Skip to main content

Transcription Factor Effector Domains

  • Chapter
  • First Online:
A Handbook of Transcription Factors

Part of the book series: Subcellular Biochemistry ((SCBI,volume 52))

Abstract

The last decade has seen an incredible breakthrough in technologies that allow histones, transcription factors (TFs), and RNA polymerases to be precisely mapped throughout the genome. From this research, it is clear that there is a complex interaction between the chromatin landscape and the general transcriptional machinery and that the dynamic control of this interface is central to gene regulation. However, the chromatin remodeling enzymes and general TFs cannot, on their own, recognize and stably bind to promoter or enhancer regions. Rather, they are recruited to cis regulatory regions through interaction with site-specific DNA binding TFs and/or proteins that recognize epigenetic marks such as methylated cytosines or specifically modified amino acids in histones. These “recruitment” factors are modular in structure, reflecting their ability to interact with the genome via one region of the protein and to simultaneously bind to other regulatory proteins via “effector” domains. In this chapter, we provide examples of common effector domains that can function in transcriptional regulation via their ability to (a) interact with the basal transcriptional machinery and general co-activators, (b) interact with other TFs to allow cooperative binding, and (c) directly or indirectly recruit histone and chromatin modifying enzymes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Park PJ (2009) ChIP-seq: advantages and challenges of a maturing technology. Nature Rev Genet (10):669–680

    PubMed  CAS  Google Scholar 

  2. Laird PW, Jaenisch R (1994) DNA methylation and cancer. Human Molecular Genetics 3:1487–1495

    PubMed  CAS  Google Scholar 

  3. Farnham PJ (2009) Insights from genomic profiling of transcription factors. Nature Rev Genet (10):605–616

    PubMed  CAS  Google Scholar 

  4. Birney E, Stamatoyannopoulos JA, Dutta A, Guigo R, Gingeras TR, Margulies EH et al. (2007) Identification and analysis of functional elements in 1% of the human genome by the ENCODE pilot project. Nature 447 (7146):799–816

    PubMed  CAS  Google Scholar 

  5. Vaquerizas JM, Kummerfeld SK, Teichmann SA, Luscombe NM (2009) A census of human transcription factors: function, expression and evolution. Nat Reviews Genetics 10 (4):252–263

    CAS  Google Scholar 

  6. Keegan L, Gill G, Ptashne M (1986) Separation of DNA binding from the transcription-activating function of a eukaryotic regulatory protein. Science 231 (4739):699–704

    PubMed  CAS  Google Scholar 

  7. Lin YS, Carey MF, Ptashne M, Green MR (1988) GAL4 derivatives function alone and synergistically with mammalian activators in vitro. Cell 54 (5):659–664

    PubMed  CAS  Google Scholar 

  8. Brent R, Ptashne M (1985) A eukaryotic transcriptional activator bearing the DNA specificity of a prokaryotic repressor. Cell 43 (3 Pt 2):729–736

    PubMed  CAS  Google Scholar 

  9. Sasai N, Defossez PA (2009) Many paths to one goal? The proteins that recognize methylated DNA in eukaryotes. Int J Dev Biol 53 (2–3):323–334

    PubMed  CAS  Google Scholar 

  10. Jones PL, Veenstra GJ, Wade PA, Vermaak D, Kass SU, Landsberger N et al. (1998) Methylated DNA and MeCP2 recruit histone deacetylases to repress transcription. Nat Genet 19:187–191

    PubMed  CAS  Google Scholar 

  11. Nan X, Ng HH, Johnson CA, Laherty CD, Turner BM, Eisenman RN et al. (1998) Transcriptional repression by the methyl-CpG-binding protein MeCP2 involves a histone deacetylase complex. Nature 393 (6683):386–389

    PubMed  CAS  Google Scholar 

  12. Maurer-Stroh S, Dickens NJ, Hughes-Davies L, Kouzarides T, Eisenhaber F, Ponting CP (2003) The Tudor domain ‘Royal Family’: Tudor, plant Agenet, Chromo, PWWP and MBT domains. Trends Biochem Sci 28 (2):69–74

