Skip to main content

Magnetic Data Enhancements and Depth Estimation

  • Reference work entry
  • First Online:
Encyclopedia of Solid Earth Geophysics

Part of the book series: Encyclopedia of Earth Sciences Series ((EESS))

Synonyms

Magnetic data processing

Definition

Magnetic data are measurements of the magnetic field (generally of its intensity). Corrections of magnetic data are processing operations designed to remove unwanted features in the data. Enhancements of magnetic field data are processing operations designed to preferentially accentuate the expression of a selected magnetization at the expense of others.

Introduction

Measurement of the earth’s magnetic field is used in exploration geophysics as a remote-sensing method to investigate subsurface distributions of magnetization (see Magnetic Methods, Surface ). The measurements require correction to eliminate artifacts and to remove the primary core field of the earth, thereby improving the expression of local field variations due to upper crustal magnetizations. These corrections are applied to produce clean and robust output suitable for interpretation (see Magnetic Anomalies, Interpretation ). For specific interpretation objectives,...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 549.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 599.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Bibliography

  • Almond, R., and Fitzgerald, D. J., 1998. Naudy based automodelling with trend enhancements. Exploration Geophysics, 29, 372–377.

    Google Scholar 

  • Baranov, V., 1957. A new method for interpretation of aeromagnetic maps: pseudo-gravimetric anomalies. Geophysics, 22, 359–383.

    Google Scholar 

  • Barbosa, V. C. F., Silva, J. B. C., and Medeiros, W. E., 1999. Stability analysis and improvement of structural index estimation in Euler deconvolution. Geophysics, 64, 48–60.

    Google Scholar 

  • Blakely, R. J., 1996. Potential theory in gravity and magnetic applications. Cambridge: Cambridge University Press.

    Google Scholar 

  • Blakely, R. J., and Simpson, R. W., 1986. Locating edges of source bodies from magnetic or gravity anomalies. Geophysics, 51, 1494–1498.

    Google Scholar 

  • Briggs, I. C., 1974. Machine contouring using minimum curvature. Geophysics, 39, 39–48.

    Google Scholar 

  • Dampney, C. N. G., 1969. The equivalent source technique. Geophysics, 34, 39–53.

    Google Scholar 

  • Davis, K., Li, Y., and Nabighian, M., 2010. Automatic detection of UXO magnetic anomalies using Euler deconvolution. Geophysics, 75, G13–G20.

    Google Scholar 

  • Dentith, M., Cowan, D. R., and Tomkins, L. A., 2000. Enhancement of subtle features in aeromagnetic data. Exploration Geophysics, 31, 104–108.

    Google Scholar 

  • Emilia, D. A., 1973. Equivalent sources used as an analytic base for processing total magnetic field profiles. Geophysics, 38, 339–348.

    Google Scholar 

  • Florio, G., Fedi, M., and Pasteka, R., 2006. On the application of Euler deconvolution to the analytic signal. Geophysics, 71, L87–L93.

    Google Scholar 

  • Grauch, V. J. S., and Cordell, L., 1987. Limitations of determining density or magnetic boundaries from the horizontal gradient of gravity or pseudogravity data. Geophysics, 52, 118–121.

    Google Scholar 

  • Guspi, F., and Novara, I., 2009. Reduction to the pole and transformations of scattered magnetic data using Newtonian equivalent sources. Geophysics, 74, L67–L73.

    Google Scholar 

  • Hansen, R. O., 2005. 3D multiple-source Werner deconvolution for magnetic data. Geophysics, 70, L45–L51.

    Google Scholar 

  • Hansen, R. O., and Miyazaki, Y., 1984. Continuation of potential fields between arbitrary surfaces. Geophysics, 49, 787–797.

    Google Scholar 

  • Hansen, R. O., and Simmons, M., 1993. Multiple-source Werner deconvolution. Geophysics, 58, 1792–1800.

    Google Scholar 

  • Hansen, R. O., and Suciu, L., 2002. Multiple-source Euler deconvolution. Geophysics, 67, 525–535.

    Google Scholar 

  • Hartman, R. R., Tesky, D. J., and Friedberg, J. L., 1971. A system for rapid digital aeromagnetic interpretation. Geophysics, 36, 891–918.

