Skip to main content

Long-Term Investigations in Brackish Ecosystems

  • Chapter
  • First Online:
Long-Term Ecological Research

Abstract

Variability and complexity in brackish systems require long-term measurements in order to define base conditions, from which deviations can be ascertained. Long-term observations in three systems, lagoons, the Baltic Sea, and the Chesapeake Bay, are examined to identify system changes, unlikely detectable with sampling in single years or in temporally and spatially heterogeneous sampling. One basic condition in brackish systems is the gradient in salinity, which may be large-scale and rather stable stretching over the entire sea (marine gradient), or meso-scale and highly variable such as those in river plumes (estuarine gradient), and upwelling cells (upwelling gradient). For the first two gradients, and in some cases the third, distinct boundaries separate stenohaline taxa from more eurytopic taxa resulting in spatially explicit distributions of plankton, nutrients, and food web characteristics. The natural variability has to be ascertained through repeated long-term sampling in order to fix a baseline for shifts and trends in the ecosystem. A general trend during the last decades is cultural eutrophication, leading to increased phytoplankton biomass and sedimentation, and hypoxia in bottom water. In some areas, eutrophication was repressed in the 1990s, e.g., stabilization of chlorophyll concentrations in the Baltic Proper, recovery of macrophytes in the Darss-Zingst Bodden Chain (DZBC). In the coming years, the effects of declining nutrient loads are expected to cause a return to mesotrophic conditions in the DZBC, resulting in a return of nutrient limitation. Further monitoring will be performed to follow this unique event. It is therefore imperative that the community support long-term observations in these complex systems particularly as increasing human populations exacerbate impacts of global climate change that slowly warms waters, changes intensities and frequencies of meteorological events and responsive hydrologies, and shifts biogeographic ranges of many cosmopolitan taxa.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bergström, S., & Carlsson, B. (1994). River runoff to the Baltic Sea. 1950–1990. Ambio, 23, 280–287.

    Google Scholar 

  • Blümel, C., Domin, A., Krause, J. C., Schubert, M., Schiewer, U., & Schubert, H. (2002). Der historische Makrophytenbewuchs der inneren Gewässer der deutschen Ostseeküste. Rostocker Meeresbiologische Beiträge, 10, 5–111.

    Google Scholar 

  • Brodherr, B. (2006). Nutrient dependent growth dynamics of diatom spring populations in the southern Baltic Sea. Dissertation: Universität Rostock.

    Google Scholar 

  • Conley, D., Humborg, C., Rahm, L., Savchuk, O. P., & Wulff, F. (2002). Hypoxia in the Baltic Sea and basin-scale changes in phosphorus biogeochemistry. Environmental Science and Technology, 36, 5315–5320.

    Article  CAS  Google Scholar 

  • Elmgren, R. (1989). Man’s impact on the ecosystem of the Baltic Sea: Energy flows today and at the turn of the century. Ambio, 18, 326–332.

    Google Scholar 

  • Finni, T., Kononen, K., Olsonen, R., & Wallström, K. (2001). The history of cyanobacterial blooms in the Baltic Sea. Ambio, 30, 172–178.

    CAS  Google Scholar 

  • Gromisz, S., & Szymelfenig, M. (2005). Phytoplankton in the Hel upwelling region (the Baltic Sea). Oceanological and Hydrobiological Studies, 34, 115–135.

    Google Scholar 

  • Hagy, J. D., Boynton, W. R., Keefe, C. W., & Wood, K. V. (2004). Hypoxia in Chesapeake Bay, 1950–2001: Long-term change in relation to nutrient loading and river flow. Estuaries, 27, 634–658.

    Article  CAS  Google Scholar 

  • Hannig, M., Lavik, G., Kuypers, M. M. M., Woebken, D., Martens-Habbena, W., & Jürgens, K. (2007). Shift from denitrification to anammox after inflow events in the central Baltic Sea. Limnology and Oceanography, 52, 1336–1345.

    Article  CAS  Google Scholar 

  • Harding, L.W., Jr. (1994). Long-term trends in the distribution of phytoplankton in Chesapeake Bay: Roles of light, nutrients, and streamflow. Marine Ecology Progress Series, 104, 267–291.

