Skip to main content

Marsupial Centomeres and Telomeres: Dynamic Chromosome Domains

  • Chapter
  • First Online:
Marsupial Genetics and Genomics

Abstract

What has become clear from a synthesis of work on marsupial chromosomes over the last 100 years is that the centromere is more than simply an architectural feature of the chromosome. Rather, it has been participant, either directly or indirectly, in the evolution of the diversity of karyotypes observed in marsupials. Across marsupial lineages, a family of model species stands out as an ideal system in which to study centromere function and evolution: macropodines (kangaroos and wallabies). This chapter focuses on the study of centromeres in marsupials, as both a region critical to ensuring the distribution of sister chromatids to daughter cells during cell division and a chromosomal domain involved in karyotypic stability and evolution. We will explore the role played by elements found at centromeres and telomeres in cell division and karyotypic change as supported by both historic and current experimental evidence.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Allshire RC, Karpen GH (2008) Epigenetic regulation of centromeric chromatin: old dogs, new tricks? Nat Rev Genet 9:923–937.

    Article  PubMed  CAS  Google Scholar 

  • Archer M (1984) Evolution of arid Australia and its consequences for vertebrates. In: Archer M, Clayton G (eds) Vertebrate Zoogeography and Evolution in Australasia. Southwood Press, Marrickville.

    Google Scholar 

  • Bailey JA, Baertsch R, Kent WJ, Haussler D, Eichler EE (2004) Hotspots of mammalian chromosomal evolution. Genome Biol 5:R23.

    Article  PubMed  Google Scholar 

  • Baverstock PR, Krieg M, Birrell J (1990) Evolutionary Relationships of Australian Marsupials and Assessed by Albumin Immunology. Aust J Zool 37:273–287.

    Article  Google Scholar 

  • Bourque G, Pevzner PA (2002) Genome-scale evolution: reconstructing gene orders in the ancestral species. Genome Res 12:26–36.

    PubMed  CAS  Google Scholar 

  • Bouzinba-Segard H, Guais A, Francastel C (2006) Accumulation of small murine minor satellite transcripts leads to impaired centromeric architecture and function. Proc Natl Acad Sci USA 103:8709–8714.

    Article  PubMed  CAS  Google Scholar 

  • Brennecke J, Malone CD, Aravin AA, Sachidanandam R, Stark A, Hannon GJ (2008) An epigenetic role for maternally inherited piRNAs in transposon silencing. Science 322:1387–1392.

    Article  PubMed  CAS  Google Scholar 

  • Bulazel K, Metcalfe C, Ferreri G, Yu J, Eldridge M, O’Neill R (2006) Cytogenetic and molecular evaluation of centromere-associated DNA sequences from a marsupial (Macropodidae: Macropus rufogriseus) X chromosome. Genetics 172:1129–1137.

    Article  PubMed  CAS  Google Scholar 

  • Bulazel KV, Ferreri GC, Eldridge MD, O’Neill RJ (2007) Species-specific shifts in centromere sequence composition are coincident with breakpoint reuse in karyotypically divergent lineages. Genome Biol 8:R170.

    Article  PubMed  Google Scholar 

  • Burk A, Springer M (2000) Intergeneric relationships among Macropodoidea (Metatheria: Diprotodontia) and the chronicle of kangaroo evolution. J Mammal Evol 7:213–237.

    Article  Google Scholar 

  • Cambareri EB, Aisner R, Carbon J (1998) Structure of the chromosome VII centromere region in Neurospora crassa: degenerate transposons and simple repeats. Mol Cell Biol 18:5465–5477.

    PubMed  CAS  Google Scholar 

  • Carone DM, Longo MS, Ferreri GC, et al. (2009) A new class of retroviral and satellite encoded small RNAs emanates from mammalian centromeres. Chromosoma 118:113–125.

    Article  PubMed  CAS  Google Scholar 

  • Carvalho BD, Mattevi MS (2000) (T2AG3)n telomeric sequence hybridization suggestive of centric fusion in karyotype marsupials evolution. Genetica 108:205–210.

