1336–1345

    PubMed  CAS  Google Scholar 

  282. Bi W, Wu L, Coustry F, de Crombrugghe B, Maity SN (1997) DNA binding specificity of the CCAAT-binding factor CBF/NF-Y. J Biol Chem 272(42):26562–26572

    PubMed  CAS  Google Scholar 

  283. Scott S, Dorrington R, Svetlov V, Beeser AE, Distler M, Cooper TG (2000) Functional domain mapping and subcellular distribution of Dal82p in Saccharomyces cerevisiae. J Biol Chem 275(10):7198–7204

    PubMed  CAS  Google Scholar 

  284. Dorrington RA, Cooper TG (1993) The DAL82 protein of Saccharomyces cerevisiae binds to the DAL upstream induction sequence (UIS). Nucleic Acids Res 21(16):3777–3784

    PubMed  CAS  Google Scholar 

  285. Carrasco JL, Ancillo G, Castello MJ, Vera P (2005) A novel DNA-binding motif, hallmark of a new family of plant transcription factors. Plant Physiol 137(2):602–606

    PubMed  CAS  Google Scholar 

  286. Carrasco JL, Ancillo G, Mayda E, Vera P (2003) A novel transcription factor involved in plant defense endowed with protein phosphatase activity. Embo J 22(13):3376–3384

    PubMed  CAS  Google Scholar 

  287. Yamasaki K, Kigawa T, Inoue M, Yamasaki T, Yabuki T, Aoki M, Seki E, Matsuda T, Tomo Y, Terada T, Shirouzu M, Tanaka A, Seki M, Shinozaki K, Yokoyama S (2005) Solution structure of the major DNA-binding domain of Arabidopsis thaliana ethylene-insensitive3-like3. J Mol Biol 348(2):253–264

    PubMed  CAS  Google Scholar 

  288. Solano R, Stepanova A, Chao Q, Ecker JR (1998) Nuclear events in ethylene signaling: A transcriptional cascade mediated by ETHYLENE-INSENSITIVE3 and ETHYLENE-RESPONSE-FACTOR1. Genes Dev 12(23):3703–3714

    PubMed  CAS  Google Scholar 

  289. Kosugi S, Ohashi Y (2000) Cloning and DNA-binding properties of a tobacco Ethylene-insensitive3 (EIN3) homolog. Nucleic Acids Res 28(4):960–967

    PubMed  CAS  Google Scholar 

  290. Baker HV (1991) GCR1 of Saccharomyces cerevisiae encodes a DNA binding protein whose binding is abolished by mutations in the CTTCC sequence motif. Proc Natl Acad Sci U S A 88(21):9443–9447

    PubMed  CAS  Google Scholar 

  291. Uemura H, Koshio M, Inoue Y, Lopez MC, Baker HV (1997) The role of Gcr1p in the transcriptional activation of glycolytic genes in yeast Saccharomyces cerevisiae. Genetics 147(2):521–532

    PubMed  CAS  Google Scholar 

  292. Huie MA, Baker HV (1996) DNA-binding properties of the yeast transcriptional activator, Gcr1p. Yeast 12(4):307–317

    PubMed  CAS  Google Scholar 

  293. Huie MA, Scott EW, Drazinic CM, Lopez MC, Hornstra IK, Yang TP, Baker HV (1992) Characterization of the DNA-binding activity of GCR1: In vivo evidence for two GCR1-binding sites in the upstream activating sequence of TPI of Saccharomyces cerevisiae. Mol Cell Biol 12(6):2690–2700

    PubMed  CAS  Google Scholar 

  294. Richards DE, Peng J, Harberd NP (2000) Plant GRAS and metazoan STATs: One family? Bioessays 22(6):573–577

    PubMed  CAS  Google Scholar 

  295. Hirsch S, Kim J, Munoz A, Heckmann AB, Downie JA, Oldroyd GE (2009) GRAS proteins form a DNA binding complex to induce gene expression during nodulation signaling in Medicago truncatula. Plant Cell 21(2):545–557

