Skip to main content

Radiogenic Heat Production of Rocks

  • Reference work entry
  • First Online:
Encyclopedia of Solid Earth Geophysics

Part of the book series: Encyclopedia of Earth Sciences Series ((EESS))

Synonyms

Radiogenic heat generation

Definition

Radiogenic heat production rate. Physical property defining the amount of heat liberated in unit time in a unit volume of rock by the decay of unstable radiogenic isotopes; dimension: W m−3.

Geoneutrino. An electron antineutrino emitted in β-decay of nuclei during radiogenic heat production caused by the decay of the unstable isotopes 238U, 232Th, and 40K.

eV (electron Volt). A non-SI unit of energy in nuclear physics, defined as the kinetic energy gained by an electron of elementary charge when accelerating through an electric potential difference of 1 V. Thus, one electron Volt equals one Volt, which is one Joule per Coulomb, multiplied by the electron charge of e = 1.602 176 487(40) × 10−19 C. Therefore, 1 eV = 1.602 176 487 × 10−19 J.

ppm (parts per million). A non-SI unit of relative frequency (or abundance) in 10−6, similar to % (percent) or ‰ (per mil) in 10−2 and 10−3, respectively.

Radiogenic heat generation

The main interior...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 549.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 599.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Bibliography

  • Adams, J. S., and Gasparini, P., 1970. Gamma-Ray Spectrometry of Rocks. Amsterdam: Elsevier.

    Google Scholar 

  • Adams, J. A. S., and Weaver, C. E., 1958. Thorium to uranium ratios as indicators of sedimentary processes: examples of the concept of geochemical facies. Bulletin of the American Association of Petroleum Geologists, 42, 387–430.

    Google Scholar 

  • Araki, T., et al., 2005. Experimental investigation of geologically produced antineutrinos with KamLAND. Nature, 436, 499–503.

    Google Scholar 

  • Bahcall, J. N., 1969. Neutrinos from the Sun. Scientific American, 221(1), 28–37.

    Google Scholar 

  • Beardsmore, G. R., and Cull, J. P., 2001. Crustal Heat Flow. Cambridge: Cambridge University Press.

    Google Scholar 

  • Birch, F., 1954. Heat from radioactivity. In Faul, H. (ed.), Nuclear Geology. New York: Wiley, pp. 148–174.

    Google Scholar 

  • Bücker, C., and Rybach, L., 1996. A simple method to determine heat production from gamma-ray logs. Marine and Petroleum Geology, 13, 373–375.

    Google Scholar 

  • Canup, R. M., and Asphaug, E., 2001. Origin of the Moon in a giant impact near the end of the Earth’s formation. Nature, 412, 708–712.

    Google Scholar 

  • Canup, R. M., and Righter, K. (eds.), 2000. Origin of the Earth and Moon. Tucson: University of Arizona Press.

    Google Scholar 

  • ÄŒermák, V., and Rybach, L., 1982. Radioactive heat generation in rocks. In Angenheister, G. (ed.), Landolt-Börnstein, Group V: Geophysics and Space Research. Heidelberg/Berlin: Springer. Physical Properties of Rocks, Subvol. A, Vol. l, pp. 353–371.

    Google Scholar 

  • Clauser, C., 2009. Heat transport processes in the Earth’s crust. Surveys in Geophysics, 30, 163–191, doi:10.1007/s10712-009-9058-2.

    Google Scholar 

  • De Meijer, R. J., Smit, F. D., Brooks, F. D., Fearick, R. W., Wörtche, H. J., and Mantovani, F., 2006. Towards Earth AntineutRino TomograpHy (EARTH). Earth, Moon and Planets, 99(1–4), 193–206.

    Google Scholar 

  • Emsley, J., 1989. The Elements. Oxford: Clarendon.

    Google Scholar 

  • Fiorentini, G., Mantovani, F., and Ricci, B., 2003. Neutrinos and energetics of the Earth. Physics Letters B, 557, 139–146.

    Google Scholar 

  • Fiorentini, G., Lissia, M., Mantovani, F., and Vanucci, R., 2005. Geo-neutrinos: a new probe of Earth’s interior. Earth and Planetary Science Letters B, 557, 139–146.

    Google Scholar 

  • Hamza, V. M., and Beck, A. E., 1972. Terrestrial heat flow, the neutrino problem, and a possible energy source in the core. Nature, 240(5380), 343–344.

    Google Scholar 

  • IEA, 2008. World Energy Outlook 2008. Paris: International Energy Agency (IEA). http://www.iea.org/textbase/nppdf/free/2008/weo2008.pdfRetrieved 10 July 2010.

  • Jaupart, C., Labrosse, S., and Mareschal, J.-C., 2007. Temperatures, heat and energy in the mantle of the Earth. In Bercovici, D. (ed.), Mantle Dynamics – Treatise on Geophysics. Amsterdam: Elsevier, Vol. 7, pp. 253–303.

    Google Scholar 

  • Jessop, A. M., 1990. Thermal Geophysics. Amsterdam: Elsevier.

    Google Scholar 

  • McDonough, W. F., and Sun, S.-S., 1995. The composition of the Earth. Chemical Geology, 120, 223–253.

    Google Scholar 

  • Melosh, H. J., 1990. Giant impacts and the thermal state of the early Earth. In Newsom, H. E., and Jones, J. H. (eds.), Origin of the Earth. New York: Oxford University Press, pp. 69–83.

    Google Scholar 

  • Rybach, L., 1988. Determination of heat production rate. In Hänel, R., Rybach, L., and Stegena, L. (eds.), Handbook of Terrestrial Heat Flow Density Determination. Dordrecht: Kluwer, pp. 125–142.

    Google Scholar 

  • Stacey, F. D., and Davis, P. M., 2008. Physics of the Earth, 4th edn. Cambridge: Cambridge University Press.

    Google Scholar 

  • Vacquier, V., 1991. The origin of terrestrial heat flow. Geophysical Journal International, 106(1), 199–202.

    Google Scholar 

  • Vacquier, V., 1992. Corrigendum to ‘The origin of terrestrial heat flow/prime. Geophysical Journal International, 111(3), 637–638.

    Google Scholar 

  • Van Schmus, W. R., 1984. Radioactivity properties of minerals and rocks. In Carmichael, R. S. (ed.), Handbook of Physical Properties of Rocks. Boca Raton: CRC Press, Vol. III, pp. 281–293.

    Google Scholar 

  • Van Schmus, W. R., 1995. Natural radioactivity in crust and mantle. In Ahrens, T. J. (ed.), Global Earth Physics – A Handbook of Physical Constants. AGU Reference Shelf 1. Washington, DC: American Geophysical Union, pp. 283–291.

    Google Scholar 

  • Watt, D. E., and Ramsden, D., 1964. High Sensitivity Counting Techniques. London: Pergamon.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christoph Clauser .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this entry

Cite this entry

Clauser, C. (2011). Radiogenic Heat Production of Rocks. In: Gupta, H.K. (eds) Encyclopedia of Solid Earth Geophysics. Encyclopedia of Earth Sciences Series. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-8702-7_74

Download citation

Publish with us

Policies and ethics