Skip to main content

Interactions of Transcription Factors with Chromatin

  • Chapter
  • First Online:
A Handbook of Transcription Factors

Part of the book series: Subcellular Biochemistry ((SCBI,volume 52))

  • 4484 Accesses

Abstract

Sequence-specific transcription factors (TFs) play a central role in regulating transcription initiation by directing the recruitment and activity of the general transcription machinery and accessory factors. It is now well established that many of the effects exerted by TFs in eukaryotes are mediated through interactions with a host of coregulators that modify the chromatin state, resulting in a more open (in case of activation) or closed conformation (in case of repression). The relationship between TFs and chromatin is a two-way street, however, as chromatin can in turn influence the recognition and binding of target sequences by TFs. The aim of this chapter is to highlight how this dynamic interplay between TF-directed remodelling of chromatin and chromatin-adjusted targeting of TF binding determines where and how transcription is initiated, and to what degree it is productive.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lee TI, Young RA (2000) Transcription of eukaryotic protein-coding genes. Annu Rev Genet 34:77–137

    PubMed  CAS  Google Scholar 

  2. van Hijum SA, Medema MH, Kuipers OP (2009) Mechanisms and evolution of control logic in prokaryotic transcriptional regulation. Microbiol Mol Biol Rev 73 (3):481–509

    PubMed  Google Scholar 

  3. Kornberg RD, Thomas JO (1974) Chromatin structure; oligomers of the histones. Science 184 (139):865–868

    PubMed  CAS  Google Scholar 

  4. Richmond TJ, Finch JT, Rushton B, Rhodes D, Klug A (1984) Structure of the nucleosome core particle at 7 A resolution. Nature 311 (5986):532–537

    PubMed  CAS  Google Scholar 

  5. Knezetic JA, Luse DS (1986) The presence of nucleosomes on a DNA template prevents initiation by RNA polymerase II in vitro. Cell 45 (1):95–104

    PubMed  CAS  Google Scholar 

  6. Lorch Y, LaPointe JW, Kornberg RD (1987) Nucleosomes inhibit the initiation of transcription but allow chain elongation with the displacement of histones. Cell 49 (2):203–210

    PubMed  CAS  Google Scholar 

  7. Han M, Grunstein M (1988) Nucleosome loss activates yeast downstream promoters in vivo. Cell 55 (6):1137–1145

    PubMed  CAS  Google Scholar 

  8. Hager GL, McNally JG, Misteli T (2009) Transcription dynamics. Mol Cell 35 (6):741–753

    PubMed  CAS  Google Scholar 

  9. Segal E, Widom J (2009a) What controls nucleosome positions? Trends Genet 25 (8):335–343

    PubMed  CAS  Google Scholar 

  10. Wu C, Bingham PM, Livak KJ, Holmgren R, Elgin SC (1979) The chromatin structure of specific genes: I. Evidence for higher order domains of defined DNA sequence. Cell 16 (4):797–806

    PubMed  CAS  Google Scholar 

  11. Giresi PG, Kim J, McDaniell RM, Iyer VR, Lieb JD (2007) FAIRE (Formaldehyde-Assisted Isolation of Regulatory Elements) isolates active regulatory elements from human chromatin. Genome Res 17 (6):877–885

    PubMed  CAS  Google Scholar 

  12. Lee W, Tillo D, Bray N, Morse RH, Davis RW, Hughes TR, Nislow C (2007) A high-resolution atlas of nucleosome occupancy in yeast. Nat Genet 39 (10):1235–1244

    PubMed  CAS  Google Scholar 

  13. Mavrich TN, Jiang C, Ioshikhes IP, Li X, Venters BJ, Zanton SJ, Tomsho LP, Qi J, Glaser RL, Schuster SC, Gilmour DS, Albert I, Pugh BF (2008a) Nucleosome organization in the Drosophila genome. Nature 453 (7193):358–362

    PubMed  CAS  Google Scholar 

  14. Schones DE, Cui K, Cuddapah S, Roh TY, Barski A, Wang Z, Wei G, Zhao K (2008) Dynamic regulation of nucleosome positioning in the human genome. Cell 132 (5):887–898

    PubMed  CAS  Google Scholar 

  15. Yuan GC, Liu YJ, Dion MF, Slack MD, Wu LF, Altschuler SJ, Rando OJ (2005) Genome-scale identification of nucleosome positions in S. cerevisiae. Science 309 (5734):626–630

    PubMed  CAS  Google Scholar 

  16. Boyle AP, Davis S, Shulha HP, Meltzer P, Margulies EH, Weng Z, Furey TS, Crawford GE (2008) High-resolution mapping and characterization of open chromatin across the genome. Cell 132 (2):311–322

    PubMed  CAS  Google Scholar 

  17. Hesselberth JR, Chen X, Zhang Z, Sabo PJ, Sandstrom R, Reynolds AP, Thurman RE, Neph S, Kuehn MS, Noble WS, Fields S, Stamatoyannopoulos JA (2009) Global mapping of protein-DNA interactions in vivo by digital genomic footprinting. Nat Methods 6 (4):283–289

    PubMed  CAS  Google Scholar 

  18. Barski A, Cuddapah S, Cui K, Roh TY, Schones DE, Wang Z, Wei G, Chepelev I, Zhao K (2007) High-resolution profiling of histone methylations in the human genome. Cell 129 (4):823–837

    PubMed  CAS  Google Scholar 

  19. Harbison CT, Gordon DB, Lee TI, Rinaldi NJ, Macisaac KD, Danford TW, Hannett NM, Tagne JB, Reynolds DB, Yoo J, Jennings EG, Zeitlinger J, Pokholok DK, Kellis M, Rolfe PA, Takusagawa KT, Lander ES, Gifford DK, Fraenkel E, Young RA (2004) Transcriptional regulatory code of a eukaryotic genome. Nature 431 (7004):99–104

    PubMed  CAS  Google Scholar 

  20. Heintzman ND, Stuart RK, Hon G, Fu Y, Ching CW, Hawkins RD, Barrera LO, Van Calcar S, Qu C, Ching KA, Wang W, Weng Z, Green RD, Crawford GE, Ren B (2007) Distinct and predictive chromatin signatures of transcriptional promoters and enhancers in the human genome. Nat Genet 39 (3):311–318

    PubMed  CAS  Google Scholar 

  21. Kim TH, Barrera LO, Zheng M, Qu C, Singer MA, Richmond TA, Wu Y, Green RD, Ren B (2005) A high-resolution map of active promoters in the human genome. Nature 436 (7052):876–880

    PubMed  CAS  Google Scholar 

  22. Pokholok DK, Harbison CT, Levine S, Cole M, Hannett NM, Lee TI, Bell GW, Walker K, Rolfe PA, Herbolsheimer E, Zeitlinger J, Lewitter F, Gifford DK, Young RA (2005) Genome-wide map of nucleosome acetylation and methylation in yeast. Cell 122 (4):517–527

    PubMed  CAS  Google Scholar 

  23. Wang Z, Zang C, Rosenfeld JA, Schones DE, Barski A, Cuddapah S, Cui K, Roh TY, Peng W, Zhang MQ, Zhao K (2008) Combinatorial patterns of histone acetylations and methylations in the human genome. Nat Genet 40 (7):897–903

    PubMed  CAS  Google Scholar 

  24. Dion MF, Kaplan T, Kim M, Buratowski S, Friedman N, Rando OJ (2007) Dynamics of replication-independent histone turnover in budding yeast. Science 315 (5817):1405–1408

    PubMed  CAS  Google Scholar 

  25. Linger J, Tyler JK (2006) Global replication-independent histone H4 exchange in budding yeast. Eukaryot Cell 5 (10):1780–1787

    PubMed  CAS  Google Scholar 

  26. Fletcher TM, Xiao N, Mautino G, Baumann CT, Wolford R, Warren BS, Hager GL (2002) ATP-dependent mobilization of the glucocorticoid receptor during chromatin remodeling. Mol Cell Biol 22 (10):3255–3263

    PubMed  CAS  Google Scholar 

  27. Karpova TS, Chen TY, Sprague BL, McNally JG (2004) Dynamic interactions of a transcription factor with DNA are accelerated by a chromatin remodeller. EMBO Rep 5 (11):1064–1070

    PubMed  CAS  Google Scholar 

  28. McNally JG, Muller WG, Walker D, Wolford R, Hager GL (2000) The glucocorticoid receptor: rapid exchange with regulatory sites in living cells. Science 287 (5456):1262–1265

    PubMed  CAS  Google Scholar 

  29. Sharp ZD, Mancini MG, Hinojos CA, Dai F, Berno V, Szafran AT, Smith KP, Lele TP, Ingber DE, Mancini MA (2006) Estrogen-receptor-alpha exchange and chromatin dynamics are ligand- and domain-dependent. J Cell Sci 119 (Pt 19):4101–4116

    PubMed  CAS  Google Scholar 

  30. Farnham PJ (2009) Insights from genomic profiling of transcription factors. Nat Rev Genet 10 (9):605–616

    PubMed  CAS  Google Scholar 

  31. Li B, Carey M, Workman JL (2007) The role of chromatin during transcription. Cell 128 (4):707–719

    PubMed  CAS  Google Scholar 

  32. Venters BJ, Pugh BF (2009) How eukaryotic genes are transcribed. Crit Rev Biochem Mol Biol 44 (2-3):117–141

    PubMed  CAS  Google Scholar 

  33. Weake VM, Workman JL (2010) Inducible gene expression: diverse regulatory mechanisms. Nat Rev Genet 11 (6):426–437

    PubMed  CAS  Google Scholar 

  34. Kouzarides T (2007) Chromatin modifications and their function. Cell 128 (4):693–705

    PubMed  CAS  Google Scholar 

  35. Reid G, Gallais R, Metivier R (2009) Marking time: the dynamic role of chromatin and covalent modification in transcription. Int J Biochem Cell Biol 41 (1):155–163

    PubMed  CAS  Google Scholar 

  36. Strahl BD, Allis CD (2000) The language of covalent histone modifications. Nature 403 (6765):41–45

    PubMed  CAS  Google Scholar 

  37. Rice JC, Allis CD (2001) Histone methylation versus histone acetylation: new insights into epigenetic regulation. Curr Opin Cell Biol 13 (3):263–273

    PubMed  CAS  Google Scholar 

  38. Kurdistani SK, Tavazoie S, Grunstein M (2004) Mapping global histone acetylation patterns to gene expression. Cell 117 (6):721–733

    PubMed  CAS  Google Scholar 

  39. Liu CL, Kaplan T, Kim M, Buratowski S, Schreiber SL, Friedman N, Rando OJ (2005) Single-nucleosome mapping of histone modifications in S. cerevisiae. PLoS Biol 3 (10):e328