    Article  PubMed  CAS  Google Scholar 

  • Cheng Z, Dong F, Langdon T, et al. (2002) Functional rice centromeres are marked by a satellite repeat and a centromere-specific retrotransposon. Plant Cell 14:1691–1704.

    Article  PubMed  CAS  Google Scholar 

  • Clarke L (1990) Centromeres of budding and fission yeasts. Trends Genet 6:150–154.

    Article  PubMed  CAS  Google Scholar 

  • Coffin JM, Hughes SH, Varmus HE (1997) Retroviruses. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.

    Google Scholar 

  • Csink AK, Henikoff S (1998) Something from nothing: the evolution and utility of satellite repeats. Trends Genet 14:200–204.

    Article  PubMed  CAS  Google Scholar 

  • Danilevskaya ON, Arkhipova IR, Traverse KL, Pardue ML (1997) Promoting in tandem: the promoter for telomere transposon HeT-A and implications for the evolution of retroviral LTRs. Cell 88:647–655.

    Article  PubMed  CAS  Google Scholar 

  • Dennis ES, Dunsmuir P, Peacock WJ (1980) Segmental amplification in a satellite DNA: restriction enzyme analysis of the major satellite of Macropus rufogriseus. Chromosoma 79:179–198.

    Article  PubMed  CAS  Google Scholar 

  • Dunn CA, Romanish MT, Gutierrez LE, van de Lagemaat LN, Mager DL (2006) Transcription of two human genes from a bidirectional endogenous retrovirus promoter. Gene 366:335–342.

    Article  PubMed  CAS  Google Scholar 

  • Dunsmuir P (1976) Satellite DNA in the kangaroo Macropus rufogriseus. Chromosoma 56: 111–125.

    Article  PubMed  CAS  Google Scholar 

  • Eichler EE (1999) Repetitive conundrums of centromere structure and function. Hum Mol Genet 8:151–155.

    Article  PubMed  CAS  Google Scholar 

  • Eldridge MD, Close RL (1992) Taxonomy of rock wallabies, Petrogale (Marsupialia: Macropodidae). I: a revision of the eastern Petrogale with the description of three new species. Aust J Zool 40:605–624.

    Article  Google Scholar 

  • Eldridge MD, Close RL (1993) Radiation of chromosome shuffles. Curr Opin Genet Dev 3: 915–922.

    Article  PubMed  CAS  Google Scholar 

  • Elizur A, Dennis ES, Peacock WJ (1982) Satellite DNA sequences in the red kangaroo (Macropus rufus). Aust J Biol Sci 35:313–325.

    PubMed  CAS  Google Scholar 

  • Ferreri GC, Marzelli M, Rens W, O’Neill RJ (2004) A centromere-specific retroviral element associated with breaks of synteny in macropodine marsupials. Cytogenet Genome Res 107:115–118.

    Article  PubMed  CAS  Google Scholar 

  • Fire A, Xu S, Montgomery MK, Kostas SA, Driver SE, Mello CC (1998) Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391:806–811.

    Article  PubMed  CAS  Google Scholar 

  • Flannery TF (1989) Phylogeny of the Macropodoidea; a study in convergence. In: Grigg G, Jarman P, Hume I (eds) Kangaroos, Wallabies and Rat-Kangaroos. Surrey Beatty and Sons, Chipping Norton.

    Google Scholar 

  • Fry K, Poon R, Whitcome P, et al. (1973) Nucleotide sequence of HS-beta satellite DNA from kangaroo rat Dipodomys ordii. Proc Natl Acad Sci USA 70:2642–2646.

    Article  PubMed  CAS  Google Scholar 

  • Fukagawa T, Nogami M, Yoshikawa M, et al. (2004) Dicer is essential for formation of the heterochromatin structure in vertebrate cells. Nat Cell Biol 6:784–791.

    Article  PubMed  CAS  Google Scholar 

  • Garagna S, Broccoli D, Redi CA, Searle JB, Cooke HJ, Capanna E (1995) Robertsonian metacentrics of the house mouse lose telomeric sequences but retain some minor satellite DNA in the pericentromeric area. Chromosoma 103:685–692.

    Article  PubMed  CAS  Google Scholar 

  • Garagna S, Zuccotti M, Redi CA, Capanna E (1997) Trapping speciation. Nature 390:241–242.

    Article  PubMed  CAS  Google Scholar 

  • Graves JAM, Wakefield MJ, Renfree MB, Cooper DW, Speed T, Lindblad-Toh K, Lander ES, Wilson RK (2003) Proposal to Sequence the Genome of the Model Marsupial Macropus eugenii (Tammar Wallaby). http://wwwgenomegov/Pages/Research/Sequencing/SeqProposals/WallabySEQpdf

  • Greig GM, Warburton PE, Willard HF (1993) Organization and evolution of an alpha satellite DNA subset shared by human chromosomes 13 and 21. J Mol Evol 37:464–475.

    Article  PubMed  CAS  Google Scholar 

  • Greig GM, England SB, Bedford HM, Willard HF (1989) Chromosome-specific alpha satellite DNA from the centromere of human chromosome 16. Am J Hum Genet 45:862–872.

    PubMed  CAS  Google Scholar 

  • Grigg GC, Jarman P, Hume ID (1989) Kangaroos, Wallabies and Rat-Kangaroos. Surrey Beatty & Sons, Chipping Norton.

    Google Scholar 

  • Haaf T, Willard HF (1997) Chromosome-specific alpha-satellite DNA from the centromere of chimpanzee chromosome 4. Chromosoma 106:226–232.

    Article  PubMed  CAS  Google Scholar 

  • Haldane JBS (1922) Sex ratio and unisexual sterility in hybrid animals. J Genet 12:101–109.

    Article  Google Scholar 

  • Hammond SM, Bernstein E, Beach D, Hannon GJ (2000) An RNA-directed nuclease mediates post-transcriptional gene silencing in Drosophila cells. Nature 404:293–296.

    Article  PubMed  CAS  Google Scholar 

  • Hayman DL, Rofe RH, Sharp PJ (1987) Chromosome evolution in marsupials. Chromosomes Today 9:91–102.

    Article  Google Scholar 

  • Henikoff S, Ahmad K, Malik HS (2001) The centromere paradox: stable inheritance with rapidly evolving DNA. Science 293:1098–1102.

    Article  PubMed  CAS  Google Scholar 

  • Horvath JE, Gulden CL, Bailey JA, et al. (2003) Using a pericentromeric interspersed repeat to recapitulate the phylogeny and expansion of human centromeric segmental duplications. Mol Biol Evol 20:1463–1479.

    Article  PubMed  CAS  Google Scholar 

  • Jiang J, Nasuda S, Dong F, et al. (1996) A conserved repetitive DNA element located in the centromeres of cereal chromosomes. Proc Natl Acad Sci USA 93:14210–14213.

    Article  PubMed  CAS  Google Scholar 

  • John B (1988) Heterochromatin Molecular and Structural Aspects. Cambridge University Press, Cambridge, MA.

    Google Scholar 

  • Kanellopoulou C, Muljo SA, Kung AL, et al. (2005) Dicer-deficient mouse embryonic stem cells are defective in differentiation and centromeric silencing. Genes Dev 19:489–501.

    Article  PubMed  CAS  Google Scholar 

  • Karlseder J, Cooper JP (2007) Of wombats and whales: telomere tales in Madrid. Conference on telomeres and telomerase. EMBO Rep 8:542–546.

    Article  PubMed  CAS  Google Scholar 

  • Kennerdell JR, Carthew RW (2000) Heritable gene silencing in Drosophila using double-stranded RNA. Nat Biotechnol 18:896–898.

    Article  PubMed  CAS  Google Scholar 

  • Kidwell MG, Kidwell JF (1976) Selection for male recombination in Drosophila melanogaster. Genetics 84:333–351.

    PubMed  CAS  Google Scholar 

  • Kirsch JA (1977) The comparative serology of Marsupialia, and a classification of marsupials. Aust J Zool Suppl Ser 52:1–152.

    Article  Google Scholar 

  • Kirsch JA, Lapointe F, Springer MS (1997) DNA-Hybridization Studies of Marsupials and their Implications for Metatherian Classification. Aust J Zool 45:211–280.

    Article  CAS  Google Scholar 

  • Klattenhoff C, Theurkauf W (2008) Biogenesis and germline functions of piRNAs. Development 135:3–9.

    Article  PubMed  CAS  Google Scholar 

  • Lee Y, Ahn C, Han J, et al. (2003) The nuclear RNase III Drosha initiates microRNA processing. Nature 425:415–419.

    Article  PubMed  CAS  Google Scholar 

  • Liscinsky DM, Ferreri GC, Mack JA, Eldridge MD, O’Neill RJ (2005) Retention of latent centromeres in the Mammalian genome. J Hered 96:217–224.

    Article  PubMed  Google Scholar 

  • Longo MS, Carone DM, Program NC, Green ED, O’Neill MJ,O’Neill RJ (2009) Distinct retroelement classes define evolutionary breakpoints demarcating sites of evolutionary novelty. BMC Genomics 10:334.

    Article  PubMed  Google Scholar 

  • Lowry PS, Eldridge MDB, Johnston PG (1994) Genetic analysis of a female macropodid hybrid (Macropus agilis × M. rufogriseus) and her backcross offspring. Aust Mamm 18: 79–82.

    Google Scholar 

  • May BP, Lippman ZB, Fang Y, Spector DL, Martienssen RA (2005) Differential regulation of strand-specific transcripts from Arabidopsis centromeric satellite repeats. PLoS Genet 1:e79.

    Article  PubMed  Google Scholar 

  • McClintock B (1987) The Discovery and Characterization of Transposable Elements. Garland Publishing, Inc., New York, NY.

    Google Scholar 

  • Metcalfe CJ (2002) Telomeres and Chromosome Evolution in Marsupials. Biological Sciences, Macquarie University, Sydney.

    Google Scholar 

  • Metcalfe CJ, Eldridge MD, Toder R, Johnston PG (1998) Mapping the distribution of the telomeric sequence (T2AG3)n in the Macropodoidea (Marsupialia), by fluorescence in situ hybridization. I. The swamp wallaby, Wallabia bicolor. Chromosome Res 6:603–610.

    Article  PubMed  CAS  Google Scholar 

  • Metcalfe CJ, Eldridge MD, Johnston PG (2004) Mapping the distribution of the telomeric sequence (T2AG3)n in the 2n = 14 ancestral marsupial complement and in the macropodines (Marsupialia: Macropodidae) by fluorescence in situ hybridization. Chromosome Res 12:405–414.

    Article  PubMed  CAS  Google Scholar 

  • Metcalfe CJ, Bulazel KV, Ferreri GC, et al. (2007) Genomic instability within centromeres of interspecific marsupial hybrids. Genetics 177:2507–2517.

    Article  PubMed  CAS  Google Scholar 

  • Miller JT, Dong F, Jackson SA, Song J, Jiang J (1998) Retrotransposon-related DNA sequences in the centromeres of grass chromosomes. Genetics 150:1615–1623.

    PubMed  CAS  Google Scholar 

  • Murphy WJ, Larkin DM, Everts-van der Wind A, et al. (2005) Dynamics of mammalian chromosome evolution inferred from multispecies comparative maps. Science 309:613–617.

    Article  PubMed  CAS  Google Scholar 

  • Nadeau JH, Taylor BA (1984) Lengths of chromosomal segments conserved since divergence of man and mouse. Proc Natl Acad Sci USA 81:814–818.

    Article  PubMed  CAS  Google Scholar 

  • Neumann P, Yan H, Jiang J (2007) The centromeric retrotransposons of rice are transcribed and differentially processed by RNA interference. Genetics 176:749–761.

    Article  PubMed  CAS  Google Scholar 

  • O’Neill RJ, O’Neill MJ, Graves JA (1998) Undermethylation associated with retroelement activation and chromosome remodelling in an interspecific mammalian hybrid. Nature 393: 68–72.

    Article  PubMed  Google Scholar 

  • O’Neill RJ, Eldridge MD, Graves JA (2001) Chromosome heterozygosity and de novo chromosome rearrangements in mammalian interspecies hybrids. Mamm Genome 12:256–259.

    Article  PubMed  Google Scholar 

  • O’Neill RJ, Eldridge MD, Metcalfe CJ (2004) Centromere dynamics and chromosome evolution in marsupials. J Hered 95:375–381.

    Article  PubMed  Google Scholar 

  • Pagnozzi JM, De Jesus Silva MJ, Yonenaga-Yassuda Y (2000) Intraspecific variation in the distribution of the interstitial telomeric (TTAGGG)n sequences in Micoureus demerarae (Marsupialia: Didelphidae). Chromosome Res 8:585–591.

    Article  PubMed  CAS  Google Scholar 

  • Pagnozzi JM, Ditchfield AD, Yonenaga-Yassuda Y (2002) Mapping the distribution of the interstitial telomeric (TTAGGG)n sequences in eight species of Brazilian marsupials (Didelphidae) by FISH and the correlation with constitutive heterochromatin. Do ITS represent evidence for fusion events in American marsupials? Cytogenet Genome Res 98:278–284.

    Article  PubMed  CAS  Google Scholar 

  • Peacock WJ, Dennis ES, Elizur A, Calaby JH (1981) Repeated DNA sequences and kangaroo phylogeny. Aust J Biol Sci 34:325–340.

    PubMed  CAS  Google Scholar 

  • Pevzner P, Tesler G (2003) Genome rearrangements in mammalian evolution: lessons from human and mouse genomes. Genome Res 13:37–45.

    Article  PubMed  CAS  Google Scholar 

  • Reinhart BJ, Bartel DP (2002) Small RNAs correspond to centromere heterochromatic repeats. Science 297:1831.

    Article  PubMed  CAS  Google Scholar 

  • Rens W, O’Brien PC, Fairclough H, Harman L, Graves JAM, Ferguson-Smith MA (2003) Reversal and convergence in marsupial chromosome evolution. Cytogenet Genome Res 102:282–290.

    Article  PubMed  CAS  Google Scholar 

  • Rofe R (1978) G-banded Chromosomes and the Evolution of Macropodidae. Aust Mamm 2:53–63.

    Google Scholar 

  • Rofe RH (1979) G-Banding and Chromosomal Evolution in Australian Marsupials. University of Adelaide, Adelaide.

    Google Scholar 

  • Rofe R, Hayman D (1985) G-banding evidence for a conserved complement in the Marsupialia. Cytogenet Cell Genet 39:40–50.

    Article  PubMed  CAS  Google Scholar 

  • Salser W, Bowen S, Browne D, et al. (1976) Investigation of the organization of mammalian chromosomes at the DNA sequence level. Fed Proc 35:23–35.

    PubMed  CAS  Google Scholar 

  • Schibler L, Roig A, Mahe MF, et al. (2006) High-resolution comparative mapping among man, cattle and mouse suggests a role for repeat sequences in mammalian genome evolution. BMC Genomics 7:194.

    Article  PubMed  Google Scholar 

  • Sharman GB, Close RL, Maynes M (1990) Chromosomal evolution, phylogeny and speciation of Rock Wallabies (Petrogale: Macropodidae). Aust J Zool 37:351–363.

    Article  Google Scholar 

  • She X, Horvath JE, Jiang Z, et al. (2004) The structure and evolution of centromeric transition regions within the human genome. Nature 430:857–864.

    Article  PubMed  CAS  Google Scholar 

  • Singer MF (1982) Highly repeated sequences in mammalian genomes. Int Rev Cytol 76:67–112.

    Article  PubMed  CAS  Google Scholar 

  • Southern EM (1970) Base sequence and evolution of guinea-pig alpha-satellite DNA. Nature 227:794–798.

    Article  PubMed  CAS  Google Scholar 

  • Svartman M, Vianna-Morgante AM (1998) Karyotype evolution of marsupials: from higher to lower diploid numbers. Cytogenet Cell Genet 82:263–266.

    Article  PubMed  CAS  Google Scholar 

  • Toder R, O’Neill RJ, Wienberg J, O’Brien PC, Voullaire L, Marshall-Graves JA (1997) Comparative chromosome painting between two marsupials: origins of an XX/XY1Y2 sex chromosome system. Mamm Genome 8:418–422.

    Article  PubMed  CAS  Google Scholar 

  • Topp CN, Zhong CX, Dawe RK (2004) Centromere-encoded RNAs are integral components of the maize kinetochore. Proc Natl Acad Sci USA 101:15986–15991.

    Article  PubMed  CAS  Google Scholar 

  • Ugarkovic D (2005) Functional elements residing within satellite DNAs. EMBO Rep 6: 1035–1039.

    Article  PubMed  CAS  Google Scholar 

  • Valgardsdottir R, Chiodi I, Giordano M, Cobianchi F, Riva S, Biamonti G (2005) Structural and functional characterization of noncoding repetitive RNAs transcribed in stressed human cells. Mol Biol Cell 16:2597–2604.

    Article  PubMed  CAS  Google Scholar 

  • Venolia L, Peacock WJ (1981) A highly repeated DNA from the genome of the wallaroo (Macropus robustus robustus). Aust J Biol Sci 34:97–113.

    PubMed  CAS  Google Scholar 

  • Ventura M, Mudge JM, Palumbo V, et al. (2003) Neocentromeres in 15q24-26 map to duplicons which flanked an ancestral centromere in 15q25. Genome Res 13:2059–2068.

    Article  PubMed  CAS  Google Scholar 

  • Verdel A, Jia S, Gerber S (2004) RNAi-mediated targeting of heterochromatin by the RITS complex. Science 303:672–676.

    Article  PubMed  CAS  Google Scholar 

  • Verma RS (1999) Evolution of the centromeric alpha-satellite DNA sequences of human chromosome 22. Prenat Diagn 19:590–591.

    Article  PubMed  CAS  Google Scholar 

  • Volpe T, Schramke V, Hamilton GL, et al. (2003) RNA interference is required for normal centromere function in fission yeast. Chromosome Res 11:137–146.

    Article  PubMed  CAS  Google Scholar 

  • Volpe TA, Kidner C, Hall IM, Teng G, Grewal SI, Martienssen RA (2002) Regulation of heterochromatic silencing and histone H3 lysine-9 methylation by RNAi. Science 297:1833–1837.

    Article  PubMed  CAS  Google Scholar 

  • White M (1978) Modes of Speciation. WH Freeman and Co, San Francisco, CA.

    Google Scholar 

  • Wianny F, Zernicka-Goetz M (2000) Specific interference with gene function by double-stranded RNA in early mouse development. Nat Cell Biol 2:70–75.

    Article  PubMed  CAS  Google Scholar 

  • Willard HF (1990) Centromeres of mammalian chromosomes. Trends Genet 6:410–416.

    Article  PubMed  CAS  Google Scholar 

  • Yoder JA, Walsh CP, Bestor TH (1997) Cytosine methylation and the ecology of intragenomic parasites. Trends Genet 13:335–340.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rachel J. O’Neill .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Carone, D.M., O’Neill, R.J. (2010). Marsupial Centomeres and Telomeres: Dynamic Chromosome Domains. In: Deakin, J., Waters, P., Marshall Graves, J. (eds) Marsupial Genetics and Genomics. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-9023-2_3

Download citation

Publish with us

Policies and ethics