Skip to main content

Pulsed Laser Ablation of Soft Biological Tissues

  • Chapter
  • First Online:
Optical-Thermal Response of Laser-Irradiated Tissue

Abstract

In this chapter we focus on the key elements that form our current understanding of the mechanisms of pulsed laser ablation of soft biological tissues. We present a conceptual framework providing mechanistic links between various ablation applications and the underlying thermodynamic and phase change processes [1]. We define pulsed laser ablation as the use of laser pulses with duration of ~1 ms or less for the incision or removal of tissue regardless of the photophysical or photochemical processes involved. However, we will confine this presentation to pulsed ablation performed on a tissue level that does not involve laser-induced plasma formation. Ablation processes within transparent tissues or cells resulting from non-linear absorption have been considered in reviews by Vogel and Venugopalan [1] and by Vogel and co-workers [2].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Vogel A and Venugopalan V. Mechanisms of pulsed laser ablation of biological tissues. Chem. Rev., 103:577–644 (2003).

    Google Scholar 

  2. Vogel A, Noack J, Hüttman, G, and Paltauf, G. Mechanisms of femtosecond laser nanosurgery of cells and tissues. Appl. Phys. B, 81:1015–1047 (2005).

    ADS  Google Scholar 

  3. Silver FH. Biological materials: Structure, mechanical properties, and modeling of soft tissue. New York University, New York and London, 229 pp (1987).

    Google Scholar 

  4. Nimni ME and Harkness RD. Molecular structure and functions of collagen. In: ME Nimni (ed) Collagen. Vol. I Biochemistry. CRC, Boca Raton, pp. 1–77 (1988).

    Google Scholar 

  5. Linsenmayer TF. Collagen. In: ED Hay (ed) Cell biology of extracellular matrix. Plenum, New York and London, , 2nd edition, pp. 7–44 (1991).

    Google Scholar 

  6. Vaezy S and, Clark JI. A quantitative analysis of transparence in the human sclera and cornea using Fourier methods. J. Microsc., 163:85–94 (1991).

    Google Scholar 

  7. Nomura S, Hiltner A, Lando JB, and Baer E. Interaction of water with native collagen. Biopolymers, 16:231–246 (1977).

    Google Scholar 

  8. Cheong W-F. Summary of optical properties. In: AJ Welch, MJC van Gemert (eds) Optical-thermal response of laser-irradiated tissue. Plenum, New York, pp. 275–304 (1995).

    Google Scholar 

  9. Carp A, Prahl SA, and Venugopalan V. Radiative transport in the delta-P1 approximation: Accuracy of fluence rate and optical penetration depth predictions in turbid semi-infinite media. J. Biomed. Opt., 9:632–647 (2004).

    ADS  Google Scholar 

  10. Vodopyanov KL. Saturation studies of H2O and HDO near 3400 cm–1 using intense picosecond laser pulses. J. Chem. Phys., 94:5389–5393 (1991).

    ADS  Google Scholar 

  11. Walsh JT and Cummings JP. Effect of the dynamic optical properties of water on midinfrared laser ablation. Lasers Surg. Med., 15:295–305 (1994).

    Google Scholar 

  12. Shori R, Walston AA, Stafsudd OM, Fried D, and Walsh JT. Quantification and modeling of the dynamic changes in the absorption coefficient of water at 2.94 μm. IEEE J. Sel. Top. Quant. Electron., 7:959–970 (2002).

    Google Scholar 

  13. Staveteig PT and Walsh JT. Dynamic 193-nm optical properties of water. Appl. Opt., 35:3392–3403 (1996).

    ADS  Google Scholar 

  14. Yamada H. Strength of biological materials. Robert E. Krieger, Huntington, NY (1970).

    Google Scholar 

  15. Vogel HG. Influence of age, treatment with corticosteroids and strain rate on mechanical properties of rat skin. Biochim. Biophys. Acta, 286:79–83 (1972).

    Google Scholar 

  16. Haut RC. The effects of orientation and location on the strength of dorsal rat skin in high and low speed tensile failure experiments. Trans. ASME Biomed. Eng., 111, 136–140 (1989).

    Google Scholar 

  17. Dombi GW, Haut RC, and Sullivan WG. Correlation of high-speed tensile strength with collagen content in control and lathyritic rat skin. J. Surg. Res., 54: 21–28 (1993).

    Google Scholar 

  18. Stryer L. Biochemistry. WH Freeman and Company, San Francisco (1987).

    Google Scholar 

  19. Thomsen S. Pathological analysis of photothermal and photomechanical effects of laser-tissue interactions. Photochem. Photobiol., 53:825–835 (1991).

    Google Scholar 

  20. Allain JC, Le Lous M, Cohen-Solal L, Bazin S, and Maroteaux P. Isometric tensions developed during the hydrothermal swelling of rat skin. Connect. Tissue Res., 7:127–133 (1980).

    Google Scholar 

  21. Kampmeier J, Radt B, Birngruber R, and Brinkmann R. Thermal and biomechanical parameters of porcine cornea. Cornea, 19:355–363 (2000).

    Google Scholar 

  22. Asiyo-Vogel MN, Brinkmann R, Notbohm H, Eggers R, Lubatschowski H, Laqua H, and Vogel A. Histologic analysis of thermal effects of laser thermokeratoplasty and corneal ablation using Sirius-red polarization microscopy. J. Cataract Refract. Surg., 23:515–526 (1997).

    Google Scholar 

  23. Le Lous M, Flandin F, Herbage D, and Allain JC. Influence of collagen denaturation on the chemorheological properties of skin, assessed by differential scanning calorimentry and hydrothermal isometric tension measurement. Biochim. Biophys. Acta, 717:295–300 (1982).

    Google Scholar 

  24. Henriques FC. Studies of thermal injury. V. The predictability and the significance of thermally induced rate processes leading to irreversible epidermal injury. Arch. Pathol., 43, 489–502 (1947).

    Google Scholar 

  25. Simankowskii .M, Mackanos MA, Irani AR, O’Connel-Rodwell CE, Contag CH, Schwettman HA, and Palanker DV. Cellular tolerance to pulsed hyperthermia. Phys. Rev. E, 74:011915, 1–7 (2006).