    PubMed  CAS  Google Scholar 

  296. Olsen AN, Ernst HA, Leggio LL, Skriver K (2005) NAC transcription factors: Structurally distinct, functionally diverse. Trends Plant Sci 10(2):79–87

    PubMed  CAS  Google Scholar 

  297. Tran LS, Nakashima K, Sakuma Y, Simpson SD, Fujita Y, Maruyama K, Fujita M, Seki M, Shinozaki K, Yamaguchi-Shinozaki K (2004) Isolation and functional analysis of Arabidopsis stress-inducible NAC transcription factors that bind to a drought-responsive cis-element in the early responsive to dehydration stress 1 promoter. Plant Cell 16(9):2481–2498

    PubMed  CAS  Google Scholar 

  298. Surdo PL, Bottomley MJ, Sattler M, Scheffzek K (2003) Crystal structure and nuclear magnetic resonance analyses of the SAND domain from glucocorticoid modulatory element binding protein-1 reveals deoxyribonucleic acid and zinc binding regions. Mol Endocrinol 17(7):1283–1295

    PubMed  Google Scholar 

  299. Huggenvik JI, Michelson RJ, Collard MW, Ziemba AJ, Gurley P, Mowen KA (1998) Characterization of a nuclear deformed epidermal autoregulatory factor-1 (DEAF-1)-related (NUDR) transcriptional regulator protein. Mol Endocrinol 12(10):1619–1639

    PubMed  CAS  Google Scholar 

  300. Murphy EC, Zhurkin VB, Louis JM, Cornilescu G, Clore GM (2001) Structural basis for SRY-dependent 46-X,Y sex reversal: Modulation of DNA bending by a naturally occurring point mutation. J Mol Biol 312(3):481–499

    PubMed  CAS  Google Scholar 

  301. Harley VR, Lovell-Badge R, Goodfellow PN (1994) Definition of a consensus DNA binding site for SRY. Nucleic Acids Res 22(8):1500–1501

    PubMed  CAS  Google Scholar 

  302. Zhou DX, Bisanz-Seyer C, Mache R (1995) Molecular cloning of a small DNA binding protein with specificity for a tissue-specific negative element within the rps1 promoter. Nucleic Acids Res 23(7):1165–1169

    PubMed  CAS  Google Scholar 

  303. Cho G, Kim J, Rho HM, Jung G (1995) Structure-function analysis of the DNA binding domain of Saccharomyces cerevisiae ABF1. Nucleic Acids Res 23(15):2980–2987

    PubMed  CAS  Google Scholar 

  304. Dorsman JC, van Heeswijk WC, Grivell LA (1990) Yeast general transcription factor GFI: Sequence requirements for binding to DNA and evolutionary conservation. Nucleic Acids Res 18(9):2769–2776

    PubMed  CAS  Google Scholar 

  305. Bastola DR, Pethe VV, Winicov I (1998) Alfin1, a novel zinc-finger protein in alfalfa roots that binds to promoter elements in the salt-inducible MsPRP2 gene. Plant Mol Biol 38(6):1123–1135

    PubMed  CAS  Google Scholar 

  306. Santi L, Wang Y, Stile MR, Berendzen K, Wanke D, Roig C, Pozzi C, Muller K, Muller J, Rohde W, Salamini F (2003) The GA octodinucleotide repeat binding factor BBR participates in the transcriptional regulation of the homeobox gene Bkn3. Plant J 34(6):813–826

    PubMed  CAS  Google Scholar 

  307. Kooiker M, Airoldi CA, Losa A, Manzotti PS, Finzi L, Kater MM, Colombo L (2005) BASIC PENTACYSTEINE1, a GA binding protein that induces conformational changes in the regulatory region of the homeotic Arabidopsis gene SEEDSTICK. Plant Cell 17(3):722–729

    PubMed  CAS  Google Scholar 

  308. Hagman J, Gutch MJ, Lin H, Grosschedl R (1995) EBF contains a novel zinc coordination motif and multiple dimerization and transcriptional activation domains. Embo J 14(12):2907–2916

