Skip to main content

Consequences of Climate Change for Aphid-Based Multi-trophic Systems

  • Chapter
  • First Online:
Aphid Biodiversity under Environmental Change

Abstract

Climatic models predict a 1.7–4.9°C increase in mean global temperatures from 1990 to 2100. In ecosystems in general, multitrophic interactions often result from a long co-evolutionary process specific to a particular environment and relatively stable climatic conditions. Temperature changes may differentially affect the biology of each of the component species of a system: for example, the herbivores, their natural enemies (parasitoids, predators and pathogens), and hyperparasitoids. The endosymbionts of these different insects are also affected, and their functions can be altered by temperature increase. Such effects could destabilise system dynamics even lead to extinctions. The effects of climatic change are likely to be relatively more important in higher trophic levels that depend on the capacity of lower trophic levels to adapt to these changes. This paper addresses the effects of climate on insect communities, focusing on aphids, aphids parasitoids and predators, and hyperparasitoids. For each trophic level, the general effect of temperature change on insects is discussed, with emphasis on species belonging to aphid-based communities. The effects of climate change on communities can be short-term or long-term. Short-term consequences include the direct effects of temperature on different life history traits such as development time (which affects the annual number of generations), metabolic rate (which affects activity levels, longevity, and fecundity), and sex allocation. Potential effects on endosymbiont survival, virus transmission, geographical distribution of species and phenological synchronisation between trophic levels are also discussed. Long-term effects involve genetic changes in populations associated with climatic adaptations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bensadia F, Boudreault S, Guaya F, Michaud D, Cloutier C (2006) Aphid clonal resistance to a parasitoid fails under heat stress. J Insect Physiol 52:146–157

    Article  PubMed  CAS  Google Scholar 

  • Bernal J, Gonzalez D (1997) Reproduction of Diaeretiella rapae on Russian wheat aphid hosts at different temperatures. Entomol Exp Appl 82:159–166

    Article  Google Scholar 

  • Bezemer MT, Jones TH, Knight KJ (1998) Long-term effects of elevated CO2 and temperature on populations of the peach potato aphid Myzus persicae and its parasitoid Aphidius matricariae. Oecologia 116:128–135

    Article  Google Scholar 

  • Brodeur J, Mc Neil JN (1994) Life-history of the aphid hyperparasitoid Asaphes vulgaris Walker (Pteromalidae) – Possible consequences on the efficacy of the primary parasitoid Aphidius nigripes Ashmead (Aphidiidae). Can Entomol 126:1493–1497

    Article  Google Scholar 

  • Cannon RJC (1998) The implications of predicted climate change for insect pests in the UK, with emphasis on nonindigenous species. Glob Chang Biol 4:785–796

    Article  Google Scholar 

  • Chen FJ, Ge F, Parajulee MN (2005) Impact of elevated CO2 on tri-trophic interaction of Gossypium hirsutum, Aphis gossypii, and Leis axyridis. Environ Entomol 34:37–46

    Article  Google Scholar 

  • Chen FJ, Wu G, Megha N, Parajulee MN, Ge F (2007) Impact of elevated CO2 on the third trophic level: a predator Harmonia axyridis and a parasitoid Aphidius picipes. Biocontrol Sci Technol 17:313–324

    Article  Google Scholar 

  • Cheng DQ, Montllor CB, Purcell AH (2000) Fitness effects of two facultative endosymbiotic bacteria on the pea aphid, Acyrthosiphon pisum, and the blue alfalfa aphid, A. kondoi. Entomol Exp Appl 95:315–323

    Article  Google Scholar 

  • CraVord JE, Scholtz CH, Chown SL (1986) The insects of sub-Antarctic Marion and Prince Edward Islands; with a bibliography of entomology of the Kerguelen Biogeographical Province. S Afr J Antarct Res 16:42–84

    Google Scholar 

  • Degnanj PH, Moran NA (2008) Evolutionary genetics of a defensive facultative symbiont of insects: exchange of toxin-encoding bacteriophage. Mol Ecol 17:916–929

    Article  Google Scholar 

  • Dixon AFG (1998) Aphid ecology. Chapman and Hall, London

    Google Scholar 

  • Easterling DR, Meehl GA, Parmesan C, Changnon SA, Karl TR, Mearns LO (2000) Climate extremes: observations, modeling, and impacts. Science 289:2068–2074

    Article  PubMed  CAS  Google Scholar 

  • Fabre F, Plantegenest M, Mieuzet L, Dedryver C, Leterrier JL, Jacquot E (2005) Effects of climate and land use on the occurrence of viruliferous aphids and the epidemiology of barley yellow dwarf disease. Agric Ecosyst Environ 106:49–55

    Article  Google Scholar 

  • Foster GN, Blake S, Tones SJ (2004) Occurrence of barley yellow dwarf virus in autumn-sown cereal crops in the United Kingdom in relation to field characteristics. Pest Manag Sci 60:113–125