    ADS  Google Scholar 

  26. Harris DM, Fried D, Reinisch L, Bell T, Schlachter D, From L, and Burkart J. Eyelid resurfacing. Lasers Surg. Med., 25:107–122 (1999).

    Google Scholar 

  27. Apitz I and Vogel A. Material ejection in nanosecond Er:YAG laser ablation of water, liver, and skin. Appl. Phys. A, 81:329–228 (2005).

    Google Scholar 

  28. Carslaw HS and Jaeger JC. Conduction of heat in solids. Oxford University, Oxford, 2nd edition (1959).

    Google Scholar 

  29. Anderson RR and Parrish JA. Selective photothermolysis – precise microsurgery by selective absorption of pulsed radiation. Science, 220:524–527 (1983).

    ADS  Google Scholar 

  30. Jacques S. Role of tissue optics and pulse duration on tissue effects during high-power laser irradiation. Appl. Opt., 32:2447–2454 (1993).

    ADS  Google Scholar 

  31. Venugopalan V, Nishioka NS, and Mikic BB. The thermodynamic response of soft biological tissues to pulsed ultraviolet laser radiation. Biophys. J., 69:1259–1271 (1995).

    ADS  Google Scholar 

  32. Venugopalan V, Nishioka NS, and Mikic BB. Thermodynamic response of soft biological tissues to pulsed infrared laser radiation. Biophys. J., 70:2981–2933 (1996).

    Google Scholar 

  33. Paltauf G and Dyer PE. Photomechanical processes and effects in ablation. Chem. Rev., 103:487–518 (2003).

    Google Scholar 

  34. Sigrist MW. Laser generation of sound waves in liquids and gases. J. Appl. Phys., 60:R83–R121 (1986).

    ADS  Google Scholar 

  35. Bushnell JC and McCloskey DJ. Thermoelastic stress generation in solids. J. Appl. Phys., 39:5541–5546 (1968).

    ADS  Google Scholar 

  36. Itzkan I, Albagli D, Dark ML, Perelman LT, von Rosenberg C, and Feld M. The thermoelastic basis of short pulsed laser ablation of biological tissue. Proc. Natl. Acad. Sci. USA, 92:1960–1964 (1995).

    ADS  Google Scholar 

  37. Paltauf G and Schmidt-Kloiber H. Microcavity dynamics during laser-induced spallation of liquids and gels. Appl. Phys. A, 62:303–311 (1996).

    ADS  Google Scholar 

  38. Frenz M, Paltauf, G, and Schmidt-Kloiber H. Laser-generated cavitation in absorbing liquid induced by acoustic diffraction. Phys. Rev. Lett., 76:3546–3549 (1996).

    ADS  Google Scholar 

  39. Paltauf G and Schmidt-Kloiber H. Photoacoustic cavitation in spherical and cylindrical absorbers. Appl. Phys. A, 68:525–531 (1999).

    ADS  Google Scholar 

  40. Miotello A and Kelly R. Critical assessment of thermal models for laser sputtering at high fluences. Appl. Phys. Lett., 67:3535–3537 (1995).

    ADS  Google Scholar 

  41. Schrage RW. A theoretical study of interphase mass transfer. Columbia University, New York (1953).

    Google Scholar 

  42. Yablon AD, Nishioka NS, Miki´c, BB, and Venugopalan V. Physical mechanisms of pulsed infrared laser ablation of biological tissues. Proc. SPIE, 3343:69–77 (1998).

    ADS  Google Scholar 

  43. Venugopalan V, Nishioka NS, and Mikic BB. The effect of laser parameters on the zone of thermal injury produced by laser ablation of biological tissue. Trans. ASME J. Biomech. Eng., 116:62–70 (1994).

    Google Scholar 

  44. Miotello A and Kelly R. Laser-induced phase explosion: New physical problems when a condensed phase approaches the thermodynamic critical temperature. Appl. Phys. A, 69:S67–S73 (1999).

    ADS  Google Scholar 

  45. Debenedetti P. Metastable liquids: Concepts and principles. Princeton University, Princeton, NJ (1996).

    Google Scholar 

  46. Skripov VP. Metastable liquids. Wiley, New York (1974).

    Google Scholar 

  47. Skripov VP, Sinitsyn, EN, Pavlov, PA, Ermakov, GV, Muratov, GN, Bulanov, NV, and Baidakov G. Thermophysical properties of liquids in the metastable (superheated) state. Gordon and Breach Science, New York (1988).

    Google Scholar 

  48. Apfel RE. Water superheated to 279.5°C at atmospheric pressure. Nature Phys. Sci., 238:63–64 (1972).

    ADS  Google Scholar 

  49. Martynyuk MM. Vaporization and boiling of liquid metal in an exploding wire. Sov. Phys. Tech. Phys., 19:793–797 (1974).

    ADS  Google Scholar 

  50. Martynyuk MM. Phase explosion of a metastable fluid. Combust. Explos. Shock Waves, 13:178–191 (1977).

    Google Scholar 

  51. Frenkel II. Kinetic theory of liquids. Dover, New York (1955).

    Google Scholar 

  52. Kiselev SB. Kinetic boundary of metastable states in superheated and stretched liquids. Physica A, 269:252–268 (1999).

    ADS  Google Scholar 

  53. Majaron B, Plestenjak P, and Lukac M. Thermo-mechanical laser ablation of soft biological tissue: Modelling the micro-explosions. Appl. Phys. B, 69:71–80 (1999).

    ADS  Google Scholar 

  54. Verdaasdonk RM, Borst C, and van Germert MJC. Explosive onset of continuous wave laser tissue ablation. Phys. Med. Biol., 35:1129–1144 (1990).

    Google Scholar 

  55. LeCarpentier GL, Motamedi M, McMath LP, Rastegar S, and Welch AJ. Continuous wave laser ablation of tissue: Analysis of thermal and mechanical events. IEEE Trans. Biomed. Eng., 40:188–200 (1993).

    Google Scholar 

  56. Frenz M, Romano V, Zweig AD, Weber HP, Chapliev NI, and Silenok AV. Instabilities in laser cutting of soft media. J. Appl. Phys., 66:4496–4503 (1989).

    ADS  Google Scholar 

  57. Zweig AD. A thermo-mechanical model for laser ablation. J. Appl. Phys., 70:1684–1691 (1991).

    ADS  Google Scholar 

  58. Lu Q. Thermodynamic evolution of phase explosion during high-power nanosecond laser ablation. Phys. Rev. E, 67:016410 (5 pages) (2003).

