Skip to main content

Gravity, Data to Anomalies

  • Reference work entry
  • First Online:
Encyclopedia of Solid Earth Geophysics

Part of the book series: Encyclopedia of Earth Sciences Series ((EESS))

Definition

Footnote 1 Gravity anomaly. The difference between gravity measured at a point and a model value at that point that is based on the normal gravity of a reference ellipsoid, corrected for the gravity effects of elevation above the reference ellipsoid and the mass of rock between the point and the reference ellipsoid.

Introduction

The study of anomalous gravity has its roots in geodesy where it is used to determine the shape of the Earth (see Geodesy, Physical and Geodesy, Figure of the Earth ). Gravity anomalies have also proved extremely useful in the interpretation of subsurface geological structure at various scales. Like many geophysical techniques, resource exploration has been the greatest driver of the use of gravity data (e.g., Nabighian et al., 2005). Gravity anomalies are often useful in the early stages of an exploration program as they provide insight into the form of low-density sediment accumulations (basins) or the location of high-density ore deposits. At...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 549.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 599.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    © Commonwealth of Australia

Bibliography

  • Argast, D., Bacchin, M., and Tracey, R., 2009. An extension of the closed-form solution for the gravity curvature (Bullard B) correction in the marine and airborne cases. ASEG Extended Abstracts, 2009(1), 6, doi:10.1071/ASEG2009ab129.

    Google Scholar 

  • Bullard, E. C., 1936. Gravity measurements in East Africa. Philosophical Transactions of the Royal Society of London, 235, 486–497.

    Google Scholar 

  • Featherstone, W. E., and Dentith, M. C., 1997. A geodetic approach to gravity data reduction. Computers and Geosciences, 23(10), 1063–1070.

    Google Scholar 

  • Hackney, R. I., and Featherstone, W. E., 2003. Geodetic versus geophysical perspectives of the “gravity anomaly”. Geophysical Journal International, 154, 35–43. see also: Erratum, 2003. Geophysical Journal International, 154: 596; Corrigendum, 2006. Geophysical Journal International, 167: 585.

    Google Scholar 

  • Hammer, S., 1939. Terrain corrections for gravimeter stations. Geophysics, 4, 184–194.

    Google Scholar 

  • Hinze, W. J., 2003. Bouguer reduction density, why 2.67? Geophysics, 68(5), 1559–1560.

    Google Scholar 

  • Hinze, W. J., Aiken, C., Brozena, J., Coakley, B., Dater, D., Flanagan, G., Forsberg, R., Hildenbrand, T., Keller, G. R., Kellogg, J., Kucks, R., Li, X., Mainville, A., Morin, R., Pilkington, M., Plouff, D., Ravat, D., Roman, D., Urrutia-Fucugauchi, J., Véronneau, M., Webring, M., and Winester, D., 2005. New standards for reducing gravity data: the North American gravity database. Geophysics, 70(4), J25–J32, doi:10.1190/1.1988183.

    Google Scholar 

  • Hofmann-Wellenhof, B., and Moritz, H., 2006. Physical Geodesy. Vienna: Springer.

    Google Scholar 

  • Kuhn, M., Featherstone, W. E., and Kirby, J. F., 2009. Complete spherical Bouguer anomalies over Australia. Australian Journal of Earth Sciences, 56(2), 213–223, doi:10.1080/08120090802547041.

    Google Scholar 

  • LaFehr, T. R., 1991a. Standardization in gravity reduction. Geophysics, 56(8), 1170–1178.

    Google Scholar 

  • LaFehr, T. R., 1991b. An exact solution for the gravity curvature (Bullard B) correction. Geophysics, 56(8), 1179–1184.

    Google Scholar 

  • Li, X., and Götze, H.-J., 2001. Ellipsoid, geoid, gravity, geodesy, and geophysics. Geophysics, 66(6), 1660–1668.

    Google Scholar 

  • Mikuška, J., Pašteka, R., and Marušiak, I., 2006. Estimation of distant relief effect in gravimetry. Geophysics, 71(6), J59–J69, doi:10.1190/1.2338333.

    Google Scholar 

  • Morelli, C., Ganter, C., Hankasalo, T., McConnell, R. K., Tanner, J. B., Szabo, B., Uotila, U., and Whalen, C. T., 1974. The International Gravity Standardization net 1971. International Association of Geodesy. Special publication number, 4, International Association of Geodesy, Paris.

    Google Scholar 

  • Moritz, H., 2000. Geodetic Reference System 1980. Journal of Geodesy, 74(1), 128–162, doi:10.1007/s001900050278.

    Google Scholar 

  • Nabighian, M. N., Ander, M. E., Grauch, V. J. S., Hansen, R. O., LaFehr, T. R., Li, Y., Pearson, W. C., Peirce, J. W., Phillips, J. D., and Rude, M. E., 2005. Historical development of the gravity method in exploration. Geophysics, 70(6), 63ND–89ND, doi:10.1190/1.2133785.

    Google Scholar 

  • Nowell, D. A. G., 1999. Gravity terrain corrections – an overview. Journal of Applied Geophysics, 42, 117–134.

    Google Scholar 

  • Schmidt, S., and Götze, H.-J., 2006. Bouguer and isostatic maps of the Central Andes. In Oncken, O., Chong, G., Franz, G., Giese, P., Götzte, H.-J., Ramos, V. A., Strecker, M. R., and Wigger, P. (eds.), The Andes: Active Subduction Orogeny. Berlin/Heidelberg: Springer. Frontiers in Earth Science, Vol. 1, pp. 559–562.

    Google Scholar 

  • Tenzer, R., Hamayun, K., and Vajda, P., 2009. Global maps of the CRUST 2.0 crustal components stripped gravity disturbances. Journal of Geophysical Research, 114, B05408, doi:10.1029/2008JB006016.

    Google Scholar 

  • Tracey, R., Bacchin, M., and Wynne, P., 2007. AAGD07: a new absolute gravity datum for Australian gravity and new standards for the Australian National Gravity Database. ASEG Extended Abstracts, 2007(1), 3, doi:10.1071/ASEG2007ab149.

    Google Scholar 

  • Trumbull, R. B., Riller, U., Oncken, O., Scheuber, E., Munier, K., and Hongn, F., 2006. The time – space distribution of Cenozoic volcanism in the Central Andes: a new data compilation and some tectonic implications. In Oncken, O., Chong, G., Franz, G., Giese, P., Götzte, H.-J., Ramos, V. A., Strecker, M. R., and Wigger, P. (eds.), The Andes: Active Subduction Orogeny. Berlin/Heidelberg: Springer. Frontiers in Earth Science, Vol. 1, pp. 29–43.

    Google Scholar 

  • Wenzel, H., 1985. Hochauflosende Kugelfunktionsmodelle fur des Gravitationspotential der Erde [1]. Wissenschaftliche arbeiten der Fachrichtung Vermessungswesen der Universitat Hannover, 137.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ron Hackney .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this entry

Cite this entry

Hackney, R. (2011). Gravity, Data to Anomalies. In: Gupta, H.K. (eds) Encyclopedia of Solid Earth Geophysics. Encyclopedia of Earth Sciences Series. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-8702-7_78

Download citation

Publish with us

Policies and ethics