    PubMed  Google Scholar 

  40. Roh TY, Ngau WC, Cui K, Landsman D, Zhao K (2004) High-resolution genome-wide mapping of histone modifications. Nat Biotechnol 22 (8):1013–1016

    PubMed  CAS  Google Scholar 

  41. Sinha I, Wiren M, Ekwall K (2006) Genome-wide patterns of histone modifications in fission yeast. Chromosome Res 14 (1):95–105

    PubMed  CAS  Google Scholar 

  42. Bernstein BE, Kamal M, Lindblad-Toh K, Bekiranov S, Bailey DK, Huebert DJ, McMahon S, Karlsson EK, Kulbokas EJ, 3rd, Gingeras TR, Schreiber SL, Lander ES (2005) Genomic maps and comparative analysis of histone modifications in human and mouse. Cell 120 (2):169–181

    PubMed  CAS  Google Scholar 

  43. Liang G, Lin JC, Wei V, Yoo C, Cheng JC, Nguyen CT, Weisenberger DJ, Egger G, Takai D, Gonzales FA, Jones PA (2004) Distinct localization of histone H3 acetylation and H3-K4 methylation to the transcription start sites in the human genome. Proc Natl Acad Sci U S A 101 (19):7357–7362

    PubMed  CAS  Google Scholar 

  44. Roh TY, Cuddapah S, Zhao K (2005) Active chromatin domains are defined by acetylation islands revealed by genome-wide mapping. Genes Dev 19 (5):542–552

    PubMed  CAS  Google Scholar 

  45. Schubeler D, MacAlpine DM, Scalzo D, Wirbelauer C, Kooperberg C, van Leeuwen F, Gottschling DE, O’Neill LP, Turner BM, Delrow J, Bell SP, Groudine M (2004) The histone modification pattern of active genes revealed through genome-wide chromatin analysis of a higher eukaryote. Genes Dev 18 (11):1263–1271

    PubMed  Google Scholar 

  46. Shahbazian MD, Grunstein M (2007) Functions of site-specific histone acetylation and deacetylation. Annu Rev Biochem 76:75–100

    PubMed  CAS  Google Scholar 

  47. Wiren M, Silverstein RA, Sinha I, Walfridsson J, Lee HM, Laurenson P, Pillus L, Robyr D, Grunstein M, Ekwall K (2005) Genomewide analysis of nucleosome density histone acetylation and HDAC function in fission yeast. Embo J 24 (16):2906–2918

    PubMed  CAS  Google Scholar 

  48. Bannister AJ, Kouzarides T (2005) Reversing histone methylation. Nature 436 (7054):1103–1106

    PubMed  CAS  Google Scholar 

  49. Kouzarides T (2000) Acetylation: a regulatory modification to rival phosphorylation? Embo J 19 (6):1176–1179

    PubMed  CAS  Google Scholar 

  50. Spange S, Wagner T, Heinzel T, Kramer OH (2009) Acetylation of non-histone proteins modulates cellular signalling at multiple levels. Int J Biochem Cell Biol 41 (1):185–198

    PubMed  CAS  Google Scholar 

  51. Yang XJ (2004) The diverse superfamily of lysine acetyltransferases and their roles in leukemia and other diseases. Nucleic Acids Res 32 (3):959–976

    PubMed  CAS  Google Scholar 

  52. Ge Z, Liu C, Bjorkholm M, Gruber A, Xu D (2006) Mitogen-activated protein kinase cascade-mediated histone H3 phosphorylation is critical for telomerase reverse transcriptase expression/telomerase activation induced by proliferation. Mol Cell Biol 26 (1):230–237

    PubMed  CAS  Google Scholar 

  53. Mahadevan LC, Willis AC, Barratt MJ (1991) Rapid histone H3 phosphorylation in response to growth factors, phorbol esters, okadaic acid, and protein synthesis inhibitors. Cell 65 (5):775–783

    PubMed  CAS  Google Scholar 

  54. Nathan D, Ingvarsdottir K, Sterner DE, Bylebyl GR, Dokmanovic M, Dorsey JA, Whelan KA, Krsmanovic M, Lane WS, Meluh PB, Johnson ES, Berger SL (2006) Histone sumoylation is a negative regulator in Saccharomyces cerevisiae and shows dynamic interplay with positive-acting histone modifications. Genes Dev 20 (8):966–976

    PubMed  CAS  Google Scholar 

  55. Van Rechem C, Boulay G, Pinte S, Stankovic-Valentin N, Guerardel C, Leprince D (2010) Differential regulation of HIC1 target genes by CtBP and NuRD, via an acetylation/SUMOylation switch, in quiescent versus proliferating cells. Mol Cell Biol 30 (16):4045–4059

    PubMed  Google Scholar 

  56. Chandrasekharan MB, Huang F, Sun ZW (2010) Histone H2B ubiquitination and beyond: Regulation of nucleosome stability, chromatin dynamics and the trans-histone H3 methylation. Epigenetics 5 (6)

    Google Scholar 

  57. Wang H, Zhai L, Xu J, Joo HY, Jackson S, Erdjument-Bromage H, Tempst P, Xiong Y, Zhang Y (2006) Histone H3 and H4 ubiquitylation by the CUL4-DDB-ROC1 ubiquitin ligase facilitates cellular response to DNA damage. Mol Cell 22 (3):383–394

    PubMed  Google Scholar 

  58. Zhu B, Zheng Y, Pham AD, Mandal SS, Erdjument-Bromage H, Tempst P, Reinberg D (2005) Monoubiquitination of human histone H2B: the factors involved and their roles in HOX gene regulation. Mol Cell 20 (4):601–611

    PubMed  CAS  Google Scholar 

  59. Cheung P, Tanner KG, Cheung WL, Sassone-Corsi P, Denu JM, Allis CD (2000) Synergistic coupling of histone H3 phosphorylation and acetylation in response to epidermal growth factor stimulation. Mol Cell 5 (6):905–915

    PubMed  CAS  Google Scholar 

  60. Lo WS, Trievel RC, Rojas JR, Duggan L, Hsu JY, Allis CD, Marmorstein R, Berger SL (2000) Phosphorylation of serine 10 in histone H3 is functionally linked in vitro and in vivo to Gcn5-mediated acetylation at lysine 14. Mol Cell 5 (6):917–926

    PubMed  CAS  Google Scholar 

  61. Rea S, Eisenhaber F, O’Carroll D, Strahl BD, Sun ZW, Schmid M, Opravil S, Mechtler K, Ponting CP, Allis CD, Jenuwein T (2000) Regulation of chromatin structure by site-specific histone H3 methyltransferases. Nature 406 (6796):593–599

    PubMed  CAS  Google Scholar 

  62. Clapier CR, Cairns BR (2009) The biology of chromatin remodeling complexes. Annu Rev Biochem 78:273–304

    PubMed  CAS  Google Scholar 

  63. Floer M, Wang X, Prabhu V, Berrozpe G, Narayan S, Spagna D, Alvarez D, Kendall J, Krasnitz A, Stepansky A, Hicks J, Bryant GO, Ptashne M (2010) A RSC/nucleosome complex determines chromatin architecture and facilitates activator binding. Cell 141 (3):407–418

    PubMed  CAS  Google Scholar 

  64. Narlikar GJ, Phelan ML, Kingston RE (2001) Generation and interconversion of multiple distinct nucleosomal states as a mechanism for catalyzing chromatin fluidity. Mol Cell 8 (6):1219–1230

    PubMed  CAS  Google Scholar 

  65. Dechassa ML, Sabri A, Pondugula S, Kassabov SR, Chatterjee N, Kladde MP, Bartholomew B (2010) SWI/SNF has intrinsic nucleosome disassembly activity that is dependent on adjacent nucleosomes. Mol Cell 38 (4):590–602

    PubMed  CAS  Google Scholar 

  66. Lorch Y, Maier-Davis B, Kornberg RD (2006) Chromatin remodeling by nucleosome disassembly in vitro. Proc Natl Acad Sci U S A 103 (9):3090–3093

    PubMed  CAS  Google Scholar 

  67. Vicent GP, Nacht AS, Smith CL, Peterson CL, Dimitrov S, Beato M (2004) DNA instructed displacement of histones H2A and H2B at an inducible promoter. Mol Cell 16 (3):439–452

    PubMed  CAS  Google Scholar 

  68. Bruno M, Flaus A, Stockdale C, Rencurel C, Ferreira H, Owen-Hughes T (2003) Histone H2A/H2B dimer exchange by ATP-dependent chromatin remodeling activities. Mol Cell 12 (6):1599–1606

    PubMed  CAS  Google Scholar 

  69. Mizuguchi G, Shen X, Landry J, Wu WH, Sen S, Wu C (2004) ATP-driven exchange of histone H2AZ variant catalyzed by SWR1 chromatin remodeling complex. Science 303 (5656):343–348

    PubMed  CAS  Google Scholar 

  70. Bao Y, Shen X (2007) SnapShot: chromatin remodeling complexes. Cell 129 (3):632

    PubMed  CAS  Google Scholar 

  71. Eisen JA, Sweder KS, Hanawalt PC (1995) Evolution of the SNF2 family of proteins: subfamilies with distinct sequences and functions. Nucleic Acids Res 23 (14):2715–2723

    PubMed  CAS  Google Scholar 

  72. Bottomley MJ (2004) Structures of protein domains that create or recognize histone modifications. EMBO Rep 5 (5):464–469

    PubMed  CAS  Google Scholar 

  73. de la Cruz X, Lois S, Sanchez-Molina S, Martinez-Balbas MA (2005) Do protein motifs read the histone code? Bioessays 27 (2):164–175

    PubMed  Google Scholar 

  74. Hassan AH, Prochasson P, Neely KE, Galasinski SC, Chandy M, Carrozza MJ, Workman JL (2002) Function and selectivity of bromodomains in anchoring chromatin-modifying complexes to promoter nucleosomes. Cell 111 (3):369–379

    PubMed  CAS  Google Scholar 

  75. Bannister AJ, Zegerman P, Partridge JF, Miska EA, Thomas JO, Allshire RC, Kouzarides T (2001) Selective recognition of methylated lysine 9 on histone H3 by the HP1 chromo domain. Nature 410 (6824):120–124

    PubMed  CAS  Google Scholar 

  76. Flanagan JF, Mi LZ, Chruszcz M, Cymborowski M, Clines KL, Kim Y, Minor W, Rastinejad F, Khorasanizadeh S (2005) Double chromodomains cooperate to recognize the methylated histone H3 tail. Nature 438 (7071):1181–1185

    PubMed  CAS  Google Scholar 

  77. Lachner M, O’Carroll D, Rea S, Mechtler K, Jenuwein T (2001) Methylation of histone H3 lysine 9 creates a binding site for HP1 proteins. Nature 410 (6824):116–120