    PubMed  CAS  Google Scholar 

  309. Hagman J, Belanger C, Travis A, Turck CW, Grosschedl R (1993) Cloning and functional characterization of early B-cell factor, a regulator of lymphocyte-specific gene expression. Genes Dev 7(5):760–773

    PubMed  CAS  Google Scholar 

  310. Travis A, Hagman J, Hwang L, Grosschedl R (1993) Purification of early-B-cell factor and characterization of its DNA-binding specificity. Mol Cell Biol 13(6):3392–3400

    PubMed  CAS  Google Scholar 

  311. Turner RB, Smith DL, Zawrotny ME, Summers MF, Posewitz MC, Winge DR (1998) Solution structure of a zinc domain conserved in yeast copper-regulated transcription factors. Nat Struct Biol 5(7):551–555

    PubMed  CAS  Google Scholar 

  312. Buchman C, Skroch P, Dixon W, Tullius TD, Karin M (1990) A single amino acid change in CUP2 alters its mode of DNA binding. Mol Cell Biol 10(9):4778–4787

    PubMed  CAS  Google Scholar 

  313. Dobi A, Dameron CT, Hu S, Hamer D, Winge DR (1995) Distinct regions of Cu(I).ACE1 contact two spatially resolved DNA major groove sites. J Biol Chem 270(17):10171–10178

    PubMed  CAS  Google Scholar 

  314. Cvitanich C, Pallisgaard N, Nielsen KA, Hansen AC, Larsen K, Pihakaski-Maunsbach K, Marcker KA, Jensen EO (2000) CPP1, a DNA-binding protein involved in the expression of a soybean leghemoglobin c3 gene. Proc Natl Acad Sci U S A 97(14):8163–8168

    PubMed  CAS  Google Scholar 

  315. Fauth T, Muller-Planitz F, Konig C, Straub T, Becker PB (2010) The DNA binding CXC domain of MSL2 is required for faithful targeting the Dosage Compensation Complex to the X chromosome. Nucleic Acids Res 38(10):3209–3221

    PubMed  CAS  Google Scholar 

  316. Allen MD, Grummitt CG, Hilcenko C, Min SY, Tonkin LM, Johnson CM, Freund SM, Bycroft M, Warren AJ (2006) Solution structure of the nonmethyl-CpG-binding CXXC domain of the leukaemia-associated MLL histone methyltransferase. Embo J 25(19):4503–4512

    PubMed  CAS  Google Scholar 

  317. Lee JH, Voo KS, Skalnik DG (2001) Identification and characterization of the DNA binding domain of CpG-binding protein. J Biol Chem 276(48):44669–44676

    PubMed  CAS  Google Scholar 

  318. Jorgensen HF, Ben-Porath I, Bird AP (2004) Mbd1 is recruited to both methylated and nonmethylated CpGs via distinct DNA binding domains. Mol Cell Biol 24(8):3387–3395

    PubMed  CAS  Google Scholar 

  319. Kim JG, Hudson LD (1992) Novel member of the zinc finger superfamily: A C2-HC finger that recognizes a glia-specific gene. Mol Cell Biol 12(12):5632–5639

    PubMed  CAS  Google Scholar 

  320. Kim JG, Armstrong RC, v Agoston D, Robinsky A, Wiese C, Nagle J, Hudson LD (1997) Myelin transcription factor 1 (Myt1) of the oligodendrocyte lineage, along with a closely related CCHC zinc finger, is expressed in developing neurons in the mammalian central nervous system. J Neurosci Res 50(2):272–290

    PubMed  CAS  Google Scholar 

  321. Elrod-Erickson M, Benson TE, Pabo CO (1998) High-resolution structures of variant Zif268-DNA complexes: Implications for understanding zinc finger-DNA recognition. Structure 6(4):451–464