    Article  Google Scholar 

  • Harrison, P. J., Turpin, D. H., Bienfang, P. K., & Davis, C. O. (1986). Sinking as a factor affecting phytoplankton species succession: The use of selective loss semi-continuous cultures. Journal of Experimental Marine Biology and Ecology, 99, 19–30.

    Article  Google Scholar 

  • Hartsig, A. M., Lacouture, R. V., Sellner, S. G., & Imirie, A. L. (2007). Increases in Cyanobacteria during Summer in Mesohaline Chesapeake Bay, 1985–2006. Poster presented at the Estuarine Research Federation Meeting, Providence, RI, USA.

    Google Scholar 

  • Kahru, M. (1997). Using satellites to monitor large-scale environmental change: A case study of cyanobacteria blooms in the Baltic. In M. Kahru, & C. W. Brown (Eds.), Monitoring algal blooms (pp. 43–61). Berlin: Springer.

    Google Scholar 

  • Kaiser, W., Renk, H., & Schulz, S. (1981). Die Primärproduktion der Ostsee. Geodätische und Geophysikalische Veröffentlichungen des Nationalkomitees für Geodäsie und Geophysik bei der AdW der DDR Reihe IV, 33, 27–52.

    Google Scholar 

  • Khlebovich, V. V. (1990). Some physico-chemical and biological phenomena in the salinity gradient. Limnologica, 20, 5–8.

    Google Scholar 

  • Kononen, K., Kuparinen, J., Mäkelä, K., Laanemets, J., Pavelson, J., & Nômmann, S. (1996). Initiation of cyanobacterial blooms in a frontal region at the entrance to the Gulf of Finland, Baltic Sea. Limnology & Oceanography, 41, 98–112.

    Article  CAS  Google Scholar 

  • Kuparinen, J., & Tuominen, L. (2001). Eutrophication and self-purification: Counteractions forced by large-scale cycles and hydrodynamic processes. Ambio, 30, 190–194.

    CAS  Google Scholar 

  • Lindner, A. (1978). Soziologisch-ökologische Untersuchungen an der submersen Vegetation in der Boddenkette südlich des Darß und des Zingst (südliche Ostsee). Limnologica, 11, 229–305.

    Google Scholar 

  • Malone, T. C. (1992): Effects of water column processes on dissolved oxygen, nutrients, phytoplankton, and zooplankton. In D. E. Smith, M. Leffler, & G. Mackiernan (Eds.), Oxygen dynamics in the Chesapeake Bay. A synthesis of recent research (pp. 61–112). College Park, MD: D Sea GrantCollege.

    Google Scholar 

  • Malone, T. C., Kemp, W. M., Ducklow, H. W., Boynton, W. R., Tuttle, J. H., & Jonas, R. B. (1986). Lateral variation in the production and fate of phytoplankton in a partially stratified estuary. Marine Ecology Progress Series, 32, 149–160.

    Article  Google Scholar 

  • Mazur-Marzec, H., Krężel, A., Kobos, J., & Pliński, M. (2006). Toxic Nodularia spumigena blooms in the coastal waters of the Gulf of Gdańsk: A ten-year survey. Oceanologia, 48, 255–273.

    Google Scholar 

  • Nakonieczny, J., Ochocki, S., & Renk, H. (1991). Long-term changes in primary production and chlorophyll concentrations in the southern Baltic. Acta Ichthyologica et Piscatoria, 21, 145–152.

    Google Scholar 

  • Nômmann, S., Sildam, S., Nôges, T., & Kahru, M. (1991). Plankton distribution during a coastal upwelling event off Hiiumaa, Baltic Sea: Impact of short-term flow field variability. Continental Shelf Research, 11, 95–108.

    Article  Google Scholar 

  • Poutanen, E.-L., & Nikkilä, K. (2001). Carotenoid pigments as tracers of cyanobacterial blooms in recent and post-glacial sediments of the Baltic Sea. Ambio, 30, 179–183.