    PubMed  CAS  Google Scholar 

  13. Ruthenburg AJ, Allis CD, Wysocka J (2007) Methylation of lysine 4 on histone H3: intricacy of writing and reading a single epigenetic mark. Mol Cell 25 (1):15–30

    PubMed  CAS  Google Scholar 

  14. Taverna SD, Li H, Ruthenburg AJ, Allis CD, Patel DJ (2007) How chromatin-binding modules interpret histone modifications: lessons from professional pocket pickers. Nat Struct Mol Biol 14 (11):1025–1040

    PubMed  CAS  Google Scholar 

  15. Bannister AJ, Zegerman P, Partridge JF, Miska EA, Thomas JO, Allshire RC et al. (2001) Selective recognition of methylated lysine 9 on histone H3 by the HP1 chromo domain. Nature 410 (6824):120–124

    PubMed  CAS  Google Scholar 

  16. Lachner M, O’Carroll D, Rea S, Mechtler K, Jenuwein T (2001) Methylation of histone H3 lysine 9 creates a binding site for HP1 proteins. Nature 410 (6824):116–120

    PubMed  CAS  Google Scholar 

  17. Botuyan MV, Lee J, Ward IM, Kim JE, Thompson JR, Chen J et al. (2006) Structural basis for the methylation state-specific recognition of histone H4-K20 by 53BP1 and Crb2 in DNA repair. Cell 127 (7):1361–1373

    PubMed  CAS  Google Scholar 

  18. Kim J, Daniel J, Espejo A, Lake A, Krishna M, Xia L et al. (2006) Tudor, MBT and chromo domains gauge the degree of lysine methylation. EMBO Rep 7 (4):397–403

    PubMed  CAS  Google Scholar 

  19. Mujtaba S, Zeng L, Zhou MM (2007) Structure and acetyl-lysine recognition of the bromodomain. Oncogene 26 (37):5521–5527

    PubMed  CAS  Google Scholar 

  20. Khalil AM, Guttman M, Huarte M, Garber M, Raj A, Rivea Morales D et al. (2009) Many human large intergenic noncoding RNAs associate with chromatin-modifying complexes and affect gene expression. Proc Natl Acad Sci U S A 106 (28):11667–11672

    PubMed  CAS  Google Scholar 

  21. Frietze S, O’Geen H, Blahnik KR, Jin VX, Farnham PJ (2010) ZNF274 recruits the histone methyltransferase SETDB1 to the 3’ ends of ZNF genes. PLoS One 5 (12):e15082

    Google Scholar 

  22. Friedman JR, Fredericks WJ, Jensen DE, Speicher DW, Huang X-P, Neilson EG et al. (1996) KAP-1, a novel corepressor for the highly conserved KRAB repression domain. Genes & Dev 10 (16):2067–2078

    CAS  Google Scholar 

  23. Sripathy SP, Stevens J, Schultz DC (2006) The KAP1 corepressor functions to coordinate the assembly of de novo HP1-demarcated microenvironments of heterochromatin required for KRAB zinc finger protein-mediated transcriptional repression. Mol Cell Biol 26 (22):8623–8638

    PubMed  CAS  Google Scholar 

  24. Lavery DN, McEwan IJ (2005) Structure and function of steroid receptor AF1 transactivation domains: induction of active conformations. Biochem J 391 (Pt 3):449–464

    PubMed  CAS  Google Scholar 

  25. Falkner KC, Pinaire JA, Xiao GH, Geoghegan TE, Prough RA (2001) Regulation of the rat glutathione S-transferase A2 gene by glucocorticoids: involvement of both the glucocorticoid and pregnane X receptors. Mol Pharmacol 60 (3):611–619

    PubMed  CAS  Google Scholar 

  26. Szapary D, Huang Y, Simons SS, Jr. (1999) Opposing effects of corepressor and coactivators in determining the dose-response curve of agonists, and residual agonist activity of antagonists, for glucocorticoid receptor-regulated gene expression. Mol Endocrinol 13 (12):2108–2121

    PubMed  CAS  Google Scholar 

  27. Meijsing SH, Pufall MA, So AY, Bates DL, Chen L, Yamamoto KR (2009) DNA binding site sequence directs glucocorticoid receptor structure and activity. Science 324 (5925):407–410