    ADS  Google Scholar 

  59. Dingus RS and Scammon RJ. Grüneisen-stress induced ablation of biological tissue. Proc. SPIE, 1427:45–54 (1991).

    ADS  Google Scholar 

  60. Dingus RS, Curran DR, Oraevsky AA, and Jacques SL. Microscopic spallation process and its potential role in laser-tissue ablation. Proc. SPIE, 2134A:434–445 (1994).

    ADS  Google Scholar 

  61. Paltauf G and Schmidt-Kloiber H. Model study to investigate the contribution of spallation to pulsed laser ablation of tissue. Lasers Surg. Med., 16:277–287 (1995).

    Google Scholar 

  62. Oraevsky AA, Jacques SL, Esenaliev RO, and Tittel FK. Pulsed laser ablation of soft tissue, gels, and aqueous solutions at temperatures below 100°C. Lasers Surg. Med., 18:231–240 (1996).

    Google Scholar 

  63. Duvall GE and Fowles GR. Shock waves. In: RS Bradley (ed) High pressure physics and chemistry. Academic, New York, pp. 209–291 (1963).

    Google Scholar 

  64. Zel’dovich YB and Raizer YP. Physics of shock waves and high temperature hydrodynamic phenomena, Vol. I and II. Academic, New York and London (1966).

    Google Scholar 

  65. Lu Q, Mao SS, Mao X, and Russo RE. Delayed phase explosion during high-power nanosecond laser ablation of silicon. Appl. Phys. Lett., 80:3072–3074 (2002).

    ADS  Google Scholar 

  66. Vogel A and Noack J. Shock wave energy and acoustic energy dissipation after laser-induced breakdown. Proc. SPIE, 3254:180–189 (1998).

    ADS  Google Scholar 

  67. Albagli D, Perelman LT, Janes GS, von Rosenberg C, Itzkan I, and Feld M. Inertially confined ablation of biological tissue. Lasers Life Sci., 6:55–68 (1994).

    Google Scholar 

  68. Kawamura Y, Toyoda K, and Namba S. Effective deep ultraviolet photoetching of polymethyl methacrylate by an excimer laser. Appl. Phys. Lett., 40:374–375 (1982).

    ADS  Google Scholar 

  69. Srinivasan R and Mayne-Barton V. Self-developing photoetching of poly(ethylene terephthalate) films by far-ultraviolt excimer laser radiation. Appl. Phys. Lett., 41:576–578 (1982).

    ADS  Google Scholar 

  70. Trokel SL, Srinivasan R, and Braren B. Excimer laser surgery of the cornea. Am J. Ophthalmol., 96:710–715 (1983).

    Google Scholar 

  71. Srinivasan R and Leigh W. Ablative photodecomposition. Action of far-ultraviolet (193 nm) laser radiation on poly(ethylene terephthalate) films. Am. J. Chem. Soc., 104:6784–6785 (1982).

    Google Scholar 

  72. Srinivasan R. Ablation of polymers and biological tissues using ultraviolet lasers. Science, 234:559–565 (1986).

    ADS  Google Scholar 

  73. Jellinek HHG and Srinivasan R. Theory of etching polymers by far-ultraviolet, high-intensity pulsed laser and long-term radiation. J. Phys. Chem., 88:3048–3051 (1984).

    Google Scholar 

  74. Palmer BJ, Keyes T, Clarke RH, and Isner JM. Theoretical study of ablative photodecomposition in polymeric solids. J. Phys. Chem., 93:7509–7516 (1989).

    Google Scholar 

  75. Garrison BJ and Srinivasan R. Laser ablation of organic polymers: Microscopic models for photochemical and thermal processes. J. Appl. Phys., 57:2909–2914 (1985).

    ADS  Google Scholar 

  76. Srinivasan R and Braren B. Ultraviolet ablation of organic polymers. Chem. Rev., 89:1303–1316 (1989).

    Google Scholar 

  77. Yeh C. Laser ablation of polymers. J. Vac. Sci. Technol., A4:653–658 (1986).

    ADS  Google Scholar 

  78. Isner JM and Clarke RH. The paradox of thermal ablation without thermal injury. Lasers Med. Sci., 2:165–173 (1987).

    Google Scholar 

  79. Wayne CE and Wayne RP. Photochemistry. Oxford University, Oxford (1996).

    Google Scholar 

  80. Ashfold MNR and Cook PA. Photochemistry with VUV photons. In:RA Meyers (ed) Encyclopedia of physical science and technology. Academic, 3rd edition (2002).

    Google Scholar 

  81. Davis GM, Gower MC, Fotakis C. Efthimiopoulos T, and Argyrakis P. Spectroscopic studies of ArF laser photoablation of PMMA. Appl. Phys. A, 36:27–30 (1985).

    ADS  Google Scholar 

  82. Dyer PE and Sidhu J. Excimer laser ablation and thermal coupling efficiency to polymer films. J. Appl. Phys., 57:1420–1422 (1985).

    ADS  Google Scholar 

  83. Gorodetsky G, Kazyaka T G, Melcher RL, and Srinivasan R. Calorimetric and acoustic study of ultraviolet laser ablation of polymers. Appl. Phys. Lett., 46:828–830 (1985).

    ADS  Google Scholar 

  84. Brunco DP, Thompson MO, Otis CE, and Goodwin PM. Temperature measurements of polyimide during KrF excimer laser ablation. J. Appl. Phys., 72:4344–4350 (1992).

    ADS  Google Scholar 

  85. Otis CE, Braren B, Thompson MO, Brunco D, and Goodwin PM. Mechanisms of excimer laser ablation of strongly absorbing systems. Proc. SPIE, 1856:132–142 (1993).

    ADS  Google Scholar 

  86. Sutcliffe E and Srinivasan R. Dynamics of UV laser ablation of organic polymer surfaces. J. Appl. Phys., 60:3315–3322 (1986).

    ADS  Google Scholar 

  87. Srinivasan R. Ablation of polyimide (Kapton™) films by pulsed (ns) ultraviolet and infrared (9.17 μm) laser. Appl. Phys. A, 56:417–423 (1993).