    PubMed  CAS  Google Scholar 

  322. Zhu L, Wilken J, Phillips NB, Narendra U, Chan G, Stratton SM, Kent SB, Weiss MA (2000) Sexual dimorphism in diverse metazoans is regulated by a novel class of intertwined zinc fingers. Genes Dev 14(14):1750–1764

    PubMed  CAS  Google Scholar 

  323. Erdman SE, Chen HJ, Burtis KC (1996) Functional and genetic characterization of the oligomerization and DNA binding properties of the Drosophila doublesex proteins. Genetics 144(4):1639–1652

    PubMed  CAS  Google Scholar 

  324. Shimofurutani N, Kisu Y, Suzuki M, Esaka M (1998) Functional analyses of the Dof domain, a zinc finger DNA-binding domain, in a pumpkin DNA-binding protein AOBP. FEBS Lett 430(3):251–256

    PubMed  CAS  Google Scholar 

  325. Lin R, Ding L, Casola C, Ripoll DR, Feschotte C, Wang H (2007) Transposase-derived transcription factors regulate light signaling in Arabidopsis. Science 318(5854):1302–1305

    PubMed  CAS  Google Scholar 

  326. Omichinski JG, Clore GM, Schaad O, Felsenfeld G, Trainor C, Appella E, Stahl SJ, Gronenborn AM (1993) NMR structure of a specific DNA complex of Zn-containing DNA binding domain of GATA-1. Science 261(5120):438–446

    PubMed  CAS  Google Scholar 

  327. Bates DL, Chen Y, Kim G, Guo L, Chen L (2008) Crystal structures of multiple GATA zinc fingers bound to DNA reveal new insights into DNA recognition and self-association by GATA. J Mol Biol 381(5):1292–1306

    PubMed  CAS  Google Scholar 

  328. Svetlov VV, Cooper TG (1998) The Saccharomyces cerevisiae GATA factors Dal80p and Deh1p can form homo- and heterodimeric complexes. J Bacteriol 180(21):5682–5688

    PubMed  CAS  Google Scholar 

  329. Schnitzler GR, Fischer WH, Firtel RA (1994) Cloning and characterization of the G-box binding factor, an essential component of the developmental switch between early and late development in Dictyostelium. Genes Dev 8(4):502–514

    PubMed  CAS  Google Scholar 

  330. Brown JM, Firtel RA (2001) Functional and regulatory analysis of the Dictyostelium G-box binding factor. Dev Biol 234(2):521–534

    PubMed  CAS  Google Scholar 

  331. Hjorth AL, Pears C, Williams JG, Firtel RA (1990) A developmentally regulated trans-acting factor recognizes dissimilar G/C-rich elements controlling a class of cAMP-inducible Dictyostelium genes. Genes Dev 4(3):419–432

    PubMed  CAS  Google Scholar 

  332. Cohen SX, Moulin M, Hashemolhosseini S, Kilian K, Wegner M, Muller CW (2003) Structure of the GCM domain-DNA complex: A DNA-binding domain with a novel fold and mode of target site recognition. Embo J 22(8):1835–1845

    PubMed  CAS  Google Scholar 

  333. Akiyama Y, Hosoya T, Poole AM, Hotta Y (1996) The gcm-motif: A novel DNA-binding motif conserved in Drosophila and mammals. Proc Natl Acad Sci U S A 93(25):14912–14916

    PubMed  CAS  Google Scholar 

  334. Schreiber J, Sock E, Wegner M (1997) The regulator of early gliogenesis glial cells missing is a transcription factor with a novel type of DNA-binding domain. Proc Natl Acad Sci U S A 94(9):4739–4744

    PubMed  CAS  Google Scholar 

  335. Raventos D, Skriver K, Schlein M, Karnahl K, Rogers SW, Rogers JC, Mundy J (1998) HRT, a novel zinc finger, transcriptional repressor from barley. J Biol Chem 273(36):23313–23320