    PubMed  CAS  Google Scholar 

  28. Thomas MC, Chiang CM (2006) The general transcription machinery and general cofactors. Crit Rev Biochem Mol Biol 41 (3):105–178

    PubMed  CAS  Google Scholar 

  29. Lee TI, Young RA (2000) Transcription of eukaryotic protein-coding genes. Annu Rev Genet 34:77–137

    PubMed  CAS  Google Scholar 

  30. Cujec TP, Cho H, Maldonado E, Meyer J, Reinberg D, Peterlin BM (1997) The human immunodeficiency virus transactivator Tat interacts with the RNA polymerase II holoenzyme. Mol Cell Biol 17 (4):1817–1823

    PubMed  CAS  Google Scholar 

  31. Fry CJ, Slansky JE, Farnham PJ (1997) Position-dependent transcriptional regulation of the murine dihydrofolate reductase promoter by the E2F transactivation domain. Mol Cell Biol 17 (4):1966–1976

    PubMed  CAS  Google Scholar 

  32. Gill G, Pascal E, Tseng ZH, Tjian R (1994) A glutamine-rich hydrophobic patch in transcription factor Sp1 contacts the dTAFII110 component of the Drosophila TFIID complex and mediates transcriptional activation. Proc Natl Acad Sci USA 91 (1):192–196

    PubMed  CAS  Google Scholar 

  33. Goodrich JA, Hoey T, Thut C, Admon A, Tjian R (1993) Drosophila TAFII40 interacts with both a VP16 activation domain and the basal transcription factor TFIIB. Cell 75 (3):519–530

    Google Scholar 

  34. Horikoshi M, Hai T, Lin YS, Green MR, Roeder RG (1988) Transcription factor ATF interacts with the TATA factor to facilitate establishment of a preinitiation complex. Cell 54 (7):1033–1042

    PubMed  CAS  Google Scholar 

  35. Kashanchi F, Piras G, Radonovich MF, Duvall JF, Fattaey A, Chiang CM et al. (1994) Direct interaction of human TFIID with the HIV-1 transactivator tat. Nature 367 (6460):295–299

    PubMed  CAS  Google Scholar 

  36. Lin Y-S, Ha I, Maldonado E, Reinberg D, Green MR (1991) Binding of general transcription factor TFIIB to an acidic activating region. Nature 353 (6344):569–571

    PubMed  CAS  Google Scholar 

  37. Roberts SG, Choy B, Walker SS, Lin YS, Green MR (1995) A role for activator-mediated TFIIB recruitment in diverse aspects of transcriptional regulation. Curr Biol 5 (5):508–516

    PubMed  CAS  Google Scholar 

  38. Stringer KF, Ingles CJ, Greenblatt J (1990) Direct and selective binding of an acidic transcriptional activation domain to the TATA-box factor TFIID. Nature 345 (6278):783–786

    PubMed  CAS  Google Scholar 

  39. Zhu H, Joliot V, Prywes R (1994) Role of transcription factor TFIIF in serum response factor-activated transcription. J Biol Chem 269 (5):3489–3497

    PubMed  CAS  Google Scholar 

  40. Kim TK, Roeder RG (1994) Proline-rich activator CTF1 targets the TFIIB assembly step during transcriptional activation. Proc Natl Acad Sci U S A 91 (10):4170–4174

    PubMed  CAS  Google Scholar 

  41. Chiang C-M, Roeder RG (1995) Cloning of an intrinsic human TFIID subunit that interacts with multiple transcriptional activators. Science 267 (5197):531–536

    PubMed  CAS  Google Scholar 

  42. Tanese N, Pugh BF, Tjian R (1991) Coactivators for a proline-rich activator purified from the multisubunit human TFIID complex. Genes Dev 5:2212–2224

    PubMed  CAS  Google Scholar 

  43. Hoey T, Weinzierl RO, Gill G, Chen JL, Dynlacht BD, Tjian R (1993) Molecular cloning and functional analysis of Drosophila TAF110 reveal properties expected of coactivators. Cell 72 (2):247–260

    PubMed  CAS  Google Scholar 

  44. Chen J-L, Attardi DL, Verrijzer CP, Yokomori K, Tjian R (1994) Assembly of recombinant TFIID reveals differential coactivator requirements for distinct transcriptional activators. Cell 79 (1):93–105

    PubMed  CAS  Google Scholar 

  45. Blair WS, Bogerd HP, Madore SJ, Cullen BR (1994) Mutational analysis of the transcription activation domain of RelA: identification of a highly synergistic minimal acidic activation module. Mol Cell Biol 14 (11):7226–7234

    PubMed  CAS  Google Scholar 

  46. Lin J, Chen J, Elenbaas B, Levine AJ (1994) Several hydrophobic amino acids in the p53 amino-terminal domain are required for transcriptional activation, binding to mdm-2 and the adenovirus 5 E1B 55-kD protein. Genes & Dev 8 (10):1235–1246

    CAS  Google Scholar 

  47. Blau J, Xiao H, McCracken S, O’Hare P, Greenblatt J, Bentley D (1996) Three functional classes of transcriptional activation domains. Mol Cell Biol 16 (5):2044–2055

    PubMed  CAS  Google Scholar 

  48. Choy B, Green MR (1993) Eukaryotic activators function during multiple steps of preinitiation complex assembly. Nature 366 (6455):531–536

    PubMed  CAS  Google Scholar 

  49. Krumm A, Hickey LB, Groudine M (1995) Promoter-proximal pausing of RNA polymerase II defines a general rate-limiting step after transcription initiation. Genes Dev 9 (5):559–572

    PubMed  CAS  Google Scholar 

  50. Mahanta SK, Scholl T, Yang FC, Strominger JL (1997) Transactivation by CIITA, the type II bare lymphocyte syndrome-associated factor, requires participation of multiple regions of the TATA box binding protein. Proc Natl Acad Sci U S A 94 (12):6324–6329

    PubMed  CAS  Google Scholar 

  51. Yankulov K, Blau J, Purton T, Roberts S, Bentley DL (1994) Transcriptional elongation by RNA polymerase II is stimulated by transactivators. Cell 77 (5):749–759

    PubMed  CAS  Google Scholar 

  52. Fuda NJ, Ardehali MB, Lis JT (2009) Defining mechanisms that regulate RNA polymerase II transcription in vivo. Nature 461 (7261):186–192

    PubMed  CAS  Google Scholar 

  53. Rahl PB, Lin CY, Seila AC, Flynn RA, McCuine S, Burge CB et al. (2010) c-Myc regulates transcriptional pause release. Cell 141 (3):432–445

    PubMed  CAS  Google Scholar 

  54. Selth LA, Sigurdsson S, Svejstrup JQ (2010) Transcript Elongation by RNA Polymerase II. Annu Rev Biochem 79:271–293

    PubMed  CAS  Google Scholar 

  55. Eberhardy SR, Farnham PJ (2002) Myc recruits P-TEFb to mediate the final step in the transcriptional activation of the cad promoter. J Biol Chem 277 (42):40156–40162

    PubMed  CAS  Google Scholar 

  56. Cowling VH, Cole MD (2007) The Myc transactivation domain promotes global phosphorylation of the RNA polymerase II carboxy-terminal domain independently of direct DNA binding. Mol Cell Biol 27 (6):2059–2073

    PubMed  CAS  Google Scholar 

  57. Minezaki Y, Homma K, Kinjo AR, Nishikawa K (2006) Human transcription factors contain a high fraction of intrinsically disordered regions essential for transcriptional regulation. J Mol Biol 359 (4):1137–1149

    PubMed  CAS  Google Scholar 

  58. Ayed A, Mulder FA, Yi GS, Lu Y, Kay LE, Arrowsmith CH (2001) Latent and active p53 are identical in conformation. Nat Struct Biol 8 (9):756–760

    PubMed  CAS  Google Scholar 

  59. Dawson R, Muller L, Dehner A, Klein C, Kessler H, Buchner J (2003) The N-terminal domain of p53 is natively unfolded. J Mol Biol 332 (5):1131–1141

    PubMed  CAS  Google Scholar 

  60. Chi SW, Lee SH, Kim DH, Ahn MJ, Kim JS, Woo JY et al. (2005) Structural details on mdm2-p53 interaction. J Biol Chem 280 (46):38795–38802

    PubMed  CAS  Google Scholar 

  61. Uesugi M, Verdine GL (1999) The alpha-helical FXXPhiPhi motif in p53: TAF interaction and discrimination by MDM2. Proc Natl Acad Sci U S A 96 (26):14801–14806

    PubMed  CAS  Google Scholar 

  62. Garza AS, Ahmad N, Kumar R (2009) Role of intrinsically disordered protein regions/domains in transcriptional regulation. Life Sci 84 (7–8):189–193

    PubMed  CAS  Google Scholar 

  63. Brzozowski AM, Pike AC, Dauter Z, Hubbard RE, Bonn T, Engstrom O et al. (1997) Molecular basis of agonism and antagonism in the oestrogen receptor. Nature 389 (6652):753–758

    PubMed  CAS  Google Scholar 

  64. Kumar R, Betney R, Li J, Thompson EB, McEwan IJ (2004) Induced alpha-helix structure in AF1 of the androgen receptor upon binding transcription factor TFIIF. Biochemistry 43 (11):3008–3013

    PubMed  CAS  Google Scholar 

  65. Pike AC, Brzozowski AM, Hubbard RE, Bonn T, Thorsell AG, Engstrom O et al. (1999) Structure of the ligand-binding domain of oestrogen receptor beta in the presence of a partial agonist and a full antagonist. EMBO J 18 (17):4608–4618

    PubMed  CAS  Google Scholar 

  66. Kumar R, Litwack G (2009) Structural and functional relationships of the steroid hormone receptors’ N-terminal transactivation domain. Steroids 74 (12):877–883

    PubMed  CAS  Google Scholar 

  67. Panne D (2008) The enhanceosome. Curr Opin Structural Biol 18 (2):236–242

    CAS  Google Scholar 

  68. Huber HE, Edwards G, Goodhart PJ, Patrick DR, Huang PS, Ivey-Hoyle M et al. (1993) Transcription factor E2F binds as a heterodimer. Proc Natl Acad Sci USA 90 (8):3525–3529

    PubMed  CAS  Google Scholar 

  69. Helin K, Wu C-L, Fattaey AR, Lees JA, Dynlacht BD, Ngwu C et al. (1993) Heterodimerization of the transcription factors E2F-1 and DP-1 leads to cooperative trans-activation. Genes Dev 7 (10):1850–1861

    PubMed  CAS  Google Scholar 

  70. Mangelsdorf DJ, Evans RM (1995) The RXR heterodimers and orphan receptors. Cell 83 (6):841–850

    PubMed  CAS  Google Scholar 

  71. Remenyi A, Lins K, Nissen LJ, Reinbold R, Scholer HR, Wilmanns M (2003) Crystal structure of a POU/HMG/DNA ternary complex suggests differential assembly of Oct4 and Sox2 on two enhancers. Genes Dev 17 (16):2048–2059

    PubMed  CAS  Google Scholar 

  72. Remenyi A, Tomilin A, Scholer HR, Wilmanns M (2002) Differential activity by DNA-induced quarternary structures of POU transcription factors. Biochem Pharmacol 64 (5-6):979–984

    PubMed  CAS  Google Scholar 

  73. Kitayner M, Rozenberg H, Rohs R, Suad O, Rabinovich D, Honig B et al. (2010) Diversity in DNA recognition by p53 revealed by crystal structures with Hoogsteen base pairs. Nat Struct Mol Biol 17 (4):423–429

    PubMed  CAS  Google Scholar 

  74. Leng X, Blanco J, Tsai SY, Ozato K, O’Malley BW, Tsai MJ (1994) Mechanisms for synergistic activation of thyroid hormone receptor and retinoid X receptor on different response elements. J Biol Chem 269 (50):31436–31442

    PubMed  CAS  Google Scholar 

  75. Reginato MJ, Zhang J, Lazar MA (1996) DNA-independent and DNA-dependent mechanisms regulate the differential heterodimerization of the isoforms of the thyroid hormone receptor with retinoid X receptor. J Biol Chem 271 (45):28199–28205

    PubMed  CAS  Google Scholar 

  76. Squazzo SL, Komashko VM, O’Geen H, Krig S, Jin VX, Jang S-W et al. (2006) Suz12 silences large regions of the genome in a cell type-specific manner. Genome Research 16 (7):890–900

    PubMed  CAS  Google Scholar 

  77. Jin VX, O’Geen H, Iyengar S, Green R, Farnham PJ (2007) Identification of an OCT4 and SRY regulatory module using integrated computational and experimental genomics approaches. Genome Research 17 (6):807–817

    PubMed  CAS  Google Scholar 

  78. Mathur D, Danford TW, Boyer LA, Young RA, Gifford DK, Jaenisch R (2008) Analysis of the mouse embryonic stem cell regulatory networks obtained by ChIP-chip and ChIP-PET. Genome Biol 9 (8):R126

    PubMed  Google Scholar 

  79. Chen X, Xu H, Yuan P, Fang F, Huss M, Vega VB et al. (2008) Integration of external signaling pathways with the core transcriptional network in embryonic stem cells. Cell 133 (6):1106–1117

    PubMed  CAS  Google Scholar 

  80. Rodda DJ, Chew JL, Lim LH, Loh YH, Wang B, Ng HH et al. (2005) Transcriptional regulation of nanog by OCT4 and SOX2. J Biol Chem 280 (26):24731–24737

    PubMed  CAS  Google Scholar 

  81. Kouzarides T (2007) Chromatin modifications and their function. Cell 128:693–705

    PubMed  CAS  Google Scholar 

  82. Trouche D, Cook A, Kouzarides T (1996) The CBP co-activator stimulates E2F1/DP1 activity. Nucleic Acids Res 24 (21):4139–4145

    PubMed  CAS  Google Scholar 

  83. Fry CJ, Pearson A, Malinowski E, Bartley SM, Greenblatt J, Farnham PJ (1999) Activation of the murine dihydrofolate reductase promoter by E2F1: A requirement for CBP recruitment. J Biol Chem 274 (22):15883–15891

    PubMed  CAS  Google Scholar 

  84. Ogawa H, Ishiguro K, Gaubatz S, Livingston DM, Nakatani Y (2002) A complex with chromatin modifiers that occupies E2F- and Myc-responsive genes in G0 cells. Science 296 (5570):1132–1136

    PubMed  CAS  Google Scholar 

  85. Trimarchi JM, Fairchild B, Wen J, Lees JA (2001) The E2F6 transcription factor is a component of the mammalian Bmi1-containing polycomb complex. Proc Natl Acad Sci U S A 95 (6):2850–2855

    Google Scholar 

  86. Attwooll C, Oddi S, Cartwright P, Prosperini E, Agger K, Steensgaard P et al. (2005) A novel repressive E2F6 complex containing the polycomb group protein, EPC1, that interacts with EZH2 in a proliferation-specific manner. J Biol Chem 280 (2):1199–1208

    PubMed  CAS  Google Scholar 

  87. Xu X, Bieda M, Jin VX, Rabinovich A, Oberley MJ, Green R et al. (2007) A comprehensive ChIP-chip analysis of E2F1, E2F4, and E2F6 in normal and tumor cells reveals iterchangeable roles of E2F family members. Genome Res 17 (11):1550–1561

    PubMed  CAS  Google Scholar 

  88. Oberley MJ, Inman D, Farnham PJ (2003) E2F6 negatively regulates BRCA1 in human cancer cells without methylation of histone H3 on lysine 9. J Biol Chem 278 (43):42466–42476

    PubMed  CAS  Google Scholar 

  89. Vandel L, Nicolas E, Vaute O, Ferreira R, Ait-si-ali S, Trouche D (2001) Transcriptional repression by the retinoblastoma protein through the recruitment of a histone methyltransferase. Mol Cell Biol 21 (19):6484–6494

    PubMed  CAS  Google Scholar 

  90. Gonzalo S, Garcia-Cao M, Fraga MF, Schotta G, Peters AH, Cotter SE et al. (2005) Role of the RB1 family in stabilizing histone methylation at constitutive heterochromatin. Nat Cell Biol 7 (4):420–428

    PubMed  CAS  Google Scholar 

  91. Robertson KD, Ait-Si-Ali S, Yokochi T, Wade PA, Jones PL, Wolffe AP (2000) DNMT1 forms a complex with Rb, E2F1 and HDAC1 and represses transcription from E2F-responsive promoters. nature genetics 25 (3):338–342

    PubMed  CAS  Google Scholar 

  92. Pradhan S, Kim G-D (2002) The retinoblastoma gene product interacts with maintenance human DNA (cytosine-5) methyltransferase and modulates its activity. EMBO J 21:779–788

    PubMed  CAS  Google Scholar 

  93. Trojer P, Li G, Sims RJ, 3rd, Vaquero A, Kalakonda N, Boccuni P et al. (2007) L3MBTL1, a histone-methylation-dependent chromatin lock. Cell 129 (5):915–928

    PubMed  CAS  Google Scholar 

  94. Trojer P, Reinberg D (2008) Beyond histone methyl-lysine binding: how malignant brain tumor (MBT) protein L3MBTL1 impacts chromatin structure. Cell Cycle 7 (5):578–585

    PubMed  CAS  Google Scholar 

  95. Trojer P, Zhang J, Yonezawa M, Schmidt A, Zheng H, Jenuwein T et al. (2009) Dynamic Histone H1 Isotype 4 Methylation and Demethylation by Histone Lysine Methyltransferase G9a/KMT1C and the Jumonji Domain-containing JMJD2/KDM4 Proteins. J Biol Chem 284 (13):8395–8405

    PubMed  CAS  Google Scholar 

  96. Longworth MS, Dyson NJ (2010) pRb, a local chromatin organizer with global possibilities. Chromosoma 119 (1):1–11

    PubMed  CAS  Google Scholar 

  97. Rosenfeld MG, Lunyak VV, Glass CK (2006) Sensors and signals: a coactivator/corepressor/epigenetic code for integrating signal-dependent programs of transcriptional response. Genes Dev 20 (11):1405–1428

    PubMed  CAS  Google Scholar 

  98. Lee YH, Stallcup MR (2009) Minireview: protein arginine methylation of nonhistone proteins in transcriptional regulation. Mol Endocrinol 23 (4):425–433

    PubMed  CAS  Google Scholar 

  99. Spange S, Wagner T, Heinzel T, Kramer OH (2009) Acetylation of non-histone proteins modulates cellular signalling at multiple levels. Int J Biochem Cell Biol 41 (1):185–198

    PubMed  CAS  Google Scholar 

  100. Lee SK, Kim HJ, Na SY, Kim TS, Choi HS, Im SY et al. (1998) Steroid receptor coactivator-1 coactivates activating protein-1-mediated transactivations through interaction with the c-Jun and c-Fos subunits. J Biol Chem 273 (27):16651–16654

    PubMed  CAS  Google Scholar 

  101. Li G, Heaton JH, Gelehrter TD (2006) Role of steroid receptor coactivators in glucocorticoid and transforming growth factor beta regulation of plasminogen activator inhibitor gene expression. Mol Endocrinol 20 (5):1025–1034

    PubMed  CAS  Google Scholar 

  102. Gao Z, Chiao P, Zhang X, Lazar MA, Seto E, Young HA et al. (2005) Coactivators and corepressors of NF-kappaB in IkappaB alpha gene promoter. J Biol Chem 280 (22):21091–21098

    PubMed  CAS  Google Scholar 

  103. Louie MC, Zou JX, Rabinovich A, Chen HW (2004) ACTR/AIB1 functions as an E2F1 coactivator to promote breast cancer cell proliferation and antiestrogen resistance. Mol Cell Biol 24 (12):5157–5171

    PubMed  CAS  Google Scholar 

  104. Batsche E, Desroches J, Bilodeau S, Gauthier Y, Drouin J (2005) Rb enhances p160/SRC coactivator-dependent activity of nuclear receptors and hormone responsiveness. J Biol Chem 280 (20):19746–19756