    PubMed  CAS  Google Scholar 

  78. Sims RJ, 3rd, Chen CF, Santos-Rosa H, Kouzarides T, Patel SS, Reinberg D (2005) Human but not yeast CHD1 binds directly and selectively to histone H3 methylated at lysine 4 via its tandem chromodomains. J Biol Chem 280 (51):41789–41792

    PubMed  CAS  Google Scholar 

  79. Boyer LA, Latek RR, Peterson CL (2004) The SANT domain: a unique histone-tail-binding module? Nat Rev Mol Cell Biol 5 (2):158–163

    PubMed  CAS  Google Scholar 

  80. Ho L, Crabtree GR (2010) Chromatin remodelling during development. Nature 463 (7280):474–484

    PubMed  CAS  Google Scholar 

  81. Bowen NJ, Fujita N, Kajita M, Wade PA (2004) Mi-2/NuRD: multiple complexes for many purposes. Biochim Biophys Acta 1677 (1-3):52–57

    PubMed  CAS  Google Scholar 

  82. Dirscherl SS, Krebs JE (2004) Functional diversity of ISWI complexes. Biochem Cell Biol 82 (4):482–489

    PubMed  CAS  Google Scholar 

  83. Biddick R, Young ET (2009) The disorderly study of ordered recruitment. Yeast 26 (4):205–220

    PubMed  CAS  Google Scholar 

  84. Dyson HJ, Wright PE (2005) Intrinsically unstructured proteins and their functions. Nat Rev Mol Cell Biol 6 (3):197–208

    PubMed  CAS  Google Scholar 

  85. Liu J, Perumal NB, Oldfield CJ, Su EW, Uversky VN, Dunker AK (2006a) Intrinsic disorder in transcription factors. Biochemistry 45 (22):6873–6888

    PubMed  CAS  Google Scholar 

  86. Dunker AK, Lawson JD, Brown CJ, Williams RM, Romero P, Oh JS, Oldfield CJ, Campen AM, Ratliff CM, Hipps KW, Ausio J, Nissen MS, Reeves R, Kang C, Kissinger CR, Bailey RW, Griswold MD, Chiu W, Garner EC, Obradovic Z (2001) Intrinsically disordered protein. J Mol Graph Model 19 (1):26–59

    PubMed  CAS  Google Scholar 

  87. Hassan AH, Neely KE, Vignali M, Reese JC, Workman JL (2001) Promoter targeting of chromatin-modifying complexes. Front Biosci 6:D1054–1064

    PubMed  CAS  Google Scholar 

  88. Narlikar GJ, Fan HY, Kingston RE (2002) Cooperation between complexes that regulate chromatin structure and transcription. Cell 108 (4):475–487

    PubMed  CAS  Google Scholar 

  89. Peterson CL, Workman JL (2000) Promoter targeting and chromatin remodeling by the SWI/SNF complex. Curr Opin Genet Dev 10 (2):187–192

    PubMed  CAS  Google Scholar 

  90. Cairns BR, Lorch Y, Li Y, Zhang M, Lacomis L, Erdjument-Bromage H, Tempst P, Du J, Laurent B, Kornberg RD (1996) RSC, an essential, abundant chromatin-remodeling complex. Cell 87 (7):1249–1260

    PubMed  CAS  Google Scholar 

  91. Badis G, Chan ET, van Bakel H, Pena-Castillo L, Tillo D, Tsui K, Carlson CD, Gossett AJ, Hasinoff MJ, Warren CL, Gebbia M, Talukder S, Yang A, Mnaimneh S, Terterov D, Coburn D, Li Yeo A, Yeo ZX, Clarke ND, Lieb JD, Ansari AZ, Nislow C, Hughes TR (2008) A library of yeast transcription factor motifs reveals a widespread function for Rsc3 in targeting nucleosome exclusion at promoters. Mol Cell 32 (6):878–887

    PubMed  CAS  Google Scholar 

  92. Hogan CJ, Aligianni S, Durand-Dubief M, Persson J, Will WR, Webster J, Wheeler L, Mathews CK, Elderkin S, Oxley D, Ekwall K, Varga-Weisz PD (2009) Fission yeast Iec1-ino80-mediated nucleosome eviction regulates nucleotide and phosphate metabolism. Mol Cell Biol 30 (3):657–674

    PubMed  Google Scholar 

  93. Mohrmann L, Verrijzer CP (2005) Composition and functional specificity of SWI2/SNF2 class chromatin remodeling complexes. Biochim Biophys Acta 1681 (2-3):59–73

    PubMed  CAS  Google Scholar 

  94. Patsialou A, Wilsker D, Moran E (2005) DNA-binding properties of ARID family proteins. Nucleic Acids Res 33 (1):66–80

    PubMed  CAS  Google Scholar 

  95. Thomas JO, Travers AA (2001) HMG1 and 2, and related ‘architectural’ DNA-binding proteins. Trends Biochem Sci 26 (3):167–174

    PubMed  CAS  Google Scholar 

  96. Wilson B, Erdjument-Bromage H, Tempst P, Cairns BR (2006) The RSC chromatin remodeling complex bears an essential fungal-specific protein module with broad functional roles. Genetics 172 (2):795–809

    PubMed  CAS  Google Scholar 

  97. Trotter KW, Archer TK (2008) The BRG1 transcriptional coregulator. Nucl Recept Signal 6:e004

    PubMed  Google Scholar 

  98. Kitagawa H, Fujiki R, Yoshimura K, Mezaki Y, Uematsu Y, Matsui D, Ogawa S, Unno K, Okubo M, Tokita A, Nakagawa T, Ito T, Ishimi Y, Nagasawa H, Matsumoto T, Yanagisawa J, Kato S (2003) The chromatin-remodeling complex WINAC targets a nuclear receptor to promoters and is impaired in Williams syndrome. Cell 113 (7):905–917

    PubMed  CAS  Google Scholar 

  99. Xu W, Cho H, Kadam S, Banayo EM, Anderson S, Yates JR, 3rd, Emerson BM, Evans RM (2004) A methylation-mediator complex in hormone signaling. Genes Dev 18 (2):144–156

    PubMed  CAS  Google Scholar 

  100. Lessard J, Wu JI, Ranish JA, Wan M, Winslow MM, Staahl BT, Wu H, Aebersold R, Graef IA, Crabtree GR (2007) An essential switch in subunit composition of a chromatin remodeling complex during neural development. Neuron 55 (2):201–215

    PubMed  CAS  Google Scholar 

  101. Wu JI, Lessard J, Olave IA, Qiu Z, Ghosh A, Graef IA, Crabtree GR (2007) Regulation of dendritic development by neuron-specific chromatin remodeling complexes. Neuron 56 (1):94–108

    PubMed  CAS  Google Scholar 

  102. Takeuchi JK, Bruneau BG (2009) Directed transdifferentiation of mouse mesoderm to heart tissue by defined factors. Nature 459 (7247):708–711

    PubMed  CAS  Google Scholar 

  103. Bhaumik SR, Green MR (2001) SAGA is an essential in vivo target of the yeast acidic activator Gal4p. Genes Dev 15 (15):1935–1945

    PubMed  CAS  Google Scholar 

  104. Bhaumik SR, Green MR (2002) Differential requirement of SAGA components for recruitment of TATA-box-binding protein to promoters in vivo. Mol Cell Biol 22 (21):7365–7371

    PubMed  CAS  Google Scholar 

  105. Larschan E, Winston F (2001) The S. cerevisiae SAGA complex functions in vivo as a coactivator for transcriptional activation by Gal4. Genes Dev 15 (15):1946–1956

    PubMed  CAS  Google Scholar 

  106. Chan HM, La Thangue NB (2001) p300/CBP proteins: HATs for transcriptional bridges and scaffolds. J Cell Sci 114 (Pt 13):2363–2373

    PubMed  CAS  Google Scholar 

  107. Kalkhoven E (2004) CBP and p300: HATs for different occasions. Biochem Pharmacol 68 (6):1145–1155

    PubMed  CAS  Google Scholar 

  108. Panne D, Maniatis T, Harrison SC (2007) An atomic model of the interferon-beta enhanceosome. Cell 129 (6):1111–1123

    PubMed  CAS  Google Scholar 

  109. Merika M, Williams AJ, Chen G, Collins T, Thanos D (1998) Recruitment of CBP/p300 by the IFN beta enhanceosome is required for synergistic activation of transcription. Mol Cell 1 (2):277–287

    PubMed  CAS  Google Scholar 

  110. Birney E, Stamatoyannopoulos JA, Dutta A, Guigo R, Gingeras TR, Margulies EH, Weng Z, Snyder M, Dermitzakis ET, Thurman RE, Kuehn MS, Taylor CM, Neph S, Koch CM, Asthana S, Malhotra A, Adzhubei I, Greenbaum JA, Andrews RM, Flicek P, Boyle PJ, Cao H, Carter NP, Clelland GK, Davis S, Day N, Dhami P, Dillon SC, Dorschner MO, Fiegler H, Giresi PG, Goldy J, Hawrylycz M, Haydock A, Humbert R, James KD, Johnson BE, Johnson EM, Frum TT, Rosenzweig ER, Karnani N, Lee K, Lefebvre GC, Navas PA, Neri F, Parker SC, Sabo PJ, Sandstrom R, Shafer A, Vetrie D, Weaver M, Wilcox S, Yu M, Collins FS, Dekker J, Lieb JD, Tullius TD, Crawford GE, Sunyaev S, Noble WS, Dunham I, Denoeud F, Reymond A, Kapranov P, Rozowsky J, Zheng D, Castelo R, Frankish A, Harrow J, Ghosh S, Sandelin A, Hofacker IL, Baertsch R, Keefe D, Dike S, Cheng J, Hirsch HA, Sekinger EA, Lagarde J, Abril JF, Shahab A, Flamm C, Fried C, Hackermuller J, Hertel J, Lindemeyer M, Missal K, Tanzer A, Washietl S, Korbel J, Emanuelsson O, Pedersen JS, Holroyd N, Taylor R, Swarbreck D, Matthews N, Dickson MC, Thomas DJ, Weirauch MT, Gilbert J, Drenkow J, Bell I, Zhao X, Srinivasan KG, Sung WK, Ooi HS, Chiu KP, Foissac S, Alioto T, Brent M, Pachter L, Tress ML, Valencia A, Choo SW, Choo CY, Ucla C, Manzano C, Wyss C, Cheung E, Clark TG, Brown JB, Ganesh M, Patel S, Tammana H, Chrast J, Henrichsen CN, Kai C, Kawai J, Nagalakshmi U, Wu J, Lian Z, Lian J, Newburger P, Zhang X, Bickel P, Mattick JS, Carninci P, Hayashizaki Y, Weissman S, Hubbard T, Myers RM, Rogers J, Stadler PF, Lowe TM, Wei CL, Ruan Y, Struhl K, Gerstein M, Antonarakis SE, Fu Y, Green ED, Karaoz U, Siepel A, Taylor J, Liefer LA, Wetterstrand KA, Good PJ, Feingold EA, Guyer MS, Cooper GM, Asimenos G, Dewey CN, Hou M, Nikolaev S, Montoya-Burgos JI, Loytynoja A, Whelan S, Pardi F, Massingham T, Huang H, Zhang NR, Holmes I, Mullikin JC, Ureta-Vidal A, Paten B, Seringhaus M, Church D, Rosenbloom K, Kent WJ, Stone EA, Batzoglou S, Goldman N, Hardison RC, Haussler D, Miller W, Sidow A, Trinklein ND, Zhang ZD, Barrera L, Stuart R, King DC, Ameur A, Enroth S, Bieda MC, Kim J, Bhinge AA, Jiang N, Liu J, Yao F, Vega VB, Lee CW, Ng P, Shahab A, Yang A, Moqtaderi Z, Zhu Z, Xu X, Squazzo S, Oberley MJ, Inman D, Singer MA, Richmond TA, Munn KJ, Rada-Iglesias A, Wallerman O, Komorowski J, Fowler JC, Couttet P, Bruce AW, Dovey OM, Ellis PD, Langford CF, Nix DA, Euskirchen G, Hartman S, Urban AE, Kraus P, Van Calcar S, Heintzman N, Kim TH, Wang K, Qu C, Hon G, Luna R, Glass CK, Rosenfeld MG, Aldred SF, Cooper SJ, Halees A, Lin JM, Shulha HP, Zhang X, Xu M, Haidar JN, Yu Y, Ruan Y, Iyer VR, Green RD, Wadelius C, Farnham PJ, Ren B, Harte RA, Hinrichs AS, Trumbower H, Clawson H, Hillman-Jackson J, Zweig AS, Smith K, Thakkapallayil A, Barber G, Kuhn RM, Karolchik D, Armengol L, Bird CP, de Bakker PI, Kern AD, Lopez-Bigas N, Martin JD, Stranger BE, Woodroffe A, Davydov E, Dimas A, Eyras E, Hallgrimsdottir IB, Huppert J, Zody MC, Abecasis GR, Estivill X, Bouffard GG, Guan X, Hansen NF, Idol JR, Maduro VV, Maskeri B, McDowell JC, Park M, Thomas PJ, Young AC, Blakesley RW, Muzny DM, Sodergren E, Wheeler DA, Worley KC, Jiang H, Weinstock GM, Gibbs RA, Graves T, Fulton R, Mardis ER, Wilson RK, Clamp M, Cuff J, Gnerre S, Jaffe DB, Chang JL, Lindblad-Toh K, Lander ES, Koriabine M, Nefedov M, Osoegawa K, Yoshinaga Y, Zhu B, de Jong PJ (2007) Identification and analysis of functional elements in 1% of the human genome by the ENCODE pilot project. Nature 447 (7146):799–816

    PubMed  CAS  Google Scholar 

  111. Heintzman ND, Hon GC, Hawkins RD, Kheradpour P, Stark A, Harp LF, Ye Z, Lee LK, Stuart RK, Ching CW, Ching KA, Antosiewicz-Bourget JE, Liu H, Zhang X, Green RD, Lobanenkov VV, Stewart R, Thomson JA, Crawford GE, Kellis M, Ren B (2009) Histone modifications at human enhancers reflect global cell-type-specific gene expression. Nature 459 (7243):108–112

    PubMed  CAS  Google Scholar 

  112. Kim TK, Hemberg M, Gray JM, Costa AM, Bear DM, Wu J, Harmin DA, Laptewicz M, Barbara-Haley K, Kuersten S, Markenscoff-Papadimitriou E, Kuhl D, Bito H, Worley PF, Kreiman G, Greenberg ME (2010) Widespread transcription at neuronal activity-regulated enhancers. Nature 465 (7295):182–187

    PubMed  CAS  Google Scholar 

  113. Koch CM, Andrews RM, Flicek P, Dillon SC, Karaoz U, Clelland GK, Wilcox S, Beare DM, Fowler JC, Couttet P, James KD, Lefebvre GC, Bruce AW, Dovey OM, Ellis PD, Dhami P, Langford CF, Weng Z, Birney E, Carter NP, Vetrie D, Dunham I (2007) The landscape of histone modifications across 1% of the human genome in five human cell lines. Genome Res 17 (6):691–707

    PubMed  CAS  Google Scholar 

  114. Visel A, Blow MJ, Li Z, Zhang T, Akiyama JA, Holt A, Plajzer-Frick I, Shoukry M, Wright C, Chen F, Afzal V, Ren B, Rubin EM, Pennacchio LA (2009) ChIP-seq accurately predicts tissue-specific activity of enhancers. Nature 457 (7231):854–858

    PubMed  CAS  Google Scholar 

  115. Ramos YF, Hestand MS, Verlaan M, Krabbendam E, Ariyurek Y, van Galen M, van Dam H, van Ommen GJ, den Dunnen JT, Zantema A, t Hoen PA (2010) Genome-wide assessment of differential roles for p300 and CBP in transcription regulation. Nucleic Acids Res 36 (16):5396–5408

    Google Scholar 

  116. Badis G, Berger MF, Philippakis AA, Talukder S, Gehrke AR, Jaeger SA, Chan ET, Metzler G, Vedenko A, Chen X, Kuznetsov H, Wang CF, Coburn D, Newburger DE, Morris Q, Hughes TR, Bulyk ML (2009) Diversity and complexity in DNA recognition by transcription factors. Science 324 (5935):1720–1723

    PubMed  CAS  Google Scholar 

  117. Liu X, Lee CK, Granek JA, Clarke ND, Lieb JD (2006b) Whole-genome comparison of Leu3 binding in vitro and in vivo reveals the importance of nucleosome occupancy in target site selection. Genome Res 16 (12):1517–1528

    PubMed  CAS  Google Scholar 

  118. Struhl K (1999) Fundamentally different logic of gene regulation in eukaryotes and prokaryotes. Cell 98 (1):1–4

    PubMed  CAS  Google Scholar 

  119. Cheung V, Chua G, Batada NN, Landry CR, Michnick SW, Hughes TR, Winston F (2008) Chromatin- and transcription-related factors repress transcription from within coding regions throughout the Saccharomyces cerevisiae genome. PLoS Biol 6 (11):e277

    PubMed  Google Scholar 

  120. Kaplan CD, Laprade L, Winston F (2003) Transcription elongation factors repress transcription initiation from cryptic sites. Science 301 (5636):1096–1099

    PubMed  CAS  Google Scholar 

  121. Berman BP, Nibu Y, Pfeiffer BD, Tomancak P, Celniker SE, Levine M, Rubin GM, Eisen MB (2002) Exploiting transcription factor binding site clustering to identify cis-regulatory modules involved in pattern formation in the Drosophila genome. Proc Natl Acad Sci U S A 99 (2):757–762

    PubMed  CAS  Google Scholar 

  122. Georges AB, Benayoun BA, Caburet S, Veitia RA (2010) Generic binding sites, generic DNA-binding domains: where does specific promoter recognition come from? Faseb J 24 (2):346–356

    PubMed  CAS  Google Scholar 

  123. Papatsenko DA, Makeev VJ, Lifanov AP, Regnier M, Nazina AG, Desplan C (2002) Extraction of functional binding sites from unique regulatory regions: the Drosophila early developmental enhancers. Genome Res 12 (3):470–481

    PubMed  CAS  Google Scholar 

  124. Valouev A, Ichikawa J, Tonthat T, Stuart J, Ranade S, Peckham H, Zeng K, Malek JA, Costa G, McKernan K, Sidow A, Fire A, Johnson SM (2008) A high-resolution, nucleosome position map of C. elegans reveals a lack of universal sequence-dictated positioning. Genome Res 18 (7):1051–1063

    PubMed  CAS  Google Scholar 

  125. Kaplan N, Moore IK, Fondufe-Mittendorf Y, Gossett AJ, Tillo D, Field Y, LeProust EM, Hughes TR, Lieb JD, Widom J, Segal E (2009) The DNA-encoded nucleosome organization of a eukaryotic genome. Nature 458 (7236):362–366

    PubMed  CAS  Google Scholar 

  126. Sekinger EA, Moqtaderi Z, Struhl K (2005) Intrinsic histone-DNA interactions and low nucleosome density are important for preferential accessibility of promoter regions in yeast. Mol Cell 18 (6):735–748

    PubMed  CAS  Google Scholar 

  127. Anderson JD, Widom J (2001) Poly(dA-dT) promoter elements increase the equilibrium accessibility of nucleosomal DNA target sites. Mol Cell Biol 21 (11):3830–3839

    PubMed  CAS  Google Scholar 

  128. Bao Y, White CL, Luger K (2006) Nucleosome core particles containing a poly(dA.dT) sequence element exhibit a locally distorted DNA structure. J Mol Biol 361 (4):617–624

    PubMed  CAS  Google Scholar 

  129. Iyer V, Struhl K (1995) Poly(dA:dT), a ubiquitous promoter element that stimulates transcription via its intrinsic DNA structure. Embo J 14 (11):2570–2579

    PubMed  CAS  Google Scholar 

  130. Suter B, Schnappauf G, Thoma F (2000) Poly(dA.dT) sequences exist as rigid DNA structures in nucleosome-free yeast promoters in vivo. Nucleic Acids Res 28 (21):4083–4089

    PubMed  CAS  Google Scholar 

  131. Shimizu M, Mori T, Sakurai T, Shindo H (2000) Destabilization of nucleosomes by an unusual DNA conformation adopted by poly(dA) small middle dotpoly(dT) tracts in vivo. Embo J 19 (13):3358–3365

    PubMed  CAS  Google Scholar 

  132. White CL, Luger K (2004) Defined structural changes occur in a nucleosome upon Amt1 transcription factor binding. J Mol Biol 342 (5):1391–1402

    PubMed  CAS  Google Scholar 

  133. Zhu Z, Thiele DJ (1996) A specialized nucleosome modulates transcription factor access to a C. glabrata metal responsive promoter. Cell 87 (3):459–470

    PubMed  CAS  Google Scholar 

  134. Field Y, Kaplan N, Fondufe-Mittendorf Y, Moore IK, Sharon E, Lubling Y, Widom J, Segal E (2008) Distinct modes of regulation by chromatin encoded through nucleosome positioning signals. PLoS Comput Biol 4 (11):e1000216

    PubMed  Google Scholar 

  135. Peckham HE, Thurman RE, Fu Y, Stamatoyannopoulos JA, Noble WS, Struhl K, Weng Z (2007) Nucleosome positioning signals in genomic DNA. Genome Res 17 (8):1170–1177

    PubMed  CAS  Google Scholar 

  136. Segal E, Fondufe-Mittendorf Y, Chen L, Thastrom A, Field Y, Moore IK, Wang JP, Widom J (2006) A genomic code for nucleosome positioning. Nature 442 (7104):772–778

    PubMed  CAS  Google Scholar 

  137. Kaplan N, Moore I, Fondufe-Mittendorf Y, Gossett AJ, Tillo D, Field Y, Hughes TR, Lieb JD, Widom J, Segal E (2010) Nucleosome sequence preferences influence in vivo nucleosome organization. Nat Struct Mol Biol 17 (8):918–920

    PubMed  CAS  Google Scholar 

  138. Mavrich TN, Ioshikhes IP, Venters BJ, Jiang C, Tomsho LP, Qi J, Schuster SC, Albert I, Pugh BF (2008b) A barrier nucleosome model for statistical positioning of nucleosomes throughout the yeast genome. Genome Res 18 (7):1073–1083

    PubMed  CAS  Google Scholar 

  139. Zhang Y, Moqtaderi Z, Rattner BP, Euskirchen G, Snyder M, Kadonaga JT, Liu XS, Struhl K (2009) Intrinsic histone-DNA interactions are not the major determinant of nucleosome positions in vivo. Nat Struct Mol Biol 16 (8):847–852

    PubMed  CAS  Google Scholar 

  140. Zhang Y, Moqtaderi Z, Rattner BP, Euskirchen G, Snyder M, Kadonaga JT, Liu XS, Struhl K (2010) Reply to “Evidence against a genomic code for nucleosome positioning”. Nat Struct Mol Biol 17 (8):920–923

    CAS  Google Scholar 

  141. Hartley PD, Madhani HD (2009) Mechanisms that specify promoter nucleosome location and identity. Cell 137 (3):445–458

    PubMed  CAS  Google Scholar 

  142. Choi JK, Kim YJ (2009) Intrinsic variability of gene expression encoded in nucleosome positioning sequences. Nat Genet 41 (4):498–503

    PubMed  CAS  Google Scholar 

  143. Tillo D, Kaplan N, Moore IK, Fondufe-Mittendorf Y, Gossett AJ, Field Y, Lieb JD, Widom J, Segal E, Hughes TR (2010) High nucleosome occupancy is encoded at human regulatory sequences. PLoS One 5 (2):e9129

    PubMed  Google Scholar 

  144. Fu Y, Sinha M, Peterson CL, Weng Z (2008) The insulator binding protein CTCF positions 20 nucleosomes around its binding sites across the human genome. PLoS Genet 4 (7):e1000138

    PubMed  Google Scholar 

  145. Lidor Nili E, Field Y, Lubling Y, Widom J, Oren M, Segal E (2010) p53 binds preferentially to genomic regions with high DNA-encoded nucleosome occupancy. Genome Res 20 (10):1361–1368

    PubMed  Google Scholar 

  146. Li G, Levitus M, Bustamante C, Widom J (2005) Rapid spontaneous accessibility of nucleosomal DNA. Nat Struct Mol Biol 12 (1):46–53

    PubMed  CAS  Google Scholar 

  147. Li G, Widom J (2004) Nucleosomes facilitate their own invasion. Nat Struct Mol Biol 11 (8):763–769

    PubMed  CAS  Google Scholar 

  148. Zlatanova J, Seebart C, Tomschik M (2008) The linker-protein network: control of nucleosomal DNA accessibility. Trends Biochem Sci 33 (6):247–253

    PubMed  CAS  Google Scholar 

  149. Tomschik M, Zheng H, van Holde K, Zlatanova J, Leuba SH (2005) Fast, long-range, reversible conformational fluctuations in nucleosomes revealed by single-pair fluorescence resonance energy transfer. Proc Natl Acad Sci U S A 102 (9):3278–3283

    PubMed  CAS  Google Scholar 

  150. Albert I, Mavrich TN, Tomsho LP, Qi J, Zanton SJ, Schuster SC, Pugh BF (2007) Translational and rotational settings of H2A.Z nucleosomes across the Saccharomyces cerevisiae genome. Nature 446 (7135):572–576

    PubMed  CAS  Google Scholar 

  151. Jiang C, Pugh BF (2009) Nucleosome positioning and gene regulation: advances through genomics. Nat Rev Genet 10 (3):161–172

    PubMed  CAS  Google Scholar 

  152. Koerber RT, Rhee HS, Jiang C, Pugh BF (2009) Interaction of transcriptional regulators with specific nucleosomes across the Saccharomyces genome. Mol Cell 35 (6):889–902

    PubMed  CAS  Google Scholar 

  153. Polach KJ, Widom J (1995) Mechanism of protein access to specific DNA sequences in chromatin: a dynamic equilibrium model for gene regulation. J Mol Biol 254 (2):130–149

    PubMed  CAS  Google Scholar 

  154. Adams CC, Workman JL (1995) Binding of disparate transcriptional activators to nucleosomal DNA is inherently cooperative. Mol Cell Biol 15 (3):1405–1421

    PubMed  CAS  Google Scholar 

  155. Miller JA, Widom J (2003) Collaborative competition mechanism for gene activation in vivo. Mol Cell Biol 23 (5):1623–1632

    PubMed  CAS  Google Scholar 

  156. Pettersson M, Schaffner W (1990) Synergistic activation of transcription by multiple binding sites for NF-kappa B even in absence of co-operative factor binding to DNA. J Mol Biol 214 (2):373–380

    PubMed  CAS  Google Scholar 

  157. Vashee S, Melcher K, Ding WV, Johnston SA, Kodadek T (1998) Evidence for two modes of cooperative DNA binding in vivo that do not involve direct protein-protein interactions. Curr Biol 8 (8):452–458

    PubMed  CAS  Google Scholar 

  158. Cirillo LA, Zaret KS (1999) An early developmental transcription factor complex that is more stable on nucleosome core particles than on free DNA. Mol Cell 4 (6):961–969

    PubMed  CAS  Google Scholar 

  159. Cirillo LA, Lin FR, Cuesta I, Friedman D, Jarnik M, Zaret KS (2002) Opening of compacted chromatin by early developmental transcription factors HNF3 (FoxA) and GATA-4. Mol Cell 9 (2):279–289

    PubMed  CAS  Google Scholar 

  160. Pennings S, Meersseman G, Bradbury EM (1994) Linker histones H1 and H5 prevent the mobility of positioned nucleosomes. Proc Natl Acad Sci U S A 91 (22):10275–10279

    PubMed  CAS  Google Scholar 

  161. Ura K, Hayes JJ, Wolffe AP (1995) A positive role for nucleosome mobility in the transcriptional activity of chromatin templates: restriction by linker histones. Embo J 14 (15):3752–3765

    PubMed  CAS  Google Scholar 

  162. Holmqvist PH, Belikov S, Zaret KS, Wrange O (2005) FoxA1 binding to the MMTV LTR modulates chromatin structure and transcription. Exp Cell Res 304 (2):593–603

    PubMed  CAS  Google Scholar 

  163. Li G, Margueron R, Hu G, Stokes D, Wang YH, Reinberg D (2010) Highly compacted chromatin formed in vitro reflects the dynamics of transcription activation in vivo. Mol Cell 38 (1):41–53

    PubMed  Google Scholar 

  164. Lupien M, Eeckhoute J, Meyer CA, Wang Q, Zhang Y, Li W, Carroll JS, Liu XS, Brown M (2008) FoxA1 translates epigenetic signatures into enhancer-driven lineage-specific transcription. Cell 132 (6):958–970

    PubMed  CAS  Google Scholar 

  165. Plachetka A, Chayka O, Wilczek C, Melnik S, Bonifer C, Klempnauer KH (2008) C/EBPbeta induces chromatin opening at a cell-type-specific enhancer. Mol Cell Biol 28 (6):2102–2112

    PubMed  CAS  Google Scholar 

  166. Dobi KC, Winston F (2007) Analysis of transcriptional activation at a distance in Saccharomyces cerevisiae. Mol Cell Biol 27 (15):5575–5586

    PubMed  CAS  Google Scholar 

  167. Lee KK, Workman JL (2007) Histone acetyltransferase complexes: one size doesn’t fit all. Nat Rev Mol Cell Biol 8 (4):284–295

    PubMed  CAS  Google Scholar 

  168. Perissi V, Jepsen K, Glass CK, Rosenfeld MG (2010) Deconstructing repression: evolving models of co-repressor action. Nat Rev Genet 11 (2):109–123

    PubMed  CAS  Google Scholar 

  169. Glozak MA, Sengupta N, Zhang X, Seto E (2005) Acetylation and deacetylation of non-histone proteins. Gene 363:15–23

    PubMed  CAS  Google Scholar 

  170. Underhill C, Qutob MS, Yee SP, Torchia J (2000) A novel nuclear receptor corepressor complex, N-CoR, contains components of the mammalian SWI/SNF complex and the corepressor KAP-1. J Biol Chem 275 (51):40463–40470

    PubMed  CAS  Google Scholar 

  171. Dokmanovic M, Clarke C, Marks PA (2007) Histone deacetylase inhibitors: overview and perspectives. Mol Cancer Res 5 (10):981–989

    PubMed  CAS  Google Scholar 

  172. Goldmark JP, Fazzio TG, Estep PW, Church GM, Tsukiyama T (2000) The Isw2 chromatin remodeling complex represses early meiotic genes upon recruitment by Ume6p. Cell 103 (3):423–433

    PubMed  CAS  Google Scholar 

  173. Inayoshi Y, Kaneoka H, Machida Y, Terajima M, Dohda T, Miyake K, Iijima S (2005) Repression of GR-mediated expression of the tryptophan oxygenase gene by the SWI/SNF complex during liver development. J Biochem 138 (4):457–465

    PubMed  CAS  Google Scholar 

  174. Murphy DJ, Hardy S, Engel DA (1999) Human SWI-SNF component BRG1 represses transcription of the c-fos gene. Mol Cell Biol 19 (4):2724–2733

    PubMed  CAS  Google Scholar 

  175. Ooi L, Belyaev ND, Miyake K, Wood IC, Buckley NJ (2006) BRG1 chromatin remodeling activity is required for efficient chromatin binding by repressor element 1-silencing transcription factor (REST) and facilitates REST-mediated repression. J Biol Chem 281 (51):38974–38980

    PubMed  CAS  Google Scholar 

  176. Sif S, Saurin AJ, Imbalzano AN, Kingston RE (2001) Purification and characterization of mSin3A-containing Brg1 and hBrm chromatin remodeling complexes. Genes Dev 15 (5):603–618

    PubMed  CAS  Google Scholar 

  177. Moreira JM, Holmberg S (1999) Transcriptional repression of the yeast CHA1 gene requires the chromatin-remodeling complex RSC. Embo J 18 (10):2836–2844

    PubMed  CAS  Google Scholar 

  178. Buck MJ, Lieb JD (2006) A chromatin-mediated mechanism for specification of conditional transcription factor targets. Nat Genet 38 (12):1446–1451

    PubMed  CAS  Google Scholar 

  179. Keleher CA, Redd MJ, Schultz J, Carlson M, Johnson AD (1992) Ssn6-Tup1 is a general repressor of transcription in yeast. Cell 68 (4):709–719

    PubMed  CAS  Google Scholar 

  180. De Vit MJ, Waddle JA, Johnston M (1997) Regulated nuclear translocation of the Mig1 glucose repressor. Mol Biol Cell 8 (8):1603–1618

    PubMed  Google Scholar 

  181. Park SH, Koh SS, Chun JH, Hwang HJ, Kang HS (1999) Nrg1 is a transcriptional repressor for glucose repression of STA1 gene expression in Saccharomyces cerevisiae. Mol Cell Biol 19 (3):2044–2050

    PubMed  CAS  Google Scholar 

  182. Proft M, Serrano R (1999) Repressors and upstream repressing sequences of the stress-regulated ENA1 gene in Saccharomyces cerevisiae: bZIP protein Sko1p confers HOG-dependent osmotic regulation. Mol Cell Biol 19 (1):537–546

    PubMed  CAS  Google Scholar 

  183. Tzamarias D, Struhl K (1994) Functional dissection of the yeast Cyc8-Tup1 transcriptional co-repressor complex. Nature 369 (6483):758–761

    PubMed  CAS  Google Scholar 

  184. Davie JK, Edmondson DG, Coco CB, Dent SY (2003) Tup1-Ssn6 interacts with multiple class I histone deacetylases in vivo. J Biol Chem 278 (50):50158–50162

    PubMed  CAS  Google Scholar 

  185. Watson AD, Edmondson DG, Bone JR, Mukai Y, Yu Y, Du W, Stillman DJ, Roth SY (2000) Ssn6-Tup1 interacts with class I histone deacetylases required for repression. Genes Dev 14 (21):2737–2744

    PubMed  CAS  Google Scholar 

  186. Lieb JD, Liu X, Botstein D, Brown PO (2001) Promoter-specific binding of Rap1 revealed by genome-wide maps of protein-DNA association. Nat Genet 28 (4):327–334

    PubMed  CAS  Google Scholar 

  187. Shore D (1994) RAP1: a protean regulator in yeast. Trends Genet 10 (11):408–412

    PubMed  CAS  Google Scholar 

  188. Kurdistani SK, Robyr D, Tavazoie S, Grunstein M (2002) Genome-wide binding map of the histone deacetylase Rpd3 in yeast. Nat Genet 31 (3):248–254

    PubMed  CAS  Google Scholar 

  189. Wang Z, Zang C, Cui K, Schones DE, Barski A, Peng W, Zhao K (2009) Genome-wide mapping of HATs and HDACs reveals distinct functions in active and inactive genes. Cell 138 (5):1019–1031

    PubMed  CAS  Google Scholar 

  190. Wang A, Kurdistani SK, Grunstein M (2002) Requirement of Hos2 histone deacetylase for gene activity in yeast. Science 298 (5597):1412–1414

    PubMed  CAS  Google Scholar 

  191. Nagaich AK, Walker DA, Wolford R, Hager GL (2004) Rapid periodic binding and displacement of the glucocorticoid receptor during chromatin remodeling. Mol Cell 14 (2):163–174

    PubMed  CAS  Google Scholar 

  192. Auble DT, Hansen KE, Mueller CG, Lane WS, Thorner J, Hahn S (1994) Mot1, a global repressor of RNA polymerase II transcription, inhibits TBP binding to DNA by an ATP-dependent mechanism. Genes Dev 8 (16):1920–1934

    PubMed  CAS  Google Scholar 

  193. van Werven FJ, van Bakel H, van Teeffelen HA, Altelaar AF, Koerkamp MG, Heck AJ, Holstege FC, Timmers HT (2008) Cooperative action of NC2 and Mot1p to regulate TATA-binding protein function across the genome. Genes Dev 22 (17):2359–2369

    PubMed  Google Scholar 

  194. Li G, Chandler SP, Wolffe AP, Hall TC (1998) Architectural specificity in chromatin structure at the TATA box in vivo: nucleosome displacement upon beta-phaseolin gene activation. Proc Natl Acad Sci U S A 95 (8):4772–4777

    PubMed  CAS  Google Scholar 

  195. Grewal SI, Jia S (2007) Heterochromatin revisited. Nat Rev Genet 8 (1):35–46

    PubMed  CAS  Google Scholar 

  196. James TC, Elgin SC (1986) Identification of a nonhistone chromosomal protein associated with heterochromatin in Drosophila melanogaster and its gene. Mol Cell Biol 6 (11):3862–3872

    PubMed  CAS  Google Scholar 

  197. Ebert A, Lein S, Schotta G, Reuter G (2006) Histone modification and the control of heterochromatic gene silencing in Drosophila. Chromosome Res 14 (4):377–392

    PubMed  CAS  Google Scholar 

  198. Nielsen SJ, Schneider R, Bauer UM, Bannister AJ, Morrison A, O’Carroll D, Firestein R, Cleary M, Jenuwein T, Herrera RE, Kouzarides T (2001) Rb targets histone H3 methylation and HP1 to promoters. Nature 412 (6846):561–565

    PubMed  CAS  Google Scholar 

  199. O’Geen H, Squazzo SL, Iyengar S, Blahnik K, Rinn JL, Chang HY, Green R, Farnham PJ (2007) Genome-wide analysis of KAP1 binding suggests autoregulation of KRAB-ZNFs. PLoS Genet 3 (6):e89

    PubMed  Google Scholar 

  200. Vogel MJ, Guelen L, de Wit E, Peric-Hupkes D, Loden M, Talhout W, Feenstra M, Abbas B, Classen AK, van Steensel B (2006) Human heterochromatin proteins form large domains containing KRAB-ZNF genes. Genome Res 16 (12):1493–1504

    PubMed  CAS  Google Scholar 

  201. Schwartz YB, Pirrotta V (2007) Polycomb silencing mechanisms and the management of genomic programmes. Nat Rev Genet 8 (1):9–22

    PubMed  CAS  Google Scholar 

  202. Lee TI, Jenner RG, Boyer LA, Guenther MG, Levine SS, Kumar RM, Chevalier B, Johnstone SE, Cole MF, Isono K, Koseki H, Fuchikami T, Abe K, Murray HL, Zucker JP, Yuan B, Bell GW, Herbolsheimer E, Hannett NM, Sun K, Odom DT, Otte AP, Volkert TL, Bartel DP, Melton DA, Gifford DK, Jaenisch R, Young RA (2006) Control of developmental regulators by Polycomb in human embryonic stem cells. Cell 125 (2):301–313

    PubMed  CAS  Google Scholar 

  203. Schwartz YB, Kahn TG, Nix DA, Li XY, Bourgon R, Biggin M, Pirrotta V (2006) Genome-wide analysis of Polycomb targets in Drosophila melanogaster. Nat Genet 38 (6):700–705

    PubMed  CAS  Google Scholar 

  204. Squazzo SL, O’Geen H, Komashko VM, Krig SR, Jin VX, Jang SW, Margueron R, Reinberg D, Green R, Farnham PJ (2006) Suz12 binds to silenced regions of the genome in a cell-type-specific manner. Genome Res 16 (7):890–900

    PubMed  CAS  Google Scholar 

  205. Fanti L, Pimpinelli S (2008) HP1: a functionally multifaceted protein. Curr Opin Genet Dev 18 (2):169–174

    PubMed  CAS  Google Scholar 

  206. Muller J, Verrijzer P (2009) Biochemical mechanisms of gene regulation by polycomb group protein complexes. Curr Opin Genet Dev 19 (2):150–158

    PubMed  Google Scholar 

  207. Simon JA, Kingston RE (2009) Mechanisms of polycomb gene silencing: knowns and unknowns. Nat Rev Mol Cell Biol 10 (10):697–708

    PubMed  CAS  Google Scholar 

  208. Dorer DR, Henikoff S (1994) Expansions of transgene repeats cause heterochromatin formation and gene silencing in Drosophila. Cell 77 (7):993–1002

    PubMed  CAS  Google Scholar 

  209. Luff B, Pawlowski L, Bender J (1999) An inverted repeat triggers cytosine methylation of identical sequences in Arabidopsis. Mol Cell 3 (4):505–511

    PubMed  CAS  Google Scholar 

  210. Selker EU (2002) Repeat-induced gene silencing in fungi. Adv Genet 46:439–450

    PubMed  CAS  Google Scholar 

  211. Hall IM, Shankaranarayana GD, Noma K, Ayoub N, Cohen A, Grewal SI (2002) Establishment and maintenance of a heterochromatin domain. Science 297 (5590):2232–2237

    PubMed  CAS  Google Scholar 

  212. Volpe TA, Kidner C, Hall IM, Teng G, Grewal SI, Martienssen RA (2002) Regulation of heterochromatic silencing and histone H3 lysine-9 methylation by RNAi. Science 297 (5588):1833–1837

    PubMed  CAS  Google Scholar 

  213. Grewal SI (2010) RNAi-dependent formation of heterochromatin and its diverse functions. Curr Opin Genet Dev 20 (2):134–141

    PubMed  CAS  Google Scholar 

  214. Yamada T, Fischle W, Sugiyama T, Allis CD, Grewal SI (2005) The nucleation and maintenance of heterochromatin by a histone deacetylase in fission yeast. Mol Cell 20 (2):173–185

    PubMed  CAS  Google Scholar 

  215. Jia S, Noma K, Grewal SI (2004) RNAi-independent heterochromatin nucleation by the stress-activated ATF/CREB family proteins. Science 304 (5679):1971–1976

    PubMed  CAS  Google Scholar 

  216. Kim HS, Choi ES, Shin JA, Jang YK, Park SD (2004) Regulation of Swi6/HP1-dependent heterochromatin assembly by cooperation of components of the mitogen-activated protein kinase pathway and a histone deacetylase Clr6. J Biol Chem 279 (41):42850–42859

    PubMed  CAS  Google Scholar 

  217. Rusche LN, Kirchmaier AL, Rine J (2003) The establishment, inheritance, and function of silenced chromatin in Saccharomyces cerevisiae. Annu Rev Biochem 72:481–516

    PubMed  CAS  Google Scholar 

  218. Abrink M, Ortiz JA, Mark C, Sanchez C, Looman C, Hellman L, Chambon P, Losson R (2001) Conserved interaction between distinct Kruppel-associated box domains and the transcriptional intermediary factor 1 beta. Proc Natl Acad Sci U S A 98 (4):1422–1426

    PubMed  CAS  Google Scholar 

  219. Peng H, Begg GE, Schultz DC, Friedman JR, Jensen DE, Speicher DW, Rauscher FJ, 3rd (2000) Reconstitution of the KRAB-KAP-1 repressor complex: a model system for defining the molecular anatomy of RING-B box-coiled-coil domain-mediated protein-protein interactions. J Mol Biol 295 (5):1139–1162

    PubMed  CAS  Google Scholar 

  220. Lechner MS, Begg GE, Speicher DW, Rauscher FJ, 3rd (2000) Molecular determinants for targeting heterochromatin protein 1-mediated gene silencing: direct chromoshadow domain-KAP-1 corepressor interaction is essential. Mol Cell Biol 20 (17):6449–6465

    PubMed  CAS  Google Scholar 

  221. Schultz DC, Ayyanathan K, Negorev D, Maul GG, Rauscher FJ, 3rd (2002) SETDB1: a novel KAP-1-associated histone H3, lysine 9-specific methyltransferase that contributes to HP1-mediated silencing of euchromatic genes by KRAB zinc-finger proteins. Genes Dev 16 (8):919–932

    PubMed  CAS  Google Scholar 

  222. Schultz DC, Friedman JR, Rauscher FJ, 3rd (2001) Targeting histone deacetylase complexes via KRAB-zinc finger proteins: the PHD and bromodomains of KAP-1 form a cooperative unit that recruits a novel isoform of the Mi-2alpha subunit of NuRD. Genes Dev 15 (4):428–443

    PubMed  CAS  Google Scholar 

  223. Ayyanathan K, Lechner MS, Bell P, Maul GG, Schultz DC, Yamada Y, Tanaka K, Torigoe K, Rauscher FJ, 3rd (2003) Regulated recruitment of HP1 to a euchromatic gene induces mitotically heritable, epigenetic gene silencing: a mammalian cell culture model of gene variegation. Genes Dev 17 (15):1855–1869

    PubMed  CAS  Google Scholar 

  224. Groner AC, Meylan S, Ciuffi A, Zangger N, Ambrosini G, Denervaud N, Bucher P, Trono D (2010) KRAB-zinc finger proteins and KAP1 can mediate long-range transcriptional repression through heterochromatin spreading. PLoS Genet 6 (3):e1000869

    PubMed  Google Scholar 

  225. Brown JL, Fritsch C, Mueller J, Kassis JA (2003) The Drosophila pho-like gene encodes a YY1-related DNA binding protein that is redundant with pleiohomeotic in homeotic gene silencing. Development 130 (2):285–294

    PubMed  CAS  Google Scholar 

  226. Fritsch C, Brown JL, Kassis JA, Muller J (1999) The DNA-binding polycomb group protein pleiohomeotic mediates silencing of a Drosophila homeotic gene. Development 126 (17):3905–3913

    PubMed  CAS  Google Scholar 

  227. Klymenko T, Papp B, Fischle W, Kocher T, Schelder M, Fritsch C, Wild B, Wilm M, Muller J (2006) A Polycomb group protein complex with sequence-specific DNA-binding and selective methyl-lysine-binding activities. Genes Dev 20 (9):1110–1122

    PubMed  CAS  Google Scholar 

  228. Wang L, Brown JL, Cao R, Zhang Y, Kassis JA, Jones RS (2004) Hierarchical recruitment of polycomb group silencing complexes. Mol Cell 14 (5):637–646

    PubMed  CAS  Google Scholar 

  229. Dejardin J, Rappailles A, Cuvier O, Grimaud C, Decoville M, Locker D, Cavalli G (2005) Recruitment of Drosophila Polycomb group proteins to chromatin by DSP1. Nature 434 (7032):533–538

    PubMed  CAS  Google Scholar 

  230. Ringrose L, Rehmsmeier M, Dura JM, Paro R (2003) Genome-wide prediction of Polycomb/Trithorax response elements in Drosophila melanogaster. Dev Cell 5 (5):759–771

    PubMed  CAS  Google Scholar 

  231. Boyer LA, Plath K, Zeitlinger J, Brambrink T, Medeiros LA, Lee TI, Levine SS, Wernig M, Tajonar A, Ray MK, Bell GW, Otte AP, Vidal M, Gifford DK, Young RA, Jaenisch R (2006) Polycomb complexes repress developmental regulators in murine embryonic stem cells. Nature 441 (7091):349–353

    PubMed  CAS  Google Scholar 

  232. Ku M, Koche RP, Rheinbay E, Mendenhall EM, Endoh M, Mikkelsen TS, Presser A, Nusbaum C, Xie X, Chi AS, Adli M, Kasif S, Ptaszek LM, Cowan CA, Lander ES, Koseki H, Bernstein BE (2008) Genomewide analysis of PRC1 and PRC2 occupancy identifies two classes of bivalent domains. PLoS Genet 4 (10):e1000242

    PubMed  Google Scholar 

  233. Sing A, Pannell D, Karaiskakis A, Sturgeon K, Djabali M, Ellis J, Lipshitz HD, Cordes SP (2009) A vertebrate Polycomb response element governs segmentation of the posterior hindbrain. Cell 138 (5):885–897

    PubMed  CAS  Google Scholar 

  234. Woo CJ, Kharchenko PV, Daheron L, Park PJ, Kingston RE (2010) A region of the human HOXD cluster that confers polycomb-group responsiveness. Cell 140 (1):99–110

    PubMed  CAS  Google Scholar 

  235. Caretti G, Di Padova M, Micales B, Lyons GE, Sartorelli V (2004) The Polycomb Ezh2 methyltransferase regulates muscle gene expression and skeletal muscle differentiation. Genes Dev 18 (21):2627–2638

    PubMed  CAS  Google Scholar 

  236. Garcia E, Marcos-Gutierrez C, del Mar Lorente M, Moreno JC, Vidal M (1999) RYBP, a new repressor protein that interacts with components of the mammalian Polycomb complex, and with the transcription factor YY1. Embo J 18 (12):3404–3418

    PubMed  CAS  Google Scholar 

  237. Kim SY, Paylor SW, Magnuson T, Schumacher A (2006) Juxtaposed Polycomb complexes co-regulate vertebral identity. Development 133 (24):4957–4968

    PubMed  CAS  Google Scholar 

  238. Satijn DP, Hamer KM, den Blaauwen J, Otte AP (2001) The polycomb group protein EED interacts with YY1, and both proteins induce neural tissue in Xenopus embryos. Mol Cell Biol 21 (4):1360–1369

    PubMed  CAS  Google Scholar 

  239. Endoh M, Endo TA, Endoh T, Fujimura Y, Ohara O, Toyoda T, Otte AP, Okano M, Brockdorff N, Vidal M, Koseki H (2008) Polycomb group proteins Ring1A/B are functionally linked to the core transcriptional regulatory circuitry to maintain ES cell identity. Development 135 (8):1513–1524

    PubMed  CAS  Google Scholar 

  240. Rinn JL, Kertesz M, Wang JK, Squazzo SL, Xu X, Brugmann SA, Goodnough LH, Helms JA, Farnham PJ, Segal E, Chang HY (2007) Functional demarcation of active and silent chromatin domains in human HOX loci by noncoding RNAs. Cell 129 (7):1311–1323

    PubMed  CAS  Google Scholar 

  241. Talbert PB, Henikoff S (2006) Spreading of silent chromatin: inaction at a distance. Nat Rev Genet 7 (10):793–803

    PubMed  CAS  Google Scholar 

  242. Nakayama J, Rice JC, Strahl BD, Allis CD, Grewal SI (2001) Role of histone H3 lysine 9 methylation in epigenetic control of heterochromatin assembly. Science 292 (5514):110–113

    PubMed  CAS  Google Scholar 

  243. Hoppe GJ, Tanny JC, Rudner AD, Gerber SA, Danaie S, Gygi SP, Moazed D (2002) Steps in assembly of silent chromatin in yeast: Sir3-independent binding of a Sir2/Sir4 complex to silencers and role for Sir2-dependent deacetylation. Mol Cell Biol 22 (12):4167–4180

    PubMed  CAS  Google Scholar 

  244. Rusche LN, Kirchmaier AL, Rine J (2002) Ordered nucleation and spreading of silenced chromatin in Saccharomyces cerevisiae. Mol Biol Cell 13 (7):2207–2222

    PubMed  CAS  Google Scholar 

  245. Boscheron C, Maillet L, Marcand S, Tsai-Pflugfelder M, Gasser SM, Gilson E (1996) Cooperation at a distance between silencers and proto-silencers at the yeast HML locus. Embo J 15 (9):2184–2195

    PubMed  CAS  Google Scholar 

  246. Fourel G, Revardel E, Koering CE, Gilson E (1999) Cohabitation of insulators and silencing elements in yeast subtelomeric regions. Embo J 18 (9):2522–2537

    PubMed  CAS  Google Scholar 

  247. Beisel C, Buness A, Roustan-Espinosa IM, Koch B, Schmitt S, Haas SA, Hild M, Katsuyama T, Paro R (2007) Comparing active and repressed expression states of genes controlled by the Polycomb/Trithorax group proteins. Proc Natl Acad Sci U S A 104 (42):16615–16620

    PubMed  CAS  Google Scholar 

  248. Holohan EE, Kwong C, Adryan B, Bartkuhn M, Herold M, Renkawitz R, Russell S, White R (2007) CTCF genomic binding sites in Drosophila and the organisation of the bithorax complex. PLoS Genet 3 (7):e112

    PubMed  Google Scholar 

  249. Negre N, Hennetin J, Sun LV, Lavrov S, Bellis M, White KP, Cavalli G (2006) Chromosomal distribution of PcG proteins during Drosophila development. PLoS Biol 4 (6):e170

    PubMed  Google Scholar 

  250. Tolhuis B, de Wit E, Muijrers I, Teunissen H, Talhout W, van Steensel B, van Lohuizen M (2006) Genome-wide profiling of PRC1 and PRC2 Polycomb chromatin binding in Drosophila melanogaster. Nat Genet 38 (6):694–699

    PubMed  CAS  Google Scholar 

  251. Kahn TG, Schwartz YB, Dellino GI, Pirrotta V (2006) Polycomb complexes and the propagation of the methylation mark at the Drosophila Ubx gene. J Biol Chem 281 (39):29064–29075

    PubMed  CAS  Google Scholar 

  252. Lanzuolo C, Roure V, Dekker J, Bantignies F, Orlando V (2007) Polycomb response elements mediate the formation of chromosome higher-order structures in the bithorax complex. Nat Cell Biol 9 (10):1167–1174

    PubMed  CAS  Google Scholar 

  253. Tiwari VK, Cope L, McGarvey KM, Ohm JE, Baylin SB (2008) A novel 6C assay uncovers Polycomb-mediated higher order chromatin conformations. Genome Res 18 (7):1171–1179

    PubMed  CAS  Google Scholar 

  254. Molto E, Fernandez A, Montoliu L (2009) Boundaries in vertebrate genomes: different solutions to adequately insulate gene expression domains. Brief Funct Genomic Proteomic 8 (4):283–296

    PubMed  CAS  Google Scholar 

  255. Wallace JA, Felsenfeld G (2007) We gather together: insulators and genome organization. Curr Opin Genet Dev 17 (5):400–407