    CAS  Google Scholar 

  • Remane, A. (1940). Einführung in die zoologische Ökologie der Nord- und Ostsee. Lieferung 34 der Reihe: Tierwelt der Nord- und Ostsee. Leipzig: Akademische Verlagsgesellschaft.

    Google Scholar 

  • Remane, A. (1955). Die Brackwasser-Submergenz und die Umkomposition der Coenosen in Belt- und Ostsee. Kieler Meeresforschung, 11, 59–73.

    Google Scholar 

  • Schiewer, U. (1985). Analyse und Bewertung des im 5-Jahrplanzeitraume 1981/85 erreichten Kenntnisstandes und seiner volkswirtschaftlichen Verwertbarkeit auf der Grundlage der erbrachten Teilleistungen. Forschungsbericht. Rostock: Wilhelm-Pieck-Universität Rostock.

    Google Scholar 

  • Schiewer, U. (1988). Experimentelle Ökosystemanalyse – Ergebnisse und Probleme. Wissenschaftliche Zeitschrift der Wilhelm-Pieck-Universität Rostock N-Reihe, 37, 13–17.

    Google Scholar 

  • Schiewer, U. (1990). Werner Schnese and the development of coastal waters ecology in Rostock, GDR. International Review of Hydrobiology, 75, 1–13.

    Article  Google Scholar 

  • Schiewer, U. (1998a). 30 years eutrophication in shallow brackish waters – lessons to be learned. Hydrobiologia, 363, 73–79.

    Article  Google Scholar 

  • Schiewer, U. (1998b). Hypertrophy of a Baltic estuary – changes in structure and function of the planktonic community. Verhandlungen der Internationalen Vereinigung für Limnologie, 26, 1503–1507.

    Google Scholar 

  • Schiewer, U. (2001). Phytoplankton, Produktivität und Nahrungsnetze. Meer und Museum, 16, 39–45.

    Google Scholar 

  • Schiewer, U. (2007). Darß-Zingst, Northern Rügener Bodden and Schlei. In U. Schiewer (Ed.), Ecology of Baltic coastal waters (pp. 35–86). Berlin: Springer.

    Google Scholar 

  • Schlungbaum, G., Baudler, H., & Krech, M. (2001). Das Eutrophierungsproblem der Darß–Zingster Bodden – Nährstoffeinträge und Nährstoffbilanzen. Meer und Museum, 16, 25–34.

    Google Scholar 

  • Schnese, W. (1978). Produktionsbiologische Grundlagen für die Einbürgerung von Planktonfressern in der Darss-Zingster Boddenkette. Materialien der III. Wiss. Konferenz zu Fragen der Physiologie und Biologie von Nutzfischen. Rostock: Wilhelm-Pieck-Universität Rostock.

    Google Scholar 

  • Schubert, H. (1996) Ökophysiologie der Lichtanpassung des Phytoplanktons eutropher Flachgewässer. Habilitation, Universität Rostock.

    Google Scholar 

  • Schubert, H., & Wasmund, N. (2005). Das Phytoplankton des Strelasundes und des Kubitzer Boddens. Meer und Museum, 18, 83–92.

    Google Scholar 

  • Schubert, H., Blümel, C., Eggert, A., Rieling, T., Schubert, M., & Selig, U. (2004). Entwicklung von leitbildorientierten Bewertungsgrundlagen für innere Küstengewässer der deutschen Ostseeküste nach der EU-WRRL. Report BMBF-Projekt 0330014. Rostock: Universität Rostock.

    Google Scholar 

  • Schumann, R. (1993). Zur Rolle des Pico– und Nanophytoplanktons im mikrobiellen Nahrungsgefüge der Darß–Zingster Boddenkette. Dissertation, Universität Rostock.

    Google Scholar 

  • Sellner, K. G., & Brownlee, D. C. (1990). Dinoflagellate-microzooplankton interactions in Chesapeake Bay. In E. Granéli, B. Sundström, L. Edler, & D. M. Anderson (Eds.), Toxic marine phytoplankton (pp. 221-226). New York: Elsevier.

    Google Scholar 

  • Sellner, K. G., Lacouture, R. V., & Parrish, C. R. (1988). Effects of increasing salinity on a cyanobacteria bloom in the Potomac River estuary. Journal of Plankton Research, 10, 49-61.

    Article  CAS  Google Scholar 

  • Sommer, U., Gliwicz, Z. M., Lampert, W., & Duncan, A. (1986). The PEG-model of seasonal succession of planktonic events in freshwaters. Archiv für Hydrobiologie, 106, 433–471.

    Google Scholar 

  • Suikkanen, S., Laamanen, M., & Huttunen, M. (2007). Long-term changes in summer phytoplankton communities of the open northern Baltic Sea. Estuarine, Coastal and Shelf Science, 71, 580–592.

    Article  Google Scholar 

  • Trzosinska A., & Lysiak-Pastuszak E. (1996). Oxygen and nutrients in the southern Baltic Sea. Oceanological Studies, 1, 41–76.

    Google Scholar 

  • Vahtera, E., Laanemets, J., Pavelson, J., Huttunen, M., & Kononen, K. (2005). Effect of upwelling on the pelagic environment and bloom-forming cyanobacteria in the western Gulf of Finland, Baltic Sea. Journal of Marine Systems, 58, 67–82.

    Article  Google Scholar 

  • Wasmund, N. (1990). Characteristics of phytoplankton in brackish waters of different trophic levels. Limnologica, 20, 47–51.

    Google Scholar 

  • Wasmund, N. (1996). Periodicity and trends in the phytoplankton of a shallow coastal water. In A. Andrushaitis (Ed.), Proceedings of the 13th Baltic Marine Biologists Symposium, Jurmala, Latvia, 31.8.1993–4.9.1993 (pp.63–66). Riga: Institute of Aquatic Ecology.

    Google Scholar 

  • Wasmund, N., & Heerkloss, R. (1993). Seasonal and long-term succession of phytoplankton in shallow coastal water of the southern Baltic Sea. Studia i materialy oceanologiczne, 64, 203–213.

    Google Scholar 

  • Wasmund, N., & Schiewer, U. (1994). Überblick zur Ökologie und Produktionsbiologie des Phytoplanktons der Darß-Zingster Boddenkette (südliche Ostsee). Rostocker Meeresbiologische Beiträge, 2, 41–60.

    Google Scholar 

  • Wasmund, N., & Uhlig, S. (2003): Phytoplankton trends in the Baltic Sea. ICES Journal of Marine Science, 60, 177–186.

    Article  Google Scholar 

  • Wasmund, N., Andrushaitis, A., Łysiak-Pastuszak, E., Müller-Karulis, B., Nausch, G., Neumann, T., et al. (2001). Trophic status of the south-eastern Baltic Sea: A comparison of coastal and open areas. Estuarine, Coastal and Shelf Science, 53, 849–864.

    Article  CAS  Google Scholar 

  • Wasmund, N., Nausch, G., & Matthäus, W. (1998). Phytoplankton spring blooms in the southern Baltic Sea – spatio-temporal development and long-term trends. Journal of Plankton Research, 20, 1099–1117.

    Article  Google Scholar 

  • Wasmund, N., Zalewski, M., & Busch, S. (1999). Phytoplankton in large river plumes in the Baltic Sea. ICES Journal of Marine Science, 56, 23–32.

    Article  Google Scholar 

  • Weiss, G. M., Harding, L. W., Jr., Itsweire, E. C., & Campbell, J. W. (2005). Characterizing lateral variability of phytoplankton chlorophyll in Chesapeake Bay with aircraft ocean color data. Marine Ecology Progress Series, 149, 183–199.

    Article  Google Scholar 

  • Yousef, M. (2000) Ökophysiologie von Makrophyten und Epiphyten in Flachwasserökosystemen. Dissertation, Universität Rostock.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hendrik Schubert .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Schubert, H., Wasmund, N., Sellner, K.G. (2010). Long-Term Investigations in Brackish Ecosystems. In: Müller, F., Baessler, C., Schubert, H., Klotz, S. (eds) Long-Term Ecological Research. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-8782-9_12

Download citation

Publish with us

Policies and ethics