    ADS  Google Scholar 

  88. Lippert T and Dickinson JT. Chemical and spectroscopic aspects of polymer ablation: Special features and novel directions. Chem. Rev., 103:453–485 (2003).

    Google Scholar 

  89. Pettit GH. The physics of ultraviolet laser ablation. In: RW Waynant (ed) Lasers in medicine. CRC, Boca Raton, pp. 109–133 (2002).

    Google Scholar 

  90. Andrew JE, Dyer PE, Forster D, and Key PH. Direct etching of polymeric materials using a XeCl laser. Appl. Phys. Lett., 43:717–719 (1983).

    ADS  Google Scholar 

  91. Küper S, Madaressi S, and Stuke M. Photofragmentation pathways of a PMMA model compound under UV excimer laser ablation conditions. J. Phys. Chem., 94:7514–7518 (1990).

    Google Scholar 

  92. Kitai MS, Popkov, VL, Semchishen VA, and Kharizov AA. The physics of UV laser cornea ablation. IEEE J. Quant. Electron., 27:302–307 (1991).

    ADS  Google Scholar 

  93. Arnold N and Bityurin N. Model for laser-induced thermal degradation and ablation of polymers. Appl. Phys. A, 68:615–625 (1999).

    ADS  Google Scholar 

  94. Nikogosyan DN and Görner H. Laser-induced photodecomposition of amino-acids and peptides: Extrapolation to corneal collagen. IEEE J. Sel. Top. Quant. Electron., 5:1107–1115 (1999).

    Google Scholar 

  95. Bityurin N, Luk’yanchuk BS, Hong MH, and Chong TC. Models for laser ablation of polymers. Chem Rev., 103:519–552 (2003).

    Google Scholar 

  96. Schmidt H, Ihlemann J, Wolff-Rottke B, Luther K, and Troe J. Ultraviolet laser ablation of polymers: Spot size, pulse duration, and plume attenuation effects explained. J. Appl. Phys., 83:5458–5468 (1998).

    ADS  Google Scholar 

  97. Yingling YG, Zhigilei LV, and Garrison BJ. The role of photochemical fragmentation in laser ablation: A molecular dynamics study. J. Photochem. Photobiol., 145:173–181 (2001).

    Google Scholar 

  98. Oraevsky AA, Jacques SL, Pettit GH, Saidi IS, Tittel FK, and Henry PD. XeCl laser ablation of atherosclerotic aorta: Optical properties and energy pathways. Lasers Surg. Med., 12:585–597 (1992).

    Google Scholar 

  99. Vogel A, Apitz I, Freidank S, and Dijkink R. Sensitive high-resolution white-light Schlieren technique with large dynamic range for the investigation of ablation dynamics. Opt. Lett., 31:1812–1814 (2006).

    ADS  Google Scholar 

  100. Hecht E and Zajac A. Optics. Addison Wesley, Reading, MA (1977).

    Google Scholar 

  101. Walsh JT and Deutsch TF. Measurement of Er:YAG laser ablation plume dynamics. Appl. Phys. B, 52:217–224 (1991).

    ADS  Google Scholar 

  102. Bor Z, Hopp B, Rácz B, Szabó G, Ratkay I, Süveges I, Füst A, and Mohay J. Plume emission, shock wave and surface wave formation during excimer laser ablation of the cornea. Refract. Corneal Surg. (Suppl.), 9: S111–S115 (1993).

    Google Scholar 

  103. Cummings JP and Walsh JT. Q-switched ablation of tissue: Plume dynamics and the effect of tissue mechanical properties. Proc. SPIE, 1646:242–253 (1992).

    ADS  Google Scholar 

  104. Krueger RR and Trokel SL. Quantitation of corneal ablation by ultraviolet laser light. Arch. Ophthalmol., 103:1741–1742 (1985).

    Google Scholar 

  105. Noack J, Tönnies R, Hohla C, Birngruber R, and Vogel A. Influence of ablation plume dynamics on the formation of central islands in excimer laser photorefractive keratectomy. Ophthalmology, 104:823–830 (1997).

    Google Scholar 

  106. Arnold N, Gruber J, and Heitz J. Spherical expansion of the vapor plume into ambient gas: An analytical model. Appl. Phys. A, 69:S87–S93 (1999).

    ADS  Google Scholar 

  107. Brode HL. Blast wave from a spherical charge. Phys. Fluids, 2:217–229 (1959).

    MATH  ADS  Google Scholar 

  108. Taylor G. The formation of a blast wave by a very intense explosion. I Theoretical discussion. Proc. Roy. Soc. A, 201:159–186 (1950).

    ADS  Google Scholar 

  109. Sedov LI. Similarity and dimensional methods in mechanics. Academic, New York (1959).

    MATH  Google Scholar 

  110. Landau LD and Lifschitz EM. Fluid mechanics. Pergamon, Oxford, 2nd edition (1987).

    MATH  Google Scholar 

  111. Sakurai A. On the propagation and structure of a blast wave, I. J. Phys. Soc. Japan, 8:662–671 (1953).

    MathSciNet  ADS  Google Scholar 

  112. Sakurai A. On the propagation and structure of a blast wave, II. J. Phys. Soc. Japan, 9:256–266 (1954).

    MathSciNet  ADS  Google Scholar 

  113. Freiwald DA and Axford RA. Approximate spherical blast theory including source mass. J. Appl. Phys., 46:1171–1174 (1975).

    ADS  Google Scholar 

  114. Kelly R and Braren B. On the direct observation of the gas dynamics of laser-pulse sputtering of polymers. Part I: Analytical considerations. Appl. Phys. B, 53:160–169 (1991).

    ADS  Google Scholar 

  115. Kelly R and Miotello A. Pulsed-laser sputtering of atoms and molecules. Part I: Basic solutions for gas-dynamic effects. Appl. Phys. B, 57:145–158 (1993).

    ADS  Google Scholar 

  116. Dyer PE and Sidhu J. Spectroscopic and fast photographic studies of excimer laser polymer ablation. J. Appl. Phys., 64:4657–4663 (1988).

    ADS  Google Scholar 

  117. Jones DL. Intermediate strength blast wave. Phys. Fluids, 11:1664–1667 (1968).

    ADS  Google Scholar 

  118. Stauter C, Gérard P, Fontaine J, and Engel T. Laser ablation acoustical monitoring. Appl. Surf. Sci., 109/110:174–178 (1997).