    Google Scholar 

  • Helbig, K., 1963. Some integrals of magnetic anomalies and their relation to the parameters of the disturbing body. Zeitschrift fur Geophysik, 29, 83–96.

    Google Scholar 

  • Holden, D. J., Archibald, N. J., Boschetti, F., and Jessell, M. W., 2000. Inferring geological structures using wavelt-based multiscale edge analysis and forward models. Exploration Geophysics, 31, 617–621.

    Google Scholar 

  • Hornby, P., Boschetti, F., and Horowitz, F. G., 1999. Analysis of potential field data in the wavelt domain. Geophysical Journal International, 137, 175–196.

    Google Scholar 

  • Hsu, S. K., Sibuet, J. C., and Shyu, C. T., 1996. High resolution detection of geologic boundaries from potential-field anomalies: an enhanced analytic signal technique. Geophysics, 61, 373–386.

    Google Scholar 

  • Keating, P., and Pilkington, M., 2004. Euler deconvolution of the analytic signal and its application to magnetic interpretation. Geophysical Prospecting, 50, 15–25.

    Google Scholar 

  • Ku, C. C., and Sharp, J. A., 1983. Werner deconvolution for automated magnetic interpretation and its refinement using Marquardt’s inverse modelling. Geophysics, 48, 754–774.

    Google Scholar 

  • Lahti, I., and Karinen, T., 2010. Tilt derivative multiscale edges of magnetic data. The Leading Edge, 29, 24–29.

    Google Scholar 

  • Li, X., 2003. On the use of different methods for estimating magnetic depth. The Leading Edge, 22, 1090–1099.

    Google Scholar 

  • Li, X., 2008. Magnetic reduction-to-the-pole at low latitudes: observations and considerations. The Leading Edge, 27, 990–1002.

    Google Scholar 

  • MacLeod, I. N., Jones, K., and Dai, T. F., 1993. 3-D analytic signal in the interpretation of total magnetic field data at low magnetic latitudes. Exploration Geophysics, 24, 679–688.

    Google Scholar 

  • Miller, H. G., and Singh, V. J., 1994. Potential field tilt – a new concept for location of potential field sources. Applied Geophysics, 32, 213–217.

    Google Scholar 

  • Milligan, P. R., and Gunn, P. J., 1997. Enhancement and presentation of airborne geophysical data. AGSO Journal of Australian Geology and Geophysics, 17, 63–75.

    Google Scholar 

  • Mushayandebvu, M. F., van Driel, P., Reid, A. B., and Fairhead, J. D., 2001. Magnetic source parameters of two-dimensional structures using extended Euler deconvolution. Geophysics, 66, 814–823.

    Google Scholar 

  • Nabighian, M. N., 1972. The analytic signal of two-dimensional magnetic bodies with polygonal cross-section: its properties and use for automated anomaly interpretation. Geophysics, 37, 505–517.

    Google Scholar 

  • Nabighian, M. N., 1984. Toward a three-dimensional automatic interpretation of potential field data. Geophysics, 49, 780–786.

    Google Scholar 

  • Nabigian, M. N., and Hansen, R. O., 2001. Unification of Euler and Werner deconvolution in three dimensions via the generalized Hilbert transform. Geophysics, 66, 1805–1810.

    Google Scholar 

  • Naudy, H., 1971. Automatic determination of depth on aeromagnetic profiles. Geophysics, 36, 717–722.

    Google Scholar 

  • O’Connell, M. D., and Owers, M., 2008. A line spacing compression method and an improved minimum curvature operator for grid interpolation of airborne magnetic surveys. Exploration Geophysics, 39, 148–154.

    Google Scholar 

  • O’Connell, M. D., Smith, R. A., and Vallee, M. A., 2005. Gridding aeromagnetic data using longitudinal and transverse horizontal gradients with the minimum curvature operator. The Leading Edge, 24, 142–145.

    Google Scholar 

  • Phillips, J. D., 2005. Can we estimate magnetization directions from aeromagnetic data using Helbig’s integrals? Earth, Planets and Space, 57, 681–689.

