Skip to main content

Transcription Factor Binding Sites and Other Features in Human and Drosophila Proximal Promoters

  • Chapter
  • First Online:
A Handbook of Transcription Factors

Part of the book series: Subcellular Biochemistry ((SCBI,volume 52))

Abstract

Eukaryotic promoters determine transcription start sites (TSSs), and are often enriched for transcription factor binding sites (TFBSs), which presumably play a major role in determining the location and activity of the TSS. In mammalian systems, proximal promoters are enriched for the CpG dinucleotide. The TFBSs that are enriched in proximal promoters (–200 bps to the TSS) are CCAAT, ETS, NRF1, SP1, E-Box, CRE, BoxA, and TATA. Only TATA occurs in a DNA strand dependent manner. In Drosophila, proximal promoters are AT rich and many putative TFBSs are enriched in proximal promoters. These sequences are different from those that occur in human promoters, except for TATA and E-Box, and many occur on a single strand of DNA giving directionality to the promoter. Thus, fundamental differences have arisen as promoters evolved in metazoans.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ohler U, Liao GC, Niemann H, Rubin GM (2002) Computational analysis of core promoters in the Drosophila genome. Genome Biol 3:RESEARCH0087

    Article  PubMed  Google Scholar 

  2. FitzGerald PC, Shlyakhtenko A, Mir AA, Vinson C (2004) Clustering of DNA sequences in human promoters. Genome Res 14:1562–1574

    Article  PubMed  CAS  Google Scholar 

  3. Fitzgerald PC, Sturgill D, Shyakhtenko A, Oliver B, Vinson C (2006) Comparative genomics of Drosophila and human core promoters. Genome Biol 7:R53

    Article  PubMed  Google Scholar 

  4. Marino-Ramirez L, Spouge JL, Kanga GC, Landsman D (2004) Statistical analysis of over-represented words in human promoter sequences. Nucleic Acids Res 32:949–958

    Article  PubMed  CAS  Google Scholar 

  5. Bina M, et al. (2004) Exploring the characteristics of sequence elements in proximal promoters of human genes. Genomics 84:929–940

    Article  PubMed  CAS  Google Scholar 

  6. Bina M, et al. (2009) Discovering sequences with potential regulatory characteristics. Genomics 93:314–322

    Article  PubMed  CAS  Google Scholar 

  7. Suzuki Y, Yamashita R, Sugano S, Nakai K (2004) DBTSS, DataBase of Transcriptional Start Sites: progress report 2004. Nucleic Acids Res 32:D78–81

    Article  PubMed  CAS  Google Scholar 

  8. Zhang MQ (1998) A discrimination study of human core-promoters. Pac Symp Biocomput 3:240–251

    Google Scholar 

  9. Bird AP (1986) CpG-rich islands and the function of DNA methylation. Nature 321:209–213

    Article  PubMed  CAS  Google Scholar 

  10. Gardiner-Garden M, Frommer M (1987) CpG islands in vertebrate genomes. J Mol Biol 196:261–282

    Article  PubMed  CAS  Google Scholar 

  11. Bird A (2002) DNA methylation patterns and epigenetic memory. Genes Dev 16:6–21

    Article  PubMed  CAS  Google Scholar 

  12. Rozenberg JM, et al. (2008) All and only CpG containing sequences are enriched in promoters abundantly bound by RNA polymerase II in multiple tissues. BMC Genomics 9:67

    Article  PubMed  Google Scholar 

  13. Jones PA, Baylin SB (2007) The epigenomics of cancer. Cell 128:683–692

    Article  PubMed  CAS  Google Scholar 

  14. Eckhardt F, et al. (2006) DNA methylation profiling of human chromosomes 6, 20 and 22. Nat Genet 38:1378–1385

    Article  PubMed  CAS  Google Scholar 

  15. Weber M, et al. (2007) Distribution, silencing potential and evolutionary impact of promoter DNA methylation in the human genome. Nat Genet 39:457–466

    Article  PubMed  CAS  Google Scholar 

  16. Mito Y, Henikoff JG, Henikoff S (2005) Genome-scale profiling of histone H3.3 replacement patterns. Nat Genet 37:1090–1097

    Article  PubMed  CAS  Google Scholar 

  17. Yuan GC, et al. (2005) Genome-scale identification of nucleosome positions in S. cerevisiae. Science 309:626–630

    Article  PubMed  CAS  Google Scholar 

  18. Tillo D, Hughes TR (2009) G+C content dominates intrinsic nucleosome occupancy. BMC Bioinformatics 10:442

    Article  PubMed  Google Scholar 

  19. Tillo D, et al. (2010) High nucleosome occupancy is encoded at human regulatory sequences. PLoS One 5:9129

    Article  Google Scholar 

  20. Polavarapu N, Marino-Ramirez L, Landsman D, McDonald JF, Jordan IK (2008) Evolutionary rates and patterns for human transcription factor binding sites derived from repetitive DNA. BMC Genomics 9:226

    Article  PubMed  Google Scholar 

  21. Weirauch MT, Hughes TR (2010) Dramatic changes in transcription factor binding over evolutionary time. Genome Biol 11:122

    Article  PubMed  Google Scholar 

  22. Pavletich NP, Pabo CO (1991) Zinc finger-DNA recognition: crystal structure of a Zif268-DNA complex at 2.1 A. Science 252:809–817

    Article  PubMed  CAS  Google Scholar 

  23. Dynan WS, Tjian R (1985) Control of eukaryotic messenger RNA synthesis by sequence-specific DNA-binding proteins. Nature 316:774–778