    Google Scholar 

  119. Freiwald DA. Approximate blast wave theory and experimental data for shock trajectories in linear explosive-driven shock tubes. J. Appl. Phys., 43:2224–2226 (1972).

    ADS  Google Scholar 

  120. Chen Z, Bogaerts A, and Vertes A. Phase explosion in atmospheric pressure infrared laser balation from water-rich targets. Appl. Phys. Lett., 89:041503 (2006).

    ADS  Google Scholar 

  121. Nahen K and Vogel A. Shielding by the ablation plume during Er:YAG Laser ablation. J. Biomed. Opt., 7:165–178 (2002).

    ADS  Google Scholar 

  122. Nahen K and Vogel A. Investigations on acoustic on-line monitoring of IR laser ablation of burned skin. Lasers Surg. Med., 25:69–78 (1999).

    Google Scholar 

  123. Nahen K and Vogel A. Acoustic signal characteristics during IR laser ablation, and their consequences for acoustic tissue discrimination. Proc. SPIE, 3914:166–176 (2000).

    ADS  Google Scholar 

  124. Vogel A, Kersten B, and Apitz I. Material ejection in free-running Er:YAG laser ablation of water, liver and skin by phase explosion, confined boiling, recoil-induced expulsion and flow-induced suction. Proc. SPIE, 4961:40–47: (2003).

    Google Scholar 

  125. Hibst R. Technik, Wirkungsweise und medizinische Anwendungen von Holmium- und Erbium-Lasern. Ecomed, Landsberg, pp. 1–120 (in German) (1996).

    Google Scholar 

  126. Puliafito CA, Stern D, Krueger RR, and Mandel ER. High-speed photography of excimer laser ablation of the cornea. Arch. Ophthalmol., 105:1255–1259 (1987).

    Google Scholar 

  127. Bäuerle D. Laser processing and chemistry. Springer, Berlin (2000).

    Google Scholar 

  128. Cummings JP and Walsh JT. Tissue tearing caused by pulsed laser-induced ablation pressure. Appl. Opt., 32:494–503 (1993).

    ADS  Google Scholar 

  129. Phipps CR, Harrison RF, Shimada T, York GW, Turner TP, Corlis XF, Steele HS, Haynes LC, and King TR. Enhanced vacuum laser-impulse coupling by volume absorption at infrared wavelengths. Lasers Particle Beams, 8:281–297 (1990).

    ADS  Google Scholar 

  130. Dyer PE and Al-Dhahir RK. Transient photoacoustic studies of laser tissue ablation. Proc. SPIE, 1202:46–60 (1990).

    ADS  Google Scholar 

  131. Könz F, Frenz M, Pratisto H, Weber HP, Lubatschowski H, Kermani O, Ertmer W, Altermatt HJ, and Schaffner T. Thermal and mechanical damage of corneal tissue after free-running and Q-switched mid-infrared laser ablation. Proc. SPIE, 2077:78–86 (1994).

    ADS  Google Scholar 

  132. Esenaliev RO, Oraevsky AA, Letokhov VS, Karabutov AA, and Malinsky TV. Studies of acoustical and shock waves in the pulsed laser ablation of biotissue. Lasers Surg. Med., 13:470–484 (1993).

    Google Scholar 

  133. Engel OGJ. Crater depth in fluid impacts. J. Appl. Phys., 37:1798–1808 (1966).

    ADS  Google Scholar 

  134. Prosperetti A and Oguz HN. The impact of drops on liquid surfaces and the underwater noise of rain. Ann. Rev. Fluid Mech., 25:577–602 (1993).

    ADS  Google Scholar 

  135. Walsh JT and Deutsch TF. Er:YAG laser ablation of tissue: Measurement of ablation rates. Lasers Surg. Med., 9:327–337 (1989).

    Google Scholar 

  136. Duck FA. Physical properties of tissue. Academic, London (1990).

    Google Scholar 

  137. Fung YC. Biomechanics: Mechanical properties of living tissues. Springer, New York (1993).

    Google Scholar 

  138. Watanabe S, Flotte TJ, McAucliffe DJ, and Jacques SL. Putative photoacoustic damage in skin induced by pulsed ArF excimer laser. J. Invest. Dermatol., 90, 761–766 (1988).

    Google Scholar 

  139. Yashima Y, McAuclffe DJ, Jacques SL, and Flotte TJ. Laser-induced photoacoustic injury of skin: Effect of inertial confinement. Lasers Surg. Med., 11:62–68 (1991).

    Google Scholar 

  140. Pini R, Rossi F, Salimbeni S, Siano S, Vannini M, Carones F, Trabucci G, Brancato R, and Gobbi PG. Experimental investigation on acoustic phenomena induced inside the eyeball by excimer laser ablation of the cornea. Proc. SPIE, 2632:25–29 (1996).

    ADS  Google Scholar 

  141. Nishioka NS and Domankevitz Y. Reflectance during pulsed holmium laser irradiation of tissue. Lasers Surg. Med., 9:375–381 (1989).

    Google Scholar 

  142. Kaufmann R and Hibst R. Pulsed erbium:YAG laser ablation in cutaneous surgery. Lasers Surg. Med., 19:324–330 (1996).

    Google Scholar 

  143. Venugopalan V, Nishioka NS, and Mikic BB. The effect of CO2 laser pulse repetition rate on tissue ablation rate and thermal damage. IEEE Trans Biomed. Eng., 38:1049–1052 (1991).

    Google Scholar 

  144. Walsh JT and Deutsch TF. Pulsed CO2 laser tissue ablation: Measurement of the ablation rate. Lasers Surg. Med., 8:264–275 (1988).

    Google Scholar 

  145. Shimmick JK, Telfair WB, Munnerlyn CR, Bartlett JD, and Trokel SL. Corneal ablation profilometry and steep central islands. J. Refract. Surg., 13:235–245 (1997).

    Google Scholar 

  146. Zhigilei LV and Garrison BJ. Molecular dynamics simulation study of the fluence dependence of particle yield and plume composition in laser desorption and ablation of organic solids. Appl. Phys. Lett., 74:1341–1343 (1999).