    Article  PubMed  CAS  Google Scholar 

  • Gillespie DR, Shipp JL, Raworth DA, Foottit RG (2002) Aphis gossypii Glover, melon/cotton aphid, Aulacorthum solani (Kaltenbach), foxglove aphid, Macrosiphum euphorbiae (Thomas), potato aphid, and Myzus persicae (Sulzer), green peach aphid (Homoptera: Aphididae). In: Mason PG, Huber JT (eds) Biological control programmes in Canada, 1981–2000. CAB, Oxon, pp 44–49

    Google Scholar 

  • Godfray HCJ, Hassell MP, Holt RD (1994) The population dynamic consequences of phenological asynchrony between parasitoids and their hosts. J Anim Ecol 63:1–10

    Article  Google Scholar 

  • Hance T, van Baaren J, Vernon P, Boivin G (2007) Impact of temperature extremes on parasitoids in a climate change perspective. Ann Rev Entomol 52:107–126

    Article  CAS  Google Scholar 

  • Hansen LM (1999) Effect of weather during spring on the time of arrival of bird cherry-oat aphid (Rhopalosiphum padi L.) in spring barley (Hordeum vulgare L.) fields. Acta Agric Scandinavia B 49:117–121

    Google Scholar 

  • Harrington R, Fleming RA, Woiwod IP (2001) Climate change impacts on insect management and conservation in temperate regions: can they be predicted? Agric For Meteorol 3:233–240

    Google Scholar 

  • Höller C, Bargen H, Vinson SB, Braune HJ (1993) Sources of the marking pheromones used for host discrimination in the hyperparasitoid Dendrocerus carpenteri. J Insect Physiol 39:649–656

    Google Scholar 

  • Hoover JK, Newman JA (2004) Tritrophic interactions in the context of climate change: a model of grasses, cereal aphids and their parasitoids. Glob Chang Biol 10:1197–1208

    Article  Google Scholar 

  • Hullé M, Bonhomme J, Maurice D, Simon JC (2008) Is the life cycle of high arctic aphids adapted to climate change? Polar Biol 31:1037–1042

    Article  Google Scholar 

  • Karl TR, Trenbeth KE (2003) Modern global climate change. Science 302:1719–1723

    Article  PubMed  CAS  Google Scholar 

  • Krespi L, Dedryver C, Creach V (1997) Variability in the development of cereal aphid parasitoids and hyperparasitoids in oceanic regions as a response to climate and abundance of hosts. Environ Entomol 26:545–551

    Google Scholar 

  • Landsberg J, Smith MS (1992) A functional scheme for predicting the outbreak potential of herbivorous insects under global atmospheric change. Aust J Bot 40:565–577

    Article  Google Scholar 

  • Lee JE, Slabber S, van Vuuren BJ, van Noort S, Chown SL (2007) Colonisation of sub-Antarctic Marion Island by a non-indigenous aphid parasitoid Aphidius matricariae (Hymenoptera, Braconidae). Polar Biol 30:1195–1201

    Article  Google Scholar 

  • Li BP, Mills N (2004) The influence of temperature on size as an indicator of host quality for the development of a solitary koinobiont parasitoid. Entomol Exp Appl 110:249–256

    Article  Google Scholar 

  • Mason PG, Hopper KR (1997) Temperature dependence in locomotion of the parasitoid Aphelinus asychis (Hymenoptera: Aphelinidae) from geographical regions with different climates. Environ Entomol 26:1416–1423

    Google Scholar 

  • Moran NA, Degnan PH, Santos SR, Dunbar HE, Ochman H (2005) The players in a mutualistic symbiosis: insects, bacteria, viruses, and virulence genes. Proc Natl Acad Sci USA 102:16919–16926

    Article  PubMed  CAS  Google Scholar 

  • Munson MA, Baumann P, Clark MA (1991) Evidence for the establishment of aphid-eubacterium endosymbiosis in an ancestor of four aphid families. J Bacteriol 173:6321–6324

    PubMed  CAS  Google Scholar 

  • Newman JA (2005) Climate change and the fate of cereal aphids in Southern Britain. Glob Chang Biol 11:940–944

    Article  Google Scholar 

  • Ohtaka C, Ishikawa H (1991) Effects of heat treatment on the symbiotic system of an aphid mycetocyte. Symbiosis 11:19–30

    Google Scholar 

  • Oliver KM, Moran NA, Hunter MS (2005) Variation in resistance to parasitism in aphids is due to symbionts not host type. Proc Natl Acad Sci USA 102:12795–12800

    Article  PubMed  CAS  Google Scholar 

  • Parmesan C (2006) Ecological and evolutionary responses to recent climate change. Ann Rev Ecol Evol Syst 37:637–669

    Article  Google Scholar 

  • Powell SJ, Bale JS (2004) Cold shock injury and ecological costs of rapid cold hardening in the grain aphid Sitobion avenae (Hemiptera: Aphididae). J Insect Physiol 50:277–284