    PubMed  CAS  Google Scholar 

  336. Husbands A, Bell EM, Shuai B, Smith HM, Springer PS (2007) LATERAL ORGAN BOUNDARIES defines a new family of DNA-binding transcription factors and can interact with specific BHLH proteins. Nucleic Acids Res 35(19):6663–6671

    PubMed  CAS  Google Scholar 

  337. Spahr H, Samuelsson T, Hallberg BM, Gustafsson CM (2010) Structure of mitochondrial transcription termination factor 3 reveals a novel nucleic acid-binding domain. Biochem Biophys Res Commun 397(3):386–390

    PubMed  CAS  Google Scholar 

  338. Fernandez-Silva P, Martinez-Azorin F, Micol V, Attardi G (1997) The human mitochondrial transcription termination factor (mTERF) is a multizipper protein but binds to DNA as a monomer, with evidence pointing to intramolecular leucine zipper interactions. Embo J 16(5):1066–1079

    PubMed  CAS  Google Scholar 

  339. Hyvarinen AK, Pohjoismaki JL, Reyes A, Wanrooij S, Yasukawa T, Karhunen PJ, Spelbrink JN, Holt IJ, Jacobs HT (2007) The mitochondrial transcription termination factor mTERF modulates replication pausing in human mitochondrial DNA. Nucleic Acids Res 35(19):6458–6474

    PubMed  Google Scholar 

  340. Song Z, Krishna S, Thanos D, Strominger JL, Ono SJ (1994) A novel cysteine-rich sequence-specific DNA-binding protein interacts with the conserved X-box motif of the human major histocompatibility complex class ii genes via a repeated Cys-His domain and functions as a transcriptional repressor. J Exp Med 180(5):1763–1774

    PubMed  CAS  Google Scholar 

  341. Rastinejad F, Wagner T, Zhao Q, Khorasanizadeh S (2000) Structure of the RXR-RAR DNA-binding complex on the retinoic acid response element DR1. Embo J 19(5):1045–1054

    PubMed  CAS  Google Scholar 

  342. Cheskis B, Freedman LP (1994) Ligand modulates the conversion of DNA-bound vitamin D3 receptor (VDR) homodimers into VDR-retinoid X receptor heterodimers. Mol Cell Biol 14(5):3329–3338

    PubMed  CAS  Google Scholar 

  343. Ribeiro RC, Kushner PJ, Baxter JD (1995) The nuclear hormone receptor gene superfamily. Annu Rev Med 46:443–453

    PubMed  CAS  Google Scholar 

  344. Nagano Y, Furuhashi H, Inaba T, Sasaki Y (2001) A novel class of plant-specific zinc-dependent DNA-binding protein that binds to A/T-rich DNA sequences. Nucleic Acids Res 29(20):4097–4105

    PubMed  CAS  Google Scholar 

  345. Shi Y, Wang YF, Jayaraman L, Yang H, Massague J, Pavletich NP (1998) Crystal structure of a Smad MH1 domain bound to DNA: Insights on DNA binding in TGF-beta signaling. Cell 94(5):585–594

    PubMed  CAS  Google Scholar 

  346. Chai J, Wu JW, Yan N, Massague J, Pavletich NP, Shi Y (2003) Features of a Smad3 MH1-DNA complex. Roles of water and zinc in DNA binding. J Biol Chem 278(22):20327–20331

    PubMed  CAS  Google Scholar 

  347. Massague J, Seoane J, Wotton D (2005) Smad transcription factors. Genes Dev 19(23):2783–2810

    PubMed  CAS  Google Scholar 

  348. Sabogal A, Lyubimov AY, Corn JE, Berger JM, Rio DC (2010) THAP proteins target specific DNA sites through bipartite recognition of adjacent major and minor grooves. Nat Struct Mol Biol 17(1):117–123

    PubMed  CAS  Google Scholar 

  349. Mitsuda N, Hisabori T, Takeyasu K, Sato MH (2004) VOZ; isolation and characterization of novel vascular plant transcription factors with a one-zinc finger from Arabidopsis thaliana. Plant Cell Physiol 45(7):845–854

    PubMed  CAS  Google Scholar 

  350. Rushton PJ, Somssich IE, Ringler P, Shen QJ (2010) WRKY transcription factors. Trends Plant Sci 15(5):247–258

    PubMed  CAS  Google Scholar 

  351. Marmorstein R, Carey M, Ptashne M, Harrison SC (1992) DNA recognition by GAL4: Structure of a protein-DNA complex. Nature 356(6368):408–414

    PubMed  CAS  Google Scholar 

  352. Cahuzac B, Cerdan R, Felenbok B, Guittet E (2001) The solution structure of an AlcR-DNA complex sheds light onto the unique tight and monomeric DNA binding of a Zn(2)Cys(6) protein. Structure 9(9):827–836

    PubMed  CAS  Google Scholar 

  353. Mamnun YM, Pandjaitan R, Mahe Y, Delahodde A, Kuchler K (2002) The yeast zinc finger regulators Pdr1p and Pdr3p control pleiotropic drug resistance (PDR) as homo- and heterodimers in vivo. Mol Microbiol 46(5):1429–1440

    PubMed  CAS  Google Scholar 

  354. Finn RD, Mistry J, Tate J, Coggill P, Heger A, Pollington JE, Gavin OL, Gunasekaran P, Ceric G, Forslund K, Holm L, Sonnhammer EL, Eddy SR, Bateman A (2010) The Pfam protein families database. Nucleic Acids Res 38(Database issue):D211–222

    Google Scholar 

  355. Hunter S, Apweiler R, Attwood TK, Bairoch A, Bateman A, Binns D, Bork P, Das U, Daugherty L, Duquenne L, Finn RD, Gough J, Haft D, Hulo N, Kahn D, Kelly E, Laugraud A, Letunic I, Lonsdale D, Lopez R, Madera M, Maslen J, McAnulla C, McDowall J, Mistry J, Mitchell A, Mulder N, Natale D, Orengo C, Quinn AF, Selengut JD, Sigrist CJ, Thimma M, Thomas PD, Valentin F, Wilson D, Wu CH, Yeats C (2009) InterPro: The integrative protein signature database. Nucleic Acids Res 37(Database issue):D211–215

    Google Scholar 

  356. Gruschus JM, Tsao DH, Wang LH, Nirenberg M, Ferretti JA (1997) Interactions of the vnd/NK-2 homeodomain with DNA by nuclear magnetic resonance spectroscopy: basis of binding specificity. Biochemistry 36:5372–5380

    Google Scholar 

  357. Remenyi A, Tomilin A, Pohl E, Lins K, Philippsen A, Reinbold R, Scholer HR, Wilmanns M (2001) Differential dimer activities of the transcription factor Oct-1 by DNA-induced interface swapping. Mol Cell 8:569–580

    Google Scholar 

  358. Rastinejad F, Wagner T, Zhao Q, Khorasanizadeh S (2000) Structure of the RXR-RAR DNA-binding complex on the retinoic acid response element DR1. Embo J 19:1045–1054

    Google Scholar 

  359. Lamoureux JS, Stuart D, Tsang R, Wu C, Glover JN (2002) Structure of the sporulation-specific transcription factor Ndt80 bound to DNA. Embo J 21:5721–5732

    Google Scholar 

  360. Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN, Bourne PE (2000) The Protein Data Bank. Nucleic Acids Res 28(1):235–242

    PubMed  CAS  Google Scholar 

  361. Durbin R (1998) Biological sequence analysis: Probabilistic models of proteins and nucleic acids. Cambridge University Press, Cambridge, UK, New York

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthew T. Weirauch .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Weirauch, M.T., Hughes, T. (2011). A Catalogue of Eukaryotic Transcription Factor Types, Their Evolutionary Origin, and Species Distribution. In: Hughes, T. (eds) A Handbook of Transcription Factors. Subcellular Biochemistry, vol 52. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-9069-0_3

Download citation

Publish with us

Policies and ethics