    ADS  Google Scholar 

  147. Yingling YG, Zhigilei LV, Garrison BJ, Koubenakis A, Labrakis J, and Georgiou S. Laser ablation of bicomponent systems: A probe of molecular ejection mechanisms. Appl. Phys. Lett., 78:1631–1633 (2001).

    ADS  Google Scholar 

  148. Cross FW, Al-Dhahir RK, Dyer PE, and MacRobert AJ. Time-resolved photoacoustic studies of vascular tissue ablation at three laser wavelengths. Appl. Phys. Lett., 50:1019–1021 (1987).

    ADS  Google Scholar 

  149. Domankevitz Y and Nishioka NS. Measurement of laser ablation threshold with a high-speed framing camera. IEEE J. Quant. Electon., 26:2276–2278 (1990).

    ADS  Google Scholar 

  150. Walsh JT and Deutsch TF. Pulsed CO2 laser ablation of tissue: Effect of mechanical properties. IEEE Trans. Biomed. Eng., 36(12):1195–1201 (1989).

    Google Scholar 

  151. Deutsch TF and Geis MW. Self-developing UV photoresist using excimer laser exposure. J. Appl. Phys., 54:7201–7204 (1983).

    ADS  Google Scholar 

  152. Puliafito CA, Wong K, and Steinert RF. Quantitative and ultrastructural studies of excimer laser ablation of the cornea at 193 and 248 nanometers. Lasers Surg. Med., 7:155–159 (1987).

    Google Scholar 

  153. Pettit GH and Ediger MN. Corneal tissue absorption coefficients for 193- and 213-nm ultraviolet radiation. Appl. Opt., 35:3386–3391 (1996).

    ADS  Google Scholar 

  154. Langerholc J. Moving phase-transitions in laser-irradiated biological tissue. Appl. Opt., 18:2286–2293 (1979).

    ADS  Google Scholar 

  155. McKenzie AL. A three-zone model of soft-tissue damage by a CO2 laser. Phys. Med. Biol., 31:967–983 (1986).

    Google Scholar 

  156. McKenzie AL. An extension of the three-zone model to predict depth of tissue damage beneath Er:YAG and Ho:YAG laser excisions. Phys. Med. Biol., 34:107–114 (1989).

    Google Scholar 

  157. Partovi F, Izatt JA, Cothren RM, Kittrell C, Thomas JE, Strikwerda S, Kramer JR, and Feld MS. A model for thermal ablation of biological tissue using laser radiation. Lasers Surg. Med., 7:141–154 (1987).

    Google Scholar 

  158. Gerstmann, M, Sagi, A, Avidor-Zehavi, A, Katzir, A, and Akselrod, S. Model simulation of biological damage in tissue exposed to CO2 laser irradiation. Opt. Eng., 32:291–297 (1993).

    ADS  Google Scholar 

  159. Olmes A, Franke HG, Bänsch E, Lubatschowski H, Raible M, Dziuk G, and Ertmer W. Modeling of infrared soft-tissue photoablation process. Appl. Phys. B, 65:659–666 (1997).

    Google Scholar 

  160. Zweig AD and Weber HP. Mechanical and thermal parameters in pulsed laser cutting of tissue. IEEE J. Quant. Electron., 23:1787–1793 (1987).

    ADS  Google Scholar 

  161. Zhigilei LV, Kodali PBS, and Garrison BJ. Molecular dynamics model for laser ablation and desorption of organic solids. J. Phys. Chem. B, 101:2028–2037 (1997).

    Google Scholar 

  162. Zhigilei LV, Kodali PBS, and Garrison BJ. A microscopic view of laser ablation. J. Phys. Chem. B, 102:2845–2853 (1998).

    Google Scholar 

  163. Zhigilei LV and Garrison BJ. Microscopic mechanisms of laser ablation of organic solids in the thermal and stress confinement irradiation regimes. J. Appl. Phys., 88:1281–1298 (2000).

    ADS  Google Scholar 

  164. Zhigilei LV, Leveugle E, Garrison B, Yingling YG, and Zeifman MI. Computer simulations of laser ablation of molecular substrates. Chem. Rev., 103:321–347 (2003).

    Google Scholar 

  165. Dou Y, Winograd N, Garrison B, and Zhigilei L. Substrate-assisted initiation od proteins embedded in water films. J. Phys. Chem. B, 107:2362–2365 (2003).

    Google Scholar 

  166. Knochenmuss R and Zhigilei LV. Molecular dynamics model of Ultraviolet matrix-assisted laser desorption/ionization including ionization process. J. Phys. Chem. B, 109:22947–22957 (2005).

    Google Scholar 

  167. Leveugle E and Zhigilei LV. Microscopic mechanisms of short pulse laser spallation of molecular solids. Appl. Phys. A, 79:753–756 (2004).

    ADS  Google Scholar 

  168. Leveugle E, Ivanov DS, and Zhigilei LV. Photomechanical spallation of molecular and metal targets: Molecular dynamics study. Appl. Phys. A, 79:1643–1655 (2004).

    ADS  Google Scholar 

  169. Krauss JM, Puliafito CA, and Steinert RF. Laser interactions with the cornea. Surv. Ophthalmol., 31:37–53 (1986).

    Google Scholar 

  170. Puliafito CA, Steinert RF, Deutsch TF, Hillenkamp F, Dehm EJ, and Adler CM. Excimer laser ablation of the cornea and lens. Ophthalmology, 92:741–748 (1985).

    Google Scholar 

  171. Lane RJ, Linsker R, Wynne JJ, Torres A, and Geronemus RG. Ultraviolet-laser ablation of skin. Arch. Dermatol., 121:609–617 (1985).

    Google Scholar 

  172. Seiler T, Marshall J, Rotherty S, and Wollensak J. The potential of an infrared hydrogen fluoride (HF) laser (3,0 μm) for corneal surgery. Lasers Ophthalmol., 1:49–60 (1986).

    Google Scholar 

  173. Loertscher H, Mandelbaum S, Parrish RK III, and Parel JM. Preliminary report on corneal incisions created by a hydrogen fluoride laser. Am. J. Ophthalmol., 102:217–221 (1986).

    Google Scholar 

  174. Bende T, Kriegerowski M, and Seiler T. Photoablation in different ocular tissues performed with an Erbium:YAG laser. Lasers Light Ophthalmol., 2:263–269 (1989).