    PubMed  CAS  Google Scholar 

  105. Lee SK, Kim HJ, Kim JW, Lee JW (1999) Steroid receptor coactivator-1 and its family members differentially regulate transactivation by the tumor suppressor protein p53. Mol Endocrinol 13 (11):1924–1933

    PubMed  CAS  Google Scholar 

  106. Belandia B, Parker MG (2003) Nuclear receptors: a rendezvous for chromatin remodeling factors. Cell 114 (3):277–280

    PubMed  CAS  Google Scholar 

  107. Privalsky ML (2004) The role of corepressors in transcriptional regulation by nuclear hormone receptors. Annu Rev Physiol 66:315–360

    PubMed  CAS  Google Scholar 

  108. Melnick A, Carlile G, Ahmad KF, Kiang CL, Corcoran C, Bardwell V et al. (2002) Critical residues within the BTB domain of PLZF and Bcl-6 modulate interaction with corepressors. Mol Cell Biol 22 (6):1804–1818

    PubMed  CAS  Google Scholar 

  109. Yoon HG, Chan DW, Reynolds AB, Qin J, Wong J (2003) N-CoR mediates DNA methylation-dependent repression through a methyl CpG binding protein Kaiso. Mol Cell 12 (3):723–734

    PubMed  CAS  Google Scholar 

  110. Muto A, Hoshino H, Madisen L, Yanai N, Obinata M, Karasuyama H et al. (1998) Identification of Bach2 as a B-cell-specific partner for small maf proteins that negatively regulate the immunoglobulin heavy chain gene 3’ enhancer. EMBO J 17 (19):5734–5743

    PubMed  CAS  Google Scholar 

  111. Dhordain P, Albagli O, Lin RJ, Ansieau S, Quief S, Leutz A et al. (1997) Corepressor SMRT binds the BTB/POZ repressing domain of the LAZ3/BCL6 oncoprotein. Proc Natl Acad Sci U S A 94 (20):10762–10767

    PubMed  CAS  Google Scholar 

  112. Kelly KF, Daniel JM (2006) POZ for effect–POZ-ZF transcription factors in cancer and development. Trends Cell Biol 16 (11):578–587

    PubMed  CAS  Google Scholar 

  113. Urrutia R (2003) KRAB-containing zinc-finger repressor proteins. Genome Biol 4 (10):231

    PubMed  Google Scholar 

  114. Schultz DC, Ayyanathan K, Negorev D, Maul GG, Rauscher FJ, 3rd (2002) SETDB1: a novel KAP-1-associated histone H3, lysine 9-specific methyltransferase that contributes to HP1-mediated silencing of euchromatic genes by KRAB zinc-finger proteins. Genes Dev 16 (8):919–932

    PubMed  CAS  Google Scholar 

  115. Schultz DC, Friedman JR, Rauscher F Jr (2001) Targeting histone deacetylase complexes via KRAB-zinc finger proteins: the PhD and bromodomains of KAP-1 form a coopeative unit that recruits a novel isoform of the Mi-2alpha subunit of NuRD. Genes Dev 15 (4):428–443

    PubMed  CAS  Google Scholar 

  116. Groner AC, Meylan S, Ciuffi A, Zangger N, Ambrosini G, Denervaud N et al. (2010) KRAB-zinc finger proteins and KAP1 can mediate long-range transcriptional repression through heterochromatin spreading. PLoS Genet 6 (3):e1000869

    PubMed  Google Scholar 

  117. Finn RD, Mistry J, Tate J, Coggill P, Heger A, Pollington JE et al. (2010) The Pfam protein families database. Nucleic Acids Res 38 (Database issue):D211–222

    PubMed  CAS  Google Scholar 

  118. Fry CJ, Farnham PJ (1999) Context-dependent transcriptional regulation. J Biol Chem 274 (42):29583–29586

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peggy J. Farnham .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Frietze, S., Farnham, P.J. (2011). Transcription Factor Effector Domains. In: Hughes, T. (eds) A Handbook of Transcription Factors. Subcellular Biochemistry, vol 52. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-9069-0_12

Download citation

Publish with us

Policies and ethics