    Google Scholar 

  • Pilkington, M., and Urquhart, W. E. S., 1990. Reduction of potential field data to a horizontal plane. Geophysics, 55, 549–555.

    Google Scholar 

  • Rajagoplan, S., 2003. Analytic signal vs. reduction to pole: solutions for low magnetic latitudes. Exploration Geophysics, 34, 257–262.

    Google Scholar 

  • Reid, A. B., Allsop, J. M., Granser, H., Millett, A. J., and Somerton, I. W., 1990. Magnetic interpretation in three dimensions using Euler deconvolution. Geophysics, 55, 80–91.

    Google Scholar 

  • Ridsdill-Smith, T. A., and Dentith, M. C., 1999. The wavelet transform in aeromagnetic processing. Geophysics, 64, 1003–1013.

    Google Scholar 

  • Roest, W. R., Verhoef, J., and Pilkington, M., 1992. Magnetic interpretation using the 3-D analytic signal. Geophysics, 57, 116–125.

    Google Scholar 

  • Salem, A., and Ravat, D., 2003. A combined analytic signal and Euler method (AN-EUL) for automatic interpretation of magnetic data. Geophysics, 68, 1952–1961.

    Google Scholar 

  • Salem, A., Williams, S., Fairhead, D., Smith, R., and Ravat, D., 2008. Interpretation of magnetic data using tilt-angle derivatives. Geophysics, 73, L1–L10.

    Google Scholar 

  • Schmidt, P. W., and Clark, D. A., 1998. The calculation of magnetic components and moments from TMI: a case study from the Tuckers igneous complex, Queensland. Exploration Geophysics, 29, 609–614.

    Google Scholar 

  • Shi, Z., 1991. An improved Naudy-based technique for estimating depth from magnetic profiles. Exploration Geophysics, 22, 357–362.

    Google Scholar 

  • Silva, J. B. C., and Barbosa, V. C. F., 2003. 3D Euler deconvolution: theoretical basis for automatically selecting good solutions. Geophysics, 68, 1962–1968.

    Google Scholar 

  • Smith, R. S., and O’Connell, M. D., 2005. Interpolation and gridding of aliased geophysical data using constrained anisotropic diffusion to enhance trends. Geophysics, 70, V121–V127.

    Google Scholar 

  • Smith, R. S., Thurston, J. B., Dai, T. F., and MacLeod, I. N., 1998. iSPITM – the improved source parameter imaging method. Geophysical Prospecting, 46, 141–151.

    Google Scholar 

  • Spector, A., and Grant, F. S., 1970. Statistical models for interpreting aeromagnetic data. Geophysics, 35, 293–302.

    Google Scholar 

  • Thompson, D. T., 1982. EULDPH: a new technique for making computer-assisted depth estimates from magnetic data. Geophysics, 47, 31–37.

    Google Scholar 

  • Thurston, J. B., and Smith, R. S., 1997. Automatic conversion of magnetic data to depth, dip, and susceptibility contrast using the SPIâ„¢ method. Geophysics, 62, 807–813.

    Google Scholar 

  • Ugalde, H., and Morris, W. A., 2010. Cluster analysis of Euler deconvolution solutions: new filtering techniques and geologic strike determination. Geophysics, 75, L61–L70.

    Google Scholar 

  • Vallée, M. A., Keating, P., Smith, R. S., and St-Hilaire, C., 2004. Estimating depth and model type using the continuous wavelet transform of magnetic data. Geophysics, 69, 191–199.

    Google Scholar 

  • Verduzco, B., Fairhead, J. D., Green, C. M., and MacKenzie, C., 2004. New insights into magnetic derivatives for structural mapping. The Leading Edge, 23, 116–119.

    Google Scholar 

  • Werner, S., 1953. Interpretation of magnetic anomalies at sheet-like bodies. Sveriges Geologiska Undersok, Ser. C. Arsbok, 43, no. 6.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this entry

Cite this entry

Foss, C. (2011). Magnetic Data Enhancements and Depth Estimation. In: Gupta, H.K. (eds) Encyclopedia of Solid Earth Geophysics. Encyclopedia of Earth Sciences Series. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-8702-7_104

Download citation

Publish with us

Policies and ethics