    Article  PubMed  CAS  Google Scholar 

  24. Sinha S, Maity SN, Lu J, de Crombrugghe B (1995) Recombinant rat CBF-C, the third subunit of CBF/NFY, allows formation of a protein-DNA complex with CBF-A and CBF-B and with yeast HAP2 and HAP3. Proc Natl Acad Sci U S A 92:1624–1628

    Article  PubMed  CAS  Google Scholar 

  25. Sharrocks AD (2001) The ETS-domain transcription factor family. Nat Rev Mol Cell Biol 2:827–837

    Article  PubMed  CAS  Google Scholar 

  26. Graves BJ, Petersen JM (1998) Specificity within the ets family of transcription factors. Adv Cancer Res 75:1–55

    Article  PubMed  CAS  Google Scholar 

  27. Brown TA, McKnight SL (1992) Specificities of protein–protein and protein–DNA interaction of GABP alpha and two newly defined ets-related proteins. Genes Dev 6:2502–2512

    Article  PubMed  CAS  Google Scholar 

  28. Wei GH, et al. (2010) Genome-wide analysis of ETS-family DNA-binding in vitro and in vivo. Embo J 29:2147–2160

    Article  PubMed  CAS  Google Scholar 

  29. Jolma A, et al. Multiplexed massively parallel SELEX for characterization of human transcription factor binding specificities. Genome Res 20:861–873

    Google Scholar 

  30. Kim Y, Geiger JH, Hahn S, Sigler PB (1993) Crystal structure of a yeast TBP/TATA-box complex. Nature 365:512–520

    Article  PubMed  CAS  Google Scholar 

  31. Geiger JH, Hahn S, Lee S, Sigler PB (1996) Crystal structure of the yeast TFIIA/TBP/DNA complex. Science 272:830–836

    Article  PubMed  CAS  Google Scholar 

  32. Kim TH, et al. (2005) A high-resolution map of active promoters in the human genome. Nature 436:876–880

    Article  PubMed  CAS  Google Scholar 

  33. Perry RP (2005) The architecture of mammalian ribosomal protein promoters. BMC Evol Biol 5:15

    Article  PubMed  Google Scholar 

  34. Kim J, Kim J (2009) YY1’s longer DNA-binding motifs. Genomics 93:152–158

    Article  PubMed  CAS  Google Scholar 

  35. Scarpulla RC (2006) Nuclear control of respiratory gene expression in mammalian cells. J Cell Biochem 97:673–683

    Article  PubMed  CAS  Google Scholar 

  36. Bendall AJ, Molloy PL (1994) Base preferences for DNA binding by the bHLH-Zip protein USF: effects of MgCl2 on specificity and comparison with binding of Myc family members. Nucleic Acids Res 22:2801–2810

    Article  PubMed  CAS  Google Scholar 

  37. Boyd KE, Farnham PJ (1999) Coexamination of site-specific transcription factor binding and promoter activity in living cells. Mol Cell Biol 19:8393–8399

    PubMed  CAS  Google Scholar 

  38. Ferre-D’Amare AR, Prendergast GC, Ziff EB, Burley SK (1993) Recognition by Max of its cognate DNA through a dimeric b/HLH/Z domain. Nature 363:38–45

    Article  PubMed  Google Scholar 

  39. Montminy M (1997) Transcriptional regulation by cyclic AMP. Annu Rev Biochem 66:807–822

    Article  PubMed  CAS  Google Scholar 

  40. Shaywitz AJ, Greenberg ME (1999) CREB: a stimulus-induced transcription factor activated by a diverse array of extracellular signals. Annu Rev Biochem 68:821–861

    Article  PubMed  CAS  Google Scholar 

  41. Mayr B, Montminy M (2001) Transcriptional regulation by the phosphorylation-dependent factor CREB. Nat Rev Mol Cell Biol 2:599–609

    Article  PubMed  CAS  Google Scholar 

  42. Vinson C, et al. (2002) Classification of human B-ZIP proteins based on dimerization properties. Mol Cell Biol 22:6321–6335

    Article  PubMed  CAS  Google Scholar 

  43. Iguchi-Ariga SM, Schaffner W (1989) CpG methylation of the cAMP-responsive enhancer/promoter sequence TGACGTCA abolishes specific factor binding as well as transcriptional activation. Genes Dev 3:612–619

    Article  PubMed  CAS  Google Scholar 

  44. Vinson CR, Hai T, Boyd SM (1993) Dimerization specificity of the leucine zipper-containing bZIP motif on DNA binding: prediction and rational design. Genes Dev 7:1047–1058

    Article  PubMed  CAS  Google Scholar 

  45. Shuman JD, Cheong J, Coligan JE (1997) ATF-2 and C/EBPalpha can form a heterodimeric DNA binding complex in vitro. Functional implications for transcriptional regulation. J Biol Chem 272:12793–12800

    Article  PubMed  CAS  Google Scholar 

  46. Schumacher MA, Goodman RH, Brennan RG (2000) The structure of a CREB bZIP.somatostatin CRE complex reveals the basis for selective dimerization and divalent cation-enhanced DNA binding. J Biol Chem 275:35242–35247

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Charles Vinson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Vinson, C., Chatterjee, R., Fitzgerald, P. (2011). Transcription Factor Binding Sites and Other Features in Human and Drosophila Proximal Promoters. In: Hughes, T. (eds) A Handbook of Transcription Factors. Subcellular Biochemistry, vol 52. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-9069-0_10

Download citation

Publish with us

Policies and ethics