    Article  PubMed  CAS  Google Scholar 

  • Pritchard SG, Rogers HH, Prior SA, Peterson CM (1999) Elevated CO2 and plant structure: a review. Glob Chang Biol 5:807–837

    Article  Google Scholar 

  • Rahbé Y, Digilio MC, Febvay G, Guillaud J, Fanti P, Pennacchio F (2002) Metabolic and symbiotic interactions in amino acid pools of the pea aphid, Acyrthosiphon pisum, parasitized by the braconid Aphidius ervi. J Insect Physiol 48:507–516

    Article  PubMed  Google Scholar 

  • Rohne O (2002) Effect of temperature and host stage on performance of Aphelinus varipes Forster (Hym., Aphelinidae) parasitizing the cotton aphid, Aphis gossypii Glover (Hom., Aphididae). J Appl Entomol Zeitschrift für Angewandte Entomologie 126:572–576

    Article  Google Scholar 

  • Shigenobu S, Watanabe H, Hattori M, Sakaki Y, Ishikawa H (2000) Genome sequence of the endocellular bacterial symbiont of aphids Buchnera sp. APS. Nature 407:81–86

    Article  PubMed  CAS  Google Scholar 

  • Sigsgaard L (2000) The temperature-dependent duration of development and parasitism of three cereal aphid parasitoids, Aphidius ervi, A. rhopalosiphi, and Praon volucre. Entomol Exp Appl 95:173–184

    Article  Google Scholar 

  • Simon JC, Rispe C, Sunnucks P (2002) Ecology and evolution of sex in aphids. Trends Ecol Evol 17:34–39

    Article  Google Scholar 

  • Stacey DA, Fellowes ME (2002) Influence of elevated CO2 on interspecfic interactions at higher trophic levels. Glob Chang Biol 8:668–678

    Article  Google Scholar 

  • Sullivan DJ, Völkl W (1999) Hyperparasitism: multitrophic ecology and behaviour. Ann Rev Entomol 44:291–315

    Article  CAS  Google Scholar 

  • Terblanche JS, Deere JA, Clusella-Trullas S, Janion C, Chown SL (2007) Critical thermal limits depend on methodological context. Proc R Soc B Biol Sci 274:2935–2942

    Article  Google Scholar 

  • Thomas MB, Blanford S (2003) Thermal biology in insect-parasite interactions. Trends Ecol Evol 18:344–350

    Article  Google Scholar 

  • Traugott M, Bell JR, Broad GR, Powell FJ, van Veen FJF, Vollhardt JMG, Symondson WOC (2008) Endoparasitism in cereal aphids: molecular analysis of a whole parasitoid community. Mol Ecol 17:3928–3938

    Article  PubMed  CAS  Google Scholar 

  • Tsuchida T, Koga R, Fukatsu T (2004) Host-plant specialization governed by facultative symbiont. Science 303:1989

    Article  PubMed  CAS  Google Scholar 

  • van der Putten WH, de Ruiterb PC, Bezemera TM, Harvey JA, Wassen M, Wolters V (2004) Trophic interactions in a changing world. Basic Appl Ecol 5:487–494

    Article  Google Scholar 

  • Van Veen FJF, Mueller CB, Pell JK (2008) Food web structure of three guilds of natural enemies: predators, parasitoids and pathogens of aphids. J Anim Ecol 77:191–200

    Article  PubMed  Google Scholar 

  • Vansteenis MJ, Elkhawass KAMH (1995) Life-history of Aphis-gossypii on cucumber – influence of temperature, host-plant and parasitism. Entomol Exp Appl 76:121–131

    Article  Google Scholar 

  • Walton MP, Powell W, Loxdale HD, Allen-Williams L (1990) Electrophoresis as a tool for estimating levels of hymenopterous parasitism in field populations of the cereal aphid. Entomol Exp Appl 54:271–279

    Article  Google Scholar 

  • Yu DS, van Achterberg K, Horstmann K (2005) World Ichneumonoidea 2004. Taxonomy, biology, morphology and distribution. CD/DVD. Taxapad, Vancouver, Canada. http://www.taxapad.com

  • Zamani AA, Talebi A, Fathipour Y (2007) Effect of temperature on life history of Aphidius colemani and Aphidius matricariae (Hymenoptera: Braconidae), two parasitoids of Aphis gossypii and Myzus persicae (Homoptera: Aphididae). Environ Entomol 36:263–271

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joan van Baaren .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

van Baaren, J., Le Lann, C., JM van Alphen, J. (2010). Consequences of Climate Change for Aphid-Based Multi-trophic Systems. In: Kindlmann, P., Dixon, A., Michaud, J. (eds) Aphid Biodiversity under Environmental Change. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-8601-3_4

Download citation

Publish with us

Policies and ethics