    PubMed  CAS  Google Scholar 

  256. West AG, Gaszner M, Felsenfeld G (2002) Insulators: many functions, many mechanisms. Genes Dev 16 (3):271–288

    PubMed  Google Scholar 

  257. Bell AC, West AG, Felsenfeld G (1999) The protein CTCF is required for the enhancer blocking activity of vertebrate insulators. Cell 98 (3):387–396

    PubMed  CAS  Google Scholar 

  258. Huang S, Li X, Yusufzai TM, Qiu Y, Felsenfeld G (2007) USF1 recruits histone modification complexes and is critical for maintenance of a chromatin barrier. Mol Cell Biol 27 (22):7991–8002

    PubMed  CAS  Google Scholar 

  259. Gurudatta BV, Corces VG (2009) Chromatin insulators: lessons from the fly. Brief Funct Genomic Proteomic 8 (4):276–282

    PubMed  CAS  Google Scholar 

  260. Recillas-Targa F, Pikaart MJ, Burgess-Beusse B, Bell AC, Litt MD, West AG, Gaszner M, Felsenfeld G (2002) Position-effect protection and enhancer blocking by the chicken beta-globin insulator are separable activities. Proc Natl Acad Sci U S A 99 (10):6883–6888

    PubMed  CAS  Google Scholar 

  261. West AG, Huang S, Gaszner M, Litt MD, Felsenfeld G (2004) Recruitment of histone modifications by USF proteins at a vertebrate barrier element. Mol Cell 16 (3):453–463

    PubMed  CAS  Google Scholar 

  262. Gaszner M, Felsenfeld G (2006) Insulators: exploiting transcriptional and epigenetic mechanisms. Nat Rev Genet 7 (9):703–713

    PubMed  CAS  Google Scholar 

  263. Phillips JE, Corces VG (2009) CTCF: master weaver of the genome. Cell 137 (7):1194–1211

    PubMed  Google Scholar 

  264. Guelen L, Pagie L, Brasset E, Meuleman W, Faza MB, Talhout W, Eussen BH, de Klein A, Wessels L, de Laat W, van Steensel B (2008) Domain organization of human chromosomes revealed by mapping of nuclear lamina interactions. Nature 453 (7197):948–951

    PubMed  CAS  Google Scholar 

  265. Park PJ (2009) ChIP-seq: advantages and challenges of a maturing technology. Nat Rev Genet 10 (10):669–680

    PubMed  CAS  Google Scholar 

  266. Ren B, Robert F, Wyrick JJ, Aparicio O, Jennings EG, Simon I, Zeitlinger J, Schreiber J, Hannett N, Kanin E, Volkert TL, Wilson CJ, Bell SP, Young RA (2000) Genome-wide location and function of DNA binding proteins. Science 290 (5500):2306–2309

    PubMed  CAS  Google Scholar 

  267. Dejardin J, Kingston RE (2009) Purification of proteins associated with specific genomic Loci. Cell 136 (1):175–186

    PubMed  CAS  Google Scholar 

  268. Celniker SE, Dillon LA, Gerstein MB, Gunsalus KC, Henikoff S, Karpen GH, Kellis M, Lai EC, Lieb JD, MacAlpine DM, Micklem G, Piano F, Snyder M, Stein L, White KP, Waterston RH (2009) Unlocking the secrets of the genome. Nature 459 (7249):927–930

    PubMed  CAS  Google Scholar 

  269. Ravasi T, Suzuki H, Cannistraci CV, Katayama S, Bajic VB, Tan K, Akalin A, Schmeier S, Kanamori-Katayama M, Bertin N, Carninci P, Daub CO, Forrest AR, Gough J, Grimmond S, Han JH, Hashimoto T, Hide W, Hofmann O, Kamburov A, Kaur M, Kawaji H, Kubosaki A, Lassmann T, van Nimwegen E, MacPherson CR, Ogawa C, Radovanovic A, Schwartz A, Teasdale RD, Tegner J, Lenhard B, Teichmann SA, Arakawa T, Ninomiya N, Murakami K, Tagami M, Fukuda S, Imamura K, Kai C, Ishihara R, Kitazume Y, Kawai J, Hume DA, Ideker T, Hayashizaki Y (2010) An atlas of combinatorial transcriptional regulation in mouse and man. Cell 140 (5):744–752

    PubMed  CAS  Google Scholar 

  270. van Berkum NL, Lieberman-Aiden E, Williams L, Imakaev M, Gnirke A, Mirny LA, Dekker J, Lander ES (2010) Hi-C: a method to study the three-dimensional architecture of genomes. J Vis Exp (39):1869

    Google Scholar 

  271. Vassetzky Y, Gavrilov A, Eivazova E, Priozhkova I, Lipinski M, Razin S (2009) Chromosome conformation capture (from 3C to 5C) and its ChIP-based modification. Methods Mol Biol 567:171–188

    PubMed  Google Scholar 

  272. Segal E, Widom J (2009b) From DNA sequence to transcriptional behaviour: a quantitative approach. Nat Rev Genet 10 (7):443–456

    PubMed  CAS  Google Scholar 

  273. Strohner R, Wachsmuth M, Dachauer K, Mazurkiewicz J, Hochstatter J, Rippe K, Langst G (2005) A ‘loop recapture’ mechanism for ACF-dependent nucleosome remodeling. Nat Struct Mol Biol 12 (8):683–690

    PubMed  CAS  Google Scholar 

  274. Agalioti T, Lomvardas S, Parekh B, Yie J, Maniatis T, Thanos D (2000) Ordered recruitment of chromatin modifying and general transcription factors to the IFN-beta promoter. Cell 103 (4):667–678

    PubMed  CAS  Google Scholar 

  275. Chaban Y, Ezeokonkwo C, Chung WH, Zhang F, Kornberg RD, Maier-Davis B, Lorch Y, Asturias FJ (2008) Structure of a RSC-nucleosome complex and insights into chromatin remodeling. Nat Struct Mol Biol 15 (12):1272–1277

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Harm van Bakel .

Editor information

Editors and Affiliations

Glossary

Chromatin

The combination of DNA and accessory proteins, such as histones, that together constitute chromosomes.

Transcriptional coregulator

An accessory factor recruited by transcription factors to modulate gene expression. Cofactors typically lack intrinsic DNA binding specificity and rely on transcription factors for targeting. Most cofactors excert their effects by locally modifying chromatin structure.

Transcriptional coactivator

A coregulator that positively affects gene expression.

Transcriptional corepressor

A coregulator that negatively affects gene expression.

Chromatin modifiers

Proteins or protein complexes that can effect changes in chromatin structure by covalently modifying histones or moving nucleosomes. In this chapter the term chromatin modifier is used generally to refer to histone modifiers and ATPase nucleosome remodelers.

Histone modifiers

The enzymes responsible for adding or removing covalent modifications on histones, the majority of which are are found on the flexible histone tails. Some histone modifiers, such as HDACs and HATs can also have non-histone targets.

ATPase nucleosome remodelers

Protein complexes that use the energy generated by ATP hydrolysis to alter nucleosome-DNA interactions and displace nucleosomes.

Heterochromatin

A tightly packed form of chromatin where DNA is typically rendered inaccessible to the transcriptional machinery. Different types of heterochromatin are associated with distinct chromatin marks, such as HP1 heterochromatin (HP1 binding and H3K9me) or Polycomb domains (H3K27me).

Euchromatin

An open chromatin conformation in which DNA is easily accessible. This type of chromatin is often, but not exclusively, associated with active transcription.

Histone code

Distinct patterns of histone modifications are believed to constitute a code that is used to direct specific activities on DNA, such as during transcriptional silencing or during the various stages of the transcriptional cycle. For example, the initiation, elongation and termination of transcription are each associated with different patterns of histone modifications that are believed to contribute to the recruitment and regulation of the proteins required in each stage.

Epigenetics

Inherited changes in phenotypes or expression profiles that are not due to changes in the underlying DNA sequence. Examples of epigenetic modifications include DNA methylation and covalent histone modifications, which play an important role in a variety of processes, including cell differentiation, X chromosome inactivation and imprinting.

Polycomb-group proteins

A family of proteins, initially discovered in Drosophila, that are involved in epigenetic silencing of genes by inducing a repressive chromatin structure. Polycomb group proteins are predominantly found as part of two main protein complexes: Polycomb-group Repressive Complex 1 and 2 (PRC1 and PRC2).

Nucleosome

The basic building block of chromatin, consisting of ~147 bp of DNA wrapped around an octamer of two of each of the histones H2A, H2B, H3 and H4.

Effector domains

The domains in transcription factors that are responsible for mediating their effects on gene expression. These effects can be activating or inhibitory and involve a variety of mechanisms, including recruitment of chromatin modifiers, or interactions with components of the basal transcriptional machinery and other transcription factors.

DNA binding domain

A protein domain with DNA binding activity. In the case of transcription factors, these domains typically possess specificity affinity for a limited number of DNA sequences.

Enhancer

A DNA element bound by transcription factors that can operate over long distances (up to thousands of basepairs) to stimulate transcription of its target gene(s). Enhancers are thought to operate through looping interactions with promoter regions. In addition to their distance to genes, enhancers can also be distinguished from promoters by a unique chromatin profile. Though most enhancers act in cis, they can also be located on different chromosomes.

Silencer

Like enhancers, silencers are DNA elements that can be located far away from the genes they control, but their effect on gene expression is negative. Silencers can also act as nucleation sites for repressive chromatin domains.

Insulator

A DNA element that either prevents an enhancer from activating target genes, or acts as a boundary element to delineate different chromatin domains. Insulators are distinct from from silencer regions in that an insulator needs to be located between an enhancer and a gene to affect expression, while silencers can typically operate in any orientation relative to a gene.

Chromatin domain

A relatively uniform region of chromatin characterized by distinct histone and/or DNA modifications. Examples include Polycomb domains as well as telomeric- and pericentromeric heterochromatin.

Preinitiation complex

Large complex of proteins required for successful transcription initiation by RNA Polymerase II. Major components include the basal transcription factors TFIIA, TFIIB, TFIID, TFIIE, TFIIF, and TFIIH. The preinitiation complex plays a role in positioning polymerase and melting the DNA so that it is properly configured to fit in the active site. Positioning is aided by motifs recognized by the general transcription factors.

CpG island

Sequence elements rich in CG dinucleotides that are found at a large number of mammalian promoters.

General transcription factors

Transcription factors that are universally required for RNA polymerase II transcription. Most GTFs are part of the preinitiation complex.

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

van Bakel, H. (2011). Interactions of Transcription Factors with Chromatin. In: Hughes, T. (eds) A Handbook of Transcription Factors. Subcellular Biochemistry, vol 52. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-9069-0_11

Download citation

Publish with us

Policies and ethics