    Google Scholar 

  175. Wolbarsht ML. Laser surgery: CO2 or HF. IEEE J. Quant. Electron., 20:1427–1432 (1984).

    ADS  Google Scholar 

  176. Telfair WB, Bekker C, Hoffman HJ, Yoder PR Jr, Norquist RE, Eiferman RA, and Zenzie HH. Histological comparison of corneal ablation with Er:YAG laser, Nd:YAG optical parametric oscillator, and excimer laser. J. Refract. Surg., 16:40–50 (2000).

    Google Scholar 

  177. Yablon AD, Nishioka NS, Mikic BB, and Venugopalan V. Measurement of tissue absorption coefficients by use of interferometric photothermal spectroscopy. Appl. Opt., 38:1259–1272 (1999).

    ADS  Google Scholar 

  178. Srinivasan R, Dyer PE, and Braren B. Far-Ultraviolet laser ablation of the cornea: Photoacoustic studies. Lasers Surg. Med., 6:514–519 (1987).

    Google Scholar 

  179. Ishihara M, Arai T, Sato S, Morimoto Y, Obara M, and Kikuchi M. Measurement of the surface temperature of the cornea during ArFexcimer laser ablation by thermal radiatiometry with a 15 nanosecond time response. Lasers Surg. Med., 30:54–59 (2002).

    Google Scholar 

  180. Kermani O, Koort HJ, Roth E, and Dardenne MU. Mass-spectroscopic analysis of excimer laser ablated material from human corneal tissue. J. Cataract Refract. Surg., 14:638–641 (1988).

    Google Scholar 

  181. Hahn DW, Ediger MN, and Petttit GH. Dynamics of ablation plume particles generated during excimer laser corneal ablation. Lasers Surg. Med., 16:384–389 (1995).

    Google Scholar 

  182. Isner JM, deJesus S R, Clarke RH, Gal D, Rongione AJ, and Donaldson RF. Mechanism of laser ablation in an absorbing flow field. Lasers Surg. Med., 8:543–554 (1988).

    Google Scholar 

  183. Deckelbaum LI. Coronary laser angioplasty. Lasers Surg. Med., 14:101–110 (1994).

    Google Scholar 

  184. Köstli KP, Frenz M, Weber HP, Paltauf G, and Schmidt-Kloiber H. Optoacoustic measurements of water, bone and cartilage with an infrared-OPO. Proc. SPIE, 3601:310–318 (1999).

    ADS  Google Scholar 

  185. Dyer PE, Khosroshahi ME, and Tuft SJ. Studies of laser-induced cavitation and tissue ablation in saline using a fibre-delivered pulsed HF laser. Appl. Phys. B, 56:84–93 (1993).

    ADS  Google Scholar 

  186. Brinkmann R, Hansen C, Mohrenstecher D, Scheu M, and Birngruber R. Analysis of cavitation dynamics during pulsed laser tissue ablation by optical on-line monotoring. IEEE J. Sel. Top. Quant. Electron., 2:826–835 (1996).

    Google Scholar 

  187. Frenz M, Könz F, Pratisto H, Weber HP, Silenok AS, and Konov VI. Starting mechanisms and dynamics of bubble formation induced by a Ho:Yttrium aluminium garnet laser in water. J. Appl. Phys., 84:5905–5912 (1998).

    ADS  Google Scholar 

  188. Ith M, Pratisto H, Altermatt HJ, Frenz M, and Weber HP. Dynamics of laser-induced channel formation in water and influence of pulse duration on the ablation of biotissue under water with pulsed erbium-laser radiation. Appl. Phys. B, 59:621–629 (1994).

    ADS  Google Scholar 

  189. Vogel A, Engelhardt R, Behnle U, and Parlitz U. Minimization effects in pulsed laser ablation illustrated in laser angioplasty. Appl. Phys. B, 62:173–182 (1996).

    ADS  Google Scholar 

  190. Pratisto H, Frenz M, Ith M, Altermatt HJ, Jansen ED, and Weber HP. Combination of fiber-guided pulsed erbium and holmium laser radiation for tissue ablation under water. Appl. Opt., 35:3328–3337 (1996).

    ADS  Google Scholar 

  191. Jansen ED, Asshauer T, Frenz M, Motamedi M, Delacrétaz G, and Welch AJ. Effect of pulse duration on bubble formation and laser-induced pressure waves during holmium laser ablation. Lasers Surg. Med., 18:278–293 (1996).

    Google Scholar 

  192. Vogel A, Schmidt P, and Flucke B. Minimization of thermomechanical side effects in IR ablation by use of multiply Q-switched laser pulses. Med. Laser Appl., 17:15–20 (2002).

    Google Scholar 

  193. Jansen ED, van Leeuwen TG, Motamedi M, Borst C, and Welch AJ. Partial vaporization model for pulsed mid-infrared laser ablation of water. J. Appl. Phys., 78:564–571 (1995).

    ADS  Google Scholar 

  194. Skripov VP and Pavlov PA. Superheating and explosive boiling of liquids. Sov. Tech. Rev. B. Therm. Phys., 2:171–207 (1989).

    Google Scholar 

  195. Skripov VP. Thermodynamic stabilities of superheated and supercooled liquids. Fluid Mech. Res., 21:43–50 (1992).

    Google Scholar 

  196. Paltauf G, Schmidt-Kloiber H, and Frenz M. Photoacoustic waves excited in liquids by fiber-transmitted laser pulses. J. Acoust. Soc. Am., 104:890–897 (1998).

    ADS  Google Scholar 

  197. Dingus RS. Laser-induced contained vaporization in tissue. Proc SPIE, 1646:266–274 (1992).

    ADS  Google Scholar 

  198. Vogel A, Noack J, Nahen K, Theisen D, Busch S, Parlitz U, Hammer DX, Noojin GD, Rockwell BA, and Birngruber R. Energy balance of optical breakdown in water at nanosecond to femtosecond time scales. Appl. Phys. B, 68:271–280 (1999).

    ADS  Google Scholar 

  199. van Leeuwen T G, Meertens JH, Velema E, Post MJ, and Borst C. Intraluminal vapor bubble induced by excimer laser pulse causes microsecond arterial dilitation and invagination leading to extensive wall damage in the rabbit. Circulation, 87:1258–1263 (1993).

    Google Scholar 

  200. Cross FW, Al-Dhahir RK, and Dyer PE. Ablative and acoustic response of pulsed UV laser-irradiated vascular tissue in a liquid environment. J. Appl. Phys., 64:2194–2201 (1988).

    Google Scholar 

  201. Brujan EA, Nahen K, Schmidt P, and Vogel A. Dynamics of laser-induced cavitation bubbles near an elastic boundary. J. Fluid Mech., 433:251–281 (2001).

    MATH  ADS  Google Scholar 

  202. Brujan EA, Nahen K, Schmidt P, and Vogel A. Dynamics of laser-induced cavitation bubbles near elastic boundaries: Influence of the elastic modulus. J. Fluid Mech., 433:283–314 (2001).

    MATH  ADS  Google Scholar 

  203. Vogel A, Hentschel W, Holzfuss J, and Lauterborn W. Cavitation buble dynamics and acoustic transient generation in ocular surgery with pulsed neodymium:YAG lasers. Ophthalmology, 93:1259–1269 (1986).

    Google Scholar 

  204. Vogel A, Schweiger P, Frieser A, Asiyo M, and Birngruber R. Intraocular Nd:YAG laser surgery: Light-tissue interaction, damage range, and reduction of collateral effects. IEEE J. Quant. Electron., 26:2240–2260 (1990).

    ADS  Google Scholar 

  205. Lin C, Stern D, and Puliafito CA. High-speed photography of Er.YAG laser ablation in fluid. Invest. Ophthalmol. Vis. Sci., 31:2546–2550 (1990).

    Google Scholar 

  206. Vogel A, Busch S, and Parlitz U. Shock wave emission and cavitation bubble generation by picosecond and nanosecond optical breakdown in water. J. Acoust. Soc. Am., 100:148–165 (1996).

    ADS  Google Scholar 

  207. Brennen CE. Cavitation and bubble dynamics. Oxford University, Oxford, New York (1995).

    Google Scholar 

  208. Vogel A, Lauterborn W, and Timm R. Optical and acoustic investigation of the dynamics of laser-produced cavitation bubbles near a solid boundary. J. Fluid Mech., 206:299–338 (1989).

    ADS  Google Scholar 

  209. Palanker D, Vankov A, Miller J, Friedman M, and Strauss M. Prevention of tissue damage by water jet during cavitation. J. Appl. Phys., 94:2654–2661 (2003).

    ADS  Google Scholar 

  210. Chapyak EJ and Godwin RP. Simulations of laser thrombolysis. Proc. SPIE, 3590:328–335 (1999).

    ADS  Google Scholar 

  211. Frenz M, Pratisto H, Könz F, Jansen ED, Welch AJ, and Weber HP. Comparison of the effects of absorption coefficient and pulse duration of 2.12 μm and 2.79 μm radiation on laser ablation of tissue. IEEE J. Quant. Electron., 32:2025–2036 (1996).

    ADS  Google Scholar 

  212. Srinivasan R, Casey KG, and Haller JD. Subnanosecond probing of the ablation of soft plaque from arterial wall by 308 nm laser pulses delivered through a fiber. IEEE J. Quant. Electron., 26:2279–2283 (1990).

    ADS  Google Scholar 

  213. Brinkmann R, Dröge G, Schröer F, Scheu M, and Birngruber R. Ablation dynamics in laser sclerostomy ab externo by means of pulsed lasers in the mid-infrared spectral range. Ophthalm. Surg. Lasers, 28:853–865 (1997).

    Google Scholar 

  214. Brinkmann R, Theisen D, Brendel T, and Birngruber R. Single pulse 30-J holmium laser for myocardial revascularisation – a study on ablation dynamics in comparison to CO2 Laser. IEEE J. Sel. Top. Quant. Electron., 5:969–980 (1999).

    Google Scholar 

  215. Jansen ED, van Leeuwen TG, Verdaasdonk RM, Le TH, Motamedi M, Welch AJ, and Borst C. Influence of tissue mechanical strength during UV and IR laser ablation in vitro. Proc. SPIE, 1882:139–146 (1993).

    ADS  Google Scholar 

  216. Frenz M, Mischler C, Romano V, Forrer M, Müller OM, and Weber HP. Effect of mechanical tissue properties on thermal damage in skin after IR-laser ablation. Appl. Phys. B, 52:251–258 (1991).

    ADS  Google Scholar 

  217. Jansen ED, Frenz M, Kadipasaoglu KA, Pfefer T, Altermatt HJ, Motamedi M, and Welch AJ. Laser-tissueinteraction during transmyocardial laser revascularisation. Proc. SPIE, 2671:49–57 (1996).

    ADS  Google Scholar 

  218. Müller G, Dörschel K, and Kar H. Biophysics of the photoablation process. Lasers Med. Sci., 6:241–254 (1991).

    Google Scholar 

  219. Hibst R and Kaufmann R. Effects of laser parameters on pulsed Er-YAG laser skin ablation Lasers Med. Sci., 6:391–397 (1991).

    Google Scholar 

  220. Schomacker KT, Walsh JT, Flotte TJ, and Deutsch TF. Thermal damage produced by high-irradiance continuous wave CO2 laser cutting of tissue. Lasers Surg. Med., 10:74–84 (1990).

    Google Scholar 

  221. Neev J, Da Silva LB, Feit MD, Perry MD, Rubenchik AM, and Stuart BC. Ultrashort pulse lasers for hard tissue ablation. IEEE J. Sel. Top. Quant. Electron., 2:790–800 (1996).

    Google Scholar 

  222. Majaron B, Srinivas SM, Huang HL, and Nelson JS. Deep coagulation of dermal collagen with repetitive Er:YAG laser irradiation. Lasers Surg. Med., 26:215–222 (2000).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alfred Vogel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Vogel, A., Venugopalan, V. (2010). Pulsed Laser Ablation of Soft Biological Tissues. In: Welch, A., van Gemert, M. (eds) Optical-Thermal Response of Laser-Irradiated Tissue. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-8831-4_14

Download citation

  • DOI: https://doi.org/10.1007/978-90-481-8831-4_14

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-8830-7

  • Online ISBN: 978-90-481-8831-4

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics