Skip to main content

Chapter 21 Elevated CO2 and Ozone: Their Effects on Photosynthesis

  • Chapter
The Chloroplast

Part of the book series: Advances in Photosynthesis and Respiration ((AIPH,volume 31))

Summary

Elevated carbon dioxide [CO2] and ozone [O3] are increasing worldwide in part due to human activities. Each gas affects plant cells, initially primarily by interfering with photosynthesis, in ways that are only partially understood. It appears that many plant species experience some stress in this altered atmosphere. This stress, defined as the deviation from normal, evolutionarily shaped homeostatic conditions. Particular consequences ensue for the functioning of chloroplasts. Regulatory mechanisms that influence the operation of the photosynthetic machinery will be discussed, as will the current state of physiological and molecular genetic information concerning impacts, both direct and indirect, of the two gases on the chloroplast machinery. Recent reports are examined in light of that knowledge, and working hypotheses and interpretations and future experimental approaches are suggested that make use of the accumulated data on gene co-expression networks in model species, Arabidopsis thaliana in particular and its relative Thellungiella halophila, which is characterized by a very different lifestyle, and on the improved understanding of biochemical pathways and metabolism relating to interactions between plastids and the cytosol. Evidence is discussed arguing that the presence and increase of tropospheric ozone levels countermand or at least reduce the fertilizing effects of elevated [CO2]. The necessity to increase food production worldwide will require enhanced efforts in breeding ozone-resistant crops.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

[CO2]:

CO2 concentration

ABA:

abscisic acid

AGPase:

ADP-glucose pyrophosphorylase

AOX1a:

mitochondrial alternative oxidase gene/protein

APX1:

cytosolic ascorbate peroxidase gene/protein

AtSR:

plants genes/proteins homologous of a mammalian redox-responsive pathway

C2H2 :

proteins zinc-finger family gene/protein

COL-0:

Arabidopsis thaliana ecotype Columbia-0

CV:

Arabidopsis thaliana ecotype Cape Verde Island

FACE:

Free Air CO2 Enrichment

GGM:

graphical Gaussian model

GUN1:

regulatory gene encoding a step in chlorophyll biosynthesis

HSF21:

heat shock transcription factor

LE-ETR3:

ethylene receptor gene/protein in tomato

MAPK3:

mitogen activated protein kinase-3

MEX1:

maltose exporter gene/protein

PCD:

programmed cell death

PP2C:

protein phosphatase 2C family protein

PR:

proteins several families of pathogenesis-related proteins

RCD1/CEO1:

protein with a “radical-induced cell death” phenotype, over-expression conferring tolerance to radical oxygen stress

ROS:

radical oxygen species

SEX1:

starch excess gene/protein

SPS:

sucrose phosphate synthase gene/protein

SRO1:

similar to RCD1 with NAD ± radical ADP-ribosylation activity

tAPX:

thylakoid-located ascorbate peroxidase

WRKY:

transcription factor family

WS:

Arabidopsis thaliana ecotype Wassilewskija

ZAT10:

redox-responsive transcription factor

References

  • Ahlfors R, Lang S, Overmyer K, Jaspers P, Brosche M, Tauriainen A, Kollist H, Tuominen H, Belles-Boix E, Piippo M, Inze D, Palva ET and Kangasjarvi J (2004) Arabidopsis RADICAL-INDUCED CELL DEATH1 belongs to the WWE protein-protein interaction domain protein family and modulates abscisic acid, ethylene, and methyl jasmonate responses. Plant Cell 16: 1925–1937

    Article  CAS  PubMed  Google Scholar 

  • Ahlfors R, Lang S, Overmyer K, Jaspers P, Brosche M, Tauriainen A, Kollist H, Tuominen H, Belles-Boix E, Piippo M, Inze D, Palva ET and Kangasjarvi J (2004) Arabidopsis RADICAL-INDUCED CELL DEATH1 belongs to the WWE protein-protein interaction domain protein family and modulates abscisic acid, ethylene, and methyl jasmonate responses. Plant Cell 16: 1925–1937

    Article  CAS  PubMed  Google Scholar 

  • Ahn S-G and Thiele DJ (2003) Redox regulation of mammalian heat shock factor 1 is essential for Hsp gene activation and protection from stress. Genes and Development 17: 516–528

    Article  CAS  PubMed  Google Scholar 

  • Ainsworth EA and Long SP (2005) What have we learned from 15 years of free-air CO2 enrichment (FACE)? A meta-analytic review of the responses of photosynthesis, canopy. New Phytologist 165: 351–371

    Article  PubMed  Google Scholar 

  • Ainsworth EA and Rogers A (2007) The response of photosynthesis and stomatal conductance to rising [CO2]: mechanisms and environmental interactions. Plant Cell and Environment 30: 258–270

    Article  Google Scholar 

  • Ainsworth EA, Rogers A, Nelson R and Long SP (2004) Testing the “source-sink” hypothesis of down-regulation of photosynthesis in elevated [CO2] in the field with single gene substitutions in Glycine max. Agricultural and Forest Meteorology 122: 85–94

    Google Scholar 

  • Ainsworth EA, Rogers A, Vodkin LO, Walter A and Schurr U (2006) The effects of elevated CO2 concentration on soybean gene expression. An analysis of growing and mature leaves. Plant Physiology 142: 135–147

    Article  CAS  PubMed  Google Scholar 

  • Amtmann A, Bohnert HJ and Bressan RA (2005) Abiotic stress and plant genome evolution. Search for new models. Plant Physiology 138: 127–130

    Article  CAS  PubMed  Google Scholar 

  • Ashmore MR (2005) Assessing the future global impacts of ozone on vegetation. Plant Cell and Environment 28: 949–964

    Article  CAS  Google Scholar 

  • Baier M, Kandlbinder A, Golldack D and Dietz KJ (2005) Oxidative stress and ozone: perception, signalling and response. Plant Cell and Environment 28: 1012–1020

    Article  CAS  Google Scholar 

  • Balmer Y, Vensel WH, Hurkman WJ and Buchanan BB (2006) Thioredoxin target proteins in chloroplast thylakoid membranes. Antioxidants & Redox Signaling 8: 1829–1834

    Article  CAS  Google Scholar 

  • Bellafiore S, Bameche F, Peltier G, and Rochaix JD (2005) State transitions and light adaptation require chloroplast thylakoid protein kinase STN7. Nature 433: 892–895

    Article  CAS  PubMed  Google Scholar 

  • Bernacchi CJ, Calfapietra C, Davey PA, Wittig VE, Scarascia-Mugnozza GE, Raines CA and Long SP (2003) Photosynthesis and stomatal conductance responses of poplars to free-air CO2 enrichment (PopFACE) during the first growth cycle and immediately following coppice. New Phytologist 159: 609–621

    Article  CAS  Google Scholar 

  • Bernacchi CJ, Leakey ADB, Heady LE, Morgan PB, Dohleman FG, McGrath JM, Gillespie KM, Wittig VE, Rogers A, Long SP and Ort DR (2006) Hourly and seasonal variation in photosynthesis and stomatal conductance of soybean grown at future CO2 and ozone concentrations for 3 years under fully open-air field conditions. Plant Cell and Environment 29: 2077–2090

    Article  CAS  Google Scholar 

  • Bernacchi CJ, Morgan PB, Ort DR and Long SP (2005) The growth of soybean under free air [CO2] enrichment (FACE) stimulates photosynthesis while decreasing in vivo Rubisco capacity. Planta 220: 434–446

    Article  CAS  PubMed  Google Scholar 

  • Bernardi R, Nali C, Ginestri P, Pugliesi C, Lorenzini G and Durante M (2004) Antioxidant enzyme isoforms on gels in two poplar clones differing in sensitivity after exposure to ozone. Biologia Plantarum 48: 41–48

    Article  CAS  Google Scholar 

  • Bidart-Bouzat MG, Mithen R and Berenbaum MR (2005) Elevated CO2 influences herbivory-induced defense res­ponses of Arabidopsis thaliana. Oecologia 145: 415–424

    Article  PubMed  Google Scholar 

  • Blasing OE, Gibon Y, Gunther M, Hohne M, Morcuende R, Osuna D, Thimm O, Usadel B, Scheible WR and Stitt M (2005) Sugars and circadian regulation make major contributions to the global regulation of diurnal gene expression in Arabidopsis. Plant Cell 17: 3257–3281

    Article  PubMed  CAS  Google Scholar 

  • Bloom AJ (2006) Rising carbon dioxide concentrations and the future of crop production. Journal of the Science of Food and Agriculture 86: 1289–1291

    Article  CAS  Google Scholar 

  • Bohnert HJ, Ayoubi P, Borchert C, Bressan RA, Burnap RL, Cushman JC, Cushman MA, Deyholos M, Fischer R, Galbraith DW, Hasegawa PM, Jenks M, Kawasaki S, Koiwa H, Kore-eda S, Lee BH, Michalowski CB, Misawa E, Nomura M, Ozturk N, Postier B, Prade R, Song CP, Tanaka Y, Wang H and Zhu JK (2001) A genomics approach towards salt stress tolerance. Plant Physiology and Biochemistry 39: 295–311

    Article  CAS  Google Scholar 

  • Booker FL, Burkey KO, Pursley WA and Heagle AS (2007) Elevated carbon dioxide and ozone effects on peanut: I. Gas-exchange, biomass, and leaf chemistry. Crop Science 47: 1475–1487

    Article  CAS  Google Scholar 

  • Bowes G (1993) Facing the Inevitable - Plants and Increasing Atmospheric CO2. Annual Review of Plant Physiology and Plant Molecular Biology 44: 309–332

    Article  CAS  Google Scholar 

  • Bressan RA, Zhang C, Zhang H, Hasegawa PM, Bohnert HJ and Zhu JK (2001) Learning from the Arabidopsis experience. The next gene search paradigm. Plant Physiol. 127:1354–60

    Article  CAS  PubMed  Google Scholar 

  • Buchanan BB and Balmer Y (2005) Redox regulation: A broadening horizon. Annual Review of Plant Biology 56: 187–220

    Article  CAS  PubMed  Google Scholar 

  • Buckley TN (2008) The role of stomatal acclimation in modelling tree adaptation to high CO2. Journal of Experimental BotanyJournal of Experimental Botany, 59:1951–1961

    Article  CAS  Google Scholar 

  • Burkey KO, Miller JE and Fiscus EL (2005) Assessment of ambient ozone effects on vegetation using snap bean as a bioindicator species. Journal of Environmental Quality 34: 1081–1086

    Article  CAS  PubMed  Google Scholar 

  • Castagna A, Ederli L, Pasqualini S, Mensuali-Sodi A, Baldan B, Donnini S and Ranieri A (2007) The tomato ethylene receptor LE-ETR3 (NR) is not involved in mediating ozone sensitivity: causal relationships among ethylene emission, oxidative burst and tissue damage. New Phytologist 174: 342–356

    Article  CAS  PubMed  Google Scholar 

  • Conklin PL and Last RL (1995) Differential accumulation of antioxidant mRNAs in Arabidopsis thaliana exposed to ozone. Plant Physiol. 109: 203–212

    Article  CAS  PubMed  Google Scholar 

  • Cross JM, von Korff M, Altmann T, Bartzetko L, Sulpice R, Gibon Y, Palacios N and Stitt M (2006) Variation of enzyme activities and metabolite levels in 24 Arabidopsis accessions growing in carbon-limited conditions. Plant Physiology 142: 1574–1588

    Article  CAS  PubMed  Google Scholar 

  • Davletova S, Rizhsky L, Liang HJ, Zhong SQ, Oliver DJ, Coutu J, Shulaev V, Schlauch K and Mittler R (2005) Cytosolic ascorbate peroxidase 1 is a central component of the reactive oxygen gene network of Arabidopsis. Plant Cell 17: 268–281

    Article  CAS  PubMed  Google Scholar 

  • Dietz KJ, Horling F, Konig J, and Baier M (2002) The function of the chloroplast 2-cysteine peroxiredoxin in peroxide detoxification and its regulation. Journal of Experimental Botany 53: 1321–1329

    Article  CAS  PubMed  Google Scholar 

  • Dietz KJ, Jacob S, Oelze ML, Laxa M, Tognetti V, de Miranda SMN, Baier M, and Finkemeier I (2006) The function of peroxiredoxins in plant organelle redox metabolism. Journal of Experimental Botany 57: 1697–1709

    Article  CAS  PubMed  Google Scholar 

  • Ederli L, Morettini R, Borgogni A, Wasternack C, Miersch O, Reale L, Ferranti F, Tosti N, and Pasqualini S (2006) Interaction between nitric oxide and ethylene in the induction of alternative oxidase in ozone-treated tobacco plants. Plant Physiology 142: 595–608

    Article  CAS  PubMed  Google Scholar 

  • Fey V, Wagner R, Brautigam K, Wirtz M, Hell R, Dietzmann A, Leister D, Oelmuller R, and Pfannschmidt T (2005) Retrograde plastid redox signals in the expression of nuclear genes for chloroplast proteins of Arabidopsis thaliana. Journal of Biological Chemistry 280: 17572–17572

    CAS  Google Scholar 

  • Fiscus EL, Booker FL, and Burkey KO (2005) Crop responses to ozone: uptake, modes of action, carbon assimilation and partitioning. Plant Cell and Environment 28: 997–1011

    Article  CAS  Google Scholar 

  • Fuhrer J (1994) Effects of ozone on managed pasture: I. Effects of open-top chambers on microclimate, ozone flux, and plant growth. Environ Pollut. 86:297–305

    Article  CAS  PubMed  Google Scholar 

  • Geigenberger P, Kolbe A, and Tiessen A (2005) Redox regulation of carbon storage and partitioning in response to light and sugars. Journal of Experimental Botany 56: 1469–1479

    Article  CAS  PubMed  Google Scholar 

  • Gentleman RC, Carey VJ, Bates DM, Bolstad B, Dettling M, Dudoit S, Ellis B, Gautier L, Ge YC, Gentry J, Hornik K, Hothorn T, Huber W, Iacus S, Irizarry R, Leisch F, Li C, Maechler M, Rossini AJ, Sawitzki G, Smith C, Smyth G, Tierney L, Yang JYH, and Zhang JH (2004) Bioconductor: open software development for computational biology and bioinformatics. Genome Biology 5: R80

    Article  PubMed  Google Scholar 

  • Giles J (2005) Hikes in surface ozone could suffocate crops. Nature 435: 7

    Article  CAS  PubMed  Google Scholar 

  • Gomez LD, Baud S, Gilday A, Li Y, and Graham IA (2006) Delayed embryo development in the Arabidopsis trehalose-6-phosphate synthase 1 mutant is associated with altered cell wall structure, decreased cell division and starch accumulation. Plant Journal 46: 69–84

    Article  CAS  PubMed  Google Scholar 

  • Griffin KL, Anderson OR, Gastrich MD, Lewis JD, Lin G, Schuster W, Seemann JR, Tissue DT, Turnbull MH, and Whitehead D (2001) Plant growth in elevated CO2 alters mitochondrial number and chloroplast fine structure. Proc Natl Acad Sci U S A. 98:2473–8

    Article  CAS  PubMed  Google Scholar 

  • Griffith M, Timonin M, Wong ACE, Gray GR, Akhter SR, Saldanha M, Rogers MA, Weretilnyk EA, and Moffatt B (2007) Thellungiella: an Arabidopsis-related model plant adapted to cold temperatures. Plant Cell and Environment 30: 529–538

    Article  CAS  Google Scholar 

  • Guillaumie S, San-Clemente H, Deswarte C, Martinez Y, Lapierre C, Murigneux A, Barriere Y, Pichon M, and Goffner D (2007) MAIZEWALL. Database and developmental gene expression profiling of cell wall biosynthesis and assembly in maize. Plant Physiology 143: 339–363

    Article  CAS  PubMed  Google Scholar 

  • Hamilton JG, Dermody O, Aldea M, Zangerl AR, Rogers A, Berenbaum MR, and DeLucia EH (2005) Anthropogenic changes in tropospheric composition increase susceptibility of soybean to insect herbivory. Environmental Entomology 34: 479–485

    Article  Google Scholar 

  • Heck WW, Adams RM, Cure WW, Heagle AS, Heggestad HE, Kohut RJ, Kress LW, Rawlings JO, and C. TO (1983) A reassessment of crop loss from ozone. Environmental Science and Technology 17: 573–581

    Google Scholar 

  • Houghton RA (2001) Counting terrestrial sources and sinks of carbon. Climatic Change 48: 525–534

    Article  CAS  Google Scholar 

  • Howard TP, Metodiev M, Lloyd JC, and Raines CA (2008) Thioredoxin-mediated reversible dissociation of a stromal multiprotein complex in response to changes in light availability. Proc Natl Acad Sci USA. 105:4056–6

    Article  CAS  PubMed  Google Scholar 

  • Inan G, Zhang Q, Li PH, Wang ZL, Cao ZY, Zhang H, Zhang CQ, Quist TM, Goodwin SM, Zhu JH, Shi HH, Damsz B, Charbaji T, Gong QQ, Ma SS, Fredricksen M, Galbraith DW, Jenks MA, Rhodes D, Hasegawa PM, Bohnert HJ, Joly RJ, Bressan RA, and Zhu JK (2004) Salt cress. A halophyte and cryophyte Arabidopsis relative model system and its applicability to molecular genetic analyses of growth and development of extremophiles. Plant Physiology 135: 1718–1737

    Article  CAS  PubMed  Google Scholar 

  • Jang JC, Leon P, Zhou L, and Sheen J (1997) Hexokinase as a sugar sensor in higher plants. Plant Cell 9: 5–19

    CAS  PubMed  Google Scholar 

  • Jifon JLW and Wolfle D (2002) Photosynthetic acclimation to elevated CO2 in Phaseolus vulgaris L. is altered by growth response to nitrogen supply. Global Change Biology 8: 1018–1027

    Article  Google Scholar 

  • Karnosky DF (2003) Impacts of elevated atmospheric CO(2) on forest trees and forest ecosystems: knowledge gaps. Environ Int. 29:161–169

    Article  CAS  PubMed  Google Scholar 

  • Kangasjarvi J, Jaspers P, and Kollist H (2005) Signalling and cell death in ozone-exposed plants. Plant Cell and ­Environment 28: 1021–1036

    Article  CAS  Google Scholar 

  • Kangasjarvi J, Talvinen J, Utrianen M, and Karjalainen R (1994) Plant defence systems induced by ozone. Plant Cell Environ 17: 783–794

    Article  CAS  Google Scholar 

  • Kim SH, Sicher RC, Bae H, Gitz DC, Baker JT, Timlin DJ, and Reddy VR (2006) Canopy photosynthesis, evapotranspiration, leaf nitrogen, and transcription profiles of maize in response to CO2 enrichment. Global Change Biology 12: 588-600

    Article  Google Scholar 

  • Kliebenstein DJ and Last RL (1998) Superoxide dismutase in Arabidopsis: an eclectic enzyme family with disparate regulation and protein localization. Plant Physiol 118: 637–650

    Article  CAS  PubMed  Google Scholar 

  • Knepp RG, Hamilton JG, Mohan JE, Zangerl AR, ­Berenbaum MR, and DeLucia EH (2005) Elevated CO2 reduces leaf damage by insect herbivores in a forest community. New Phytologist 167: 207–218

    Article  CAS  PubMed  Google Scholar 

  • Knepp RG, Hamilton JG, Zangerl AR, Berenbaum MR, and DeLucia EH (2007) Foliage of oaks grown under elevated CO2 reduces performance of Antheraea polyphemus (Lepidoptera : Saturniidae). Environmental Entomology 36: 609–617

    Article  PubMed  Google Scholar 

  • Koch K (2004) Sucrose metabolism: regulatory mechanisms and pivotal roles in sugar sensing and plant development. Current Opinion in Plant Biology 7: 235–246

    Article  CAS  PubMed  Google Scholar 

  • Kolbe A, Tiessen A, Schluepmann H, Paul M, Ulrich S and Geigenberger P (2005) Trehalose 6-phosphate regulates starch synthesis via posttranslational redox activation of ADP-glucose pyrophosphorylase. Proceedings of the National Academy of Sciences of the United States of America 102: 11118–11123

    Article  CAS  PubMed  Google Scholar 

  • Koussevitzky S, Nott A, Mockler TC, Hong F, Sachetto-Martins G, Surpin M, Lim IJ, Mittler R and Chory J (2007) Signals from chloroplasts converge to regulate nuclear gene expression. Science 316: 715–719

    Article  CAS  PubMed  Google Scholar 

  • LaDeau SL and Clark JS (2001) Rising CO2 levels and the fecundity of forest trees. Science 292: 95–98

    Article  CAS  PubMed  Google Scholar 

  • Lalonde S, Tegeder M, Throne-Holst M, Frommer WB and Patrick JW (2003) Phloem loading and unloading of sugars and amino acids. Plant Cell and Environment 26: 37–56

    Article  CAS  Google Scholar 

  • Lalonde S, Wipf D and Frommer WB (2004) Transport mechanisms for organic forms of carbon and nitrogen between source and sink. Annual Review of Plant Biology 55: 341–372

    Article  CAS  PubMed  Google Scholar 

  • Langebartels C, Wohlgemuth H, Kschieschan S, Grun S and Sandermann H (2002) Oxidative burst and cell death in ozone-exposed plants. Plant Physiology and Biochemistry 40: 567–575

    Article  CAS  Google Scholar 

  • Lemaire SD, Michelet L, Zaffagnini M, Massot V and Issakidis-Bourguet E (2007) Thioredoxins in chloroplasts. Current Genetics 51: 343–365

    Article  CAS  PubMed  Google Scholar 

  • Li P, Ma S and Bohnert HJ (2008) Co-expression charcteristics of trehalose 6-phosphate phosphatase subfamily gene reveal different functions in a network context. Physiologia Plantarum in press

    Google Scholar 

  • Li PH, Bohnert HJ and Grene R (2007) All about FACE - plants in a high-[CO2] world. Trends in Plant Science 12: 87–89

    Article  CAS  PubMed  Google Scholar 

  • Li PH, Sioson A, Mane SP, Ulanov A, Grothaus G, Heath LS, Murali TM, Bohnert HJ and Grene R (2006a) Response diversity of Arabidopsis thaliana ecotypes in elevated [CO2] in the field. Plant Molecular Biology 62: 593–609

    Article  CAS  PubMed  Google Scholar 

  • Li PH, Mane SP, Sioson AA, Robinet CV, Heath LS, Bohnert HJ and Grene R (2006b) Effects of chronic ozone exposure on gene expression in Arabidopsis thaliana ecotypes and in Thellungielia halophila. Plant Cell and Environment 29: 854–868

    Article  CAS  Google Scholar 

  • Liberloo M, Calfapietra C, Lukac M, Godbold D, Luos ZB, Polle A, Hoosbeek MR, Kull O, Marek M, Raines C, Rubino M, Taylor G, Scarascia-Mugnozza G and Ceulemans R (2006) Woody biomass production during the second rotation of a bio-energy Populus plantation increases in a future high CO2 world. Global Change Biology 12: 1094–1106

    Article  Google Scholar 

  • Long SP, Ainsworth EA, Leakey AD, Nosberger J and Ort DR (2006) Food for thought: lower-than-expected crop yield stimulation with rising CO2 concentrations. Science 312: 1918–1921

    Article  CAS  PubMed  Google Scholar 

  • Long SP, Ainsworth EA, Leakey ADB and Morgan PB (2005) Global food insecurity. Treatment of major food crops with elevated carbon dioxide or ozone under large-scale fully open-air conditions suggests recent models may have overestimated future yields. Philosophical Transactions of the Royal Society B - Biological Sciences 360: 2011–2020

    Article  Google Scholar 

  • Long SP, Ainsworth EA, Rogers A and Ort DR (2004) Rising atmospheric carbon dioxide: Plants face the future. Annual Review of Plant Biology 55: 591–628

    Article  CAS  PubMed  Google Scholar 

  • Lopez-Juez E (2007) Plastid biogenesis, between light and shadows. Journal of Experimental Botany 58: 11–26

    Article  CAS  PubMed  Google Scholar 

  • Ma S and Bohnert HJ (2008) Gene networks in Arabidopsis thaliana for metabolic and environmental functions. Molecular Biosystems 4: 199–204

    Article  CAS  PubMed  Google Scholar 

  • Ma S, Gong QQ and Bohnert HJ (2007) An Arabidopsis gene network based on the graphical Gaussian model. Genome Research 17: 1614–1625

    Article  CAS  PubMed  Google Scholar 

  • Mahalingam R, Jambunathan N, Gunjan SK, Faustin E, Weng H and Ayoubi P (2006) Analysis of oxidative signalling induced by ozone in Arabidopsis thaliana. Plant Cell and Environment 29: 1357–1371

    Article  CAS  Google Scholar 

  • Miglietta F, Giuntoli A and Bindi M (1996) The effect of free air carbon dioxide enrichment (FACE) and soil nitrogen availability on the photosynthetic capacity of wheat. Photosynthesis Research 47: 281–290

    Article  CAS  Google Scholar 

  • Miller G, Suzuki N, Rizhsky L, Hegie A, Koussevitzky S and Mittler R (2007) Double mutants deficient in cytosolic and thylakoid ascorbate peroxidase reveal a complex mode of interaction between reactive oxygen species, plant development, and response to abiotic stresses. Plant Physiology 144: 1777–1785

    Article  CAS  PubMed  Google Scholar 

  • Mittler R, Vanderauwera S, Gollery M and Van Breusegem F (2004) Reactive oxygen gene network of plants. Trends in Plant Sciences 9: 490–498

    Article  CAS  Google Scholar 

  • Miyazaki S, Fredricksen M, Hollis KC, Poroyko V, Shepley D, Galbraith DW, Long SP and Bohnert HJ (2004) Transcript expression profiles of Arabidopsis thaliana grown under controlled conditions and open-air elevated concentrations of CO2 and of O3. Field Crops Research 90: 47–59

    Article  Google Scholar 

  • Morgan PB, Ainsworth EA and Long SP (2003) How does elevated ozone impact soybean? A meta-analysis of photosynthesis, growth and yield. Plant Cell and Environment 26: 1317–1328

    Article  CAS  Google Scholar 

  • Niittyla T, Messerli G, Trevisan M, Chen J, Smith AM and Zeeman SC (2004) A previously unknown maltose transporter essential for starch degradation in leaves. Science 303: 87–89

    Article  PubMed  CAS  Google Scholar 

  • Noctor G, De Paepe R and Foyer CH (2007) Mitochondrial redox biology and homeostasis in plants. Trends in Plant Science 12: 125–134

    Article  CAS  PubMed  Google Scholar 

  • Nott A, Jung HS, Koussevitzky S and Chory J (2006) Plastid-to-nucleus retrograde signaling. Annual Review of Plant Biology 57: 739–759

    Article  CAS  PubMed  Google Scholar 

  • Nowak RS, Ellsworth DS and Smith SD (2004) Functional responses of plants to elevated atmospheric CO2 - do photosynthetic and productivity data from FACE experiments support early predictions? New Phytologist 162: 253–280

    Article  Google Scholar 

  • Nunes-Nesi A, Sweetlove LJ and Fernie AR (2007) Operation and function of the tricarboxylic acid cycle in the illuminated leaf. Physiologia Plantarum 129: 45–56

    Article  CAS  Google Scholar 

  • Oksanen E, Freiwald V, Prozherina N and Rousi M (2005) Photosynthesis of birch (Betula pendula) is sensitive to springtime frost and ozone. Canadian Journal of Forest Research 35: 703–712

    Article  CAS  Google Scholar 

  • Opgen-Rhein R, Schafer J, and Strimmer K (2006) GeneNet: Modeling and Inferring Gene Networks R Package version 101

    Google Scholar 

  • Overmyer K, Brosche M, Pellinen R, Kuittinen T, Tuominen H, Ahlfors R, Keinanen M, Saarma M, Scheel D and Kangasjarvi J (2005) Ozone-induced programmed cell death in the Arabidopsis radical-induced cell death1 mutant. Plant Physiology 137: 1092–1104

    Article  CAS  PubMed  Google Scholar 

  • Parnik T, Ivanova H and Keerberg O (2007) Photorespiratory and respiratory decarboxylations in leaves of C3 plants under different CO2 concentrations and irradiances. Plant Cell and Environment 30: 1535–1544

    Article  CAS  Google Scholar 

  • Parry M, Rosenzweig C and Livermore M (2005) Climate change, and risk global food supply of hunger. Philosophical Transactions of the Royal Society B - Biological Sciences 360: 2125–2138

    Article  Google Scholar 

  • Parry MAJ, Andralojc PJ, Mitchell RAC, Madgwick PJ and Keys AJ (2003) Manipulation of Rubisco: the amount, activity, function and regulation. Journal of Experimental Botany 54: 1321–1333

    Article  CAS  PubMed  Google Scholar 

  • Parry ML, Rosenzweig C, Iglesias A, Livermore M and Fischer G (2004) Effects of climate change on global food production under SRES emissions and socio-economic scenarios. Global Environmental Change-Human and Policy Dimensions 14: 53–67

    Article  Google Scholar 

  • Paul M (2007) Trehalose 6-phosphate. Current Opinion in Plant Biology 10: 303–309

    Article  CAS  PubMed  Google Scholar 

  • Paul MJ and Foyer CH (2001) Sink regulation of photosynthesis. J Exp Bot. 52:1383–400

    Article  CAS  PubMed  Google Scholar 

  • Peart RM, Jones JW, Curry RB, Boote K, Allen LH and Jr 1989 (1989) Impact of climate change on crop yield in the south-eastern USA. In JB Smith, Tirpak, D.A., ed, The potential effects of global climate change on the United States. US Environmental Protection Agency, Washington, DC, pp. 118–140

    Google Scholar 

  • Pell E, Schlagnhaufer C and Arteca R (1997) Ozone-induced oxidative stress: mechanisms of action and reaction. Plant Physiology 100: 264–273

    Article  CAS  Google Scholar 

  • Pellinen R, Palva T and Kangasjarvi J (1999) Subcellular localization of ozone-induced hydrogen peroxide production in birch (Betula pendula) leaf cells. Plant Journal 20: 349–356

    Article  CAS  PubMed  Google Scholar 

  • Pfannschmidt T (2003) Chloroplast redox signals: how photosynthesis controls its own genes. Trends in Plant Science 8: 33–41

    Article  CAS  PubMed  Google Scholar 

  • Pitcher LH and Zilinskas BA (1996) Overexpression of copper/zinc superoxide dismutase in the cytosol of transgenic tobacco confers partial resistance to ozone-induced foliar necrosis. Plant Physiology 110: 583–588

    CAS  PubMed  Google Scholar 

  • Plaxton WC and Podesta FE (2006) The functional organization and control of plant respiration. Critical Reviews in Plant Sciences 25: 159–198

    Article  CAS  Google Scholar 

  • Rachmilevitch S, Cousins AB and Bloom AJ (2004) Nitrate assimilation in plant shoots depends on photorespiration. Proc Natl Acad Sci USA 101: 11506–11510

    Article  CAS  PubMed  Google Scholar 

  • Rao M and Davis K (2001) The physiology of ozone induced cell death. Planta 213

    Google Scholar 

  • Rao MV, Lee HI, Creelman RA, Mullet JA and Davis KR (2000) Jasmonic acid signalling modulates ozone-induced hypersensitive cell death. Plant Cell 12: 1633–1646

    CAS  PubMed  Google Scholar 

  • Rao MV, Lee HI and Davis KR (2002) Ozone-induced ethylene production is dependent on salicylic acid, and both salicylic acid and ethylene act in concert to regulate ozone- induced cell death. The Plant Journal 32: 447–456

    Article  CAS  PubMed  Google Scholar 

  • Rizhsky L, Davletova S, and Liang HRM (2004) The zinc finger protein Zat12 is required for cytosolic ascorbate peroxidase 1 expression during oxidative stress in Arabidopsis. Journal of Biological Chemistry 279: 11736–11743

    Article  CAS  PubMed  Google Scholar 

  • Rogers A, Gibon Y, Stitt M, Morgan PB, Bernacchi CJ, Ort DR and Long SP (2006) Increased C availability at elevated carbon dioxide concentration improves N assimilation in a legume. Plant Cell and Environment 29: 1651–1658

    Article  CAS  Google Scholar 

  • Rolland F, Baena-Gonzalez E and Sheen J (2006) Sugar sensing and signaling in plants: Conserved and novel mechanisms. Annual Review of Plant Biology 57: 675–709

    Article  CAS  PubMed  Google Scholar 

  • Rook F, Hadingham SA, Li Y and Bevan MW (2006) Sugar and ABA response pathways and the control of gene expression. Plant Cell and Environment 29: 426–434

    Article  CAS  Google Scholar 

  • Schäfer J and Strimmer K (2005) An empirical Bayes approach to inferring large-scale gene association networks. Bioinformatics 21: 754–764

    Article  PubMed  Google Scholar 

  • Schrader SM, Kleinbeck KR, and Sharkey TD (2007) Rapid heating of intact leaves reveals initial effects of stromal oxidation on photosynthesis. Plant Cell and Environment 30: 671–678

    Article  CAS  Google Scholar 

  • Smith CS, Weljie AM and Moorhead GBG (2003) Molecular properties of the putative nitrogen sensor PII from Arabidopsis thaliana. Plant Journal 33: 353–360

    Article  CAS  PubMed  Google Scholar 

  • Stitt M (1991) Rising CO2 Levels and Their Potential Significance for Carbon Flow in Photosynthetic Cells. Plant Cell and Environment 14: 741–762

    Article  CAS  Google Scholar 

  • Stitt M and Krapp A (1999) The interaction between elevated carbon dioxide and nitrogen nutrition: the physiological and molecular background. Plant Cell and Environment 22: 583–621

    Article  CAS  Google Scholar 

  • Sun XW, Peng LW, Guo JK, Chi W, Ma JF, Lu CM and Zhang LX (2007) Formation of DEG5 and DEG8 complexes and their involvement in the degradation of photodamaged photosystem II reaction center D1 protein in Arabidopsis. Plant Cell 19: 1347–1361

    Article  CAS  PubMed  Google Scholar 

  • Taiz L and Zeiger E (2006) Plant Physiology, Ed Fourth. Sinauer Associates, Sunderland, MA

    Google Scholar 

  • Tamaoki M, Matsuyama T, Kanna M, Nakajima N, Kubo A, Aono M and Saji H (2003) Differential ozone sensitivity among Arabidopsis accessions and its relevance to ethylene synthesis. Planta 216: 552–560

    CAS  PubMed  Google Scholar 

  • Tiessen A, Prescha K, Branscheid A, Palacios N, McKibbin R, Halford NG and Geigenberger P (2003) Evidence that SNF1-related kinase and hexokinase are involved in separate sugar-signalling pathways modulating post-translational redox activation of ADP-glucose pyrophosphorylase in potato tubers. Plant Journal 35: 490–500

    Article  CAS  PubMed  Google Scholar 

  • Torres NL, Cho K, Shibato J, Hirano M, Kubo A, Masuo Y, Iwahashi H, Jwa NS, Agarwal GK and Rakwal R (2007) Gel-based proteomics reveals potential novel protein markers of ozone stress in leaves of cultivated bean and maize species of Panama. Electrophoresis 28: 4369–4381

    Article  CAS  PubMed  Google Scholar 

  • Tubiello FN, Soussana J-F and Howden SM (2007) Crop and pasture response to climate change. Proceedings of the National Academy of Sciences of the United States of America 104: 19686–19690

    Google Scholar 

  • Vahala J, Keinanen M, Schutzendubel A, Polle A and Kangasjarvi J (2003) Differential effects of elevated ozone on two hybrid aspen genotypes predisposed to chronic ozone fumigation. Role of ethylene and salicylic acid. Plant Physiology 132: 196–205

    Article  CAS  PubMed  Google Scholar 

  • Volkov V and Amtmann A (2006) Thellungiella halophila, a salt-tolerant relative of Arabidopsis thaliana, has specific root ion-channel features supporting K+/Na+ homeostasis under salinity stress. Plant Journal 48: 342–353

    Article  CAS  PubMed  Google Scholar 

  • Von Caemmerer S and Farquhar GD (1984) Effects of partial defoliation, changes of Irradiance during growth, short-term water-stress and growth at enhanced P(Co2) on the photosynthetic capacity of leaves of Phaseolus vulgaris L. Planta 160: 320–329

    Article  CAS  Google Scholar 

  • Wang XZ, Anderson OR and Griffin KL (2004) Chloroplast numbers, mitochondrion numbers and carbon assimilation physiology of Nicotiana sylvestris as affected by CO2 concentration. Environmental and Experimental Botany 51: 21–31

    Article  CAS  Google Scholar 

  • Weber APM, Schwacke R and Flugge UI (2005) Solute transporters of the plastid envelope membrane. Annual Review of Plant Biology 56: 133–164

    Article  PubMed  CAS  Google Scholar 

  • Wilson KE, Ivanov AG, Oquist G, Grodzinski B, Sarhan F, and Huner NPA (2006) Energy balance, organellar redox status, and acclimation to environmental stress. Canadian Journal of Botany 84: 1355–1370

    Article  CAS  Google Scholar 

  • Wise RR and Hoober HJ (2006) The Structure and Function of Plastids, Advances in Photosynthesis and Respiration Series, Vol 23, Springer, Dordecht, pp.

    Book  Google Scholar 

  • Wohlgemuth H, Mittelstrass K, Kschieschan S, Bender J and Weigel H-J, Overmyer K, Kangasjarvi J, Sandermann H, and Langebartels C (2002) Activation of an oxidative burst is a general feature of sensitive plants exposed to the air pollutant ozone. Plant Cell and Environment 25: 717–726

    Article  CAS  Google Scholar 

  • Wong CE, Li Y, Labbe A, Guevara D, Nuin P, Whitty B, Diaz C, Golding GB, Gray GR, Weretilnyk EA, Griffith M, and Moffatt BA (2006) Transcriptional profiling implicates novel interactions between abiotic stress and hormonal responses in Thellungiella, a close relative of Arabidopsis. Plant Physiology 140: 1437–1450

    Article  CAS  PubMed  Google Scholar 

  • Wong SC (1979) Elevated atmospheric partial pressure of CO2 and plant plant growth I. Interactions of nitrogen nutrition and photosynthetic capacity in C3 and C4 plants.. Oecologia 44: 68–74

    Article  Google Scholar 

  • Wormuth D, Baier M, Kandlbinder A, Scheibe R, Hartung W, and Dietz KJ (2006) Regulation of gene expression by photosynthetic signals triggered through modified CO2 availability. BMC Plant Biology 6: 15

    Google Scholar 

  • Young JJ, Mehta S, Israelsson M, Godoski J, Grill E and Schroeder JI (2006) CO2 signaling in guard cells: Calcium sensitivity response modulation, a Ca2+-independent phase, and CO2 insensitivity of the gca2 mutant. PNAS 103: 7506–7511

    Article  CAS  PubMed  Google Scholar 

  • Zavala JA, Casteel C, DeLucia EH and Berenbaum MR (2008) Anthropogenic increase in carbon dioxide compromises plant defense against invasive insects. Proc. Nat Acad Sci USA 105: 5129–5133

    Article  CAS  PubMed  Google Scholar 

  • Zhang RY, Lei WF, Tie XX and Hess P (2004) Industrial emissions cause extreme urban ozone diurnal variability. Proceedings of the National Academy of Sciences of the United States of America 101: 6346–6350

    Article  CAS  PubMed  Google Scholar 

  • Zhu XG, de Sturler E and Long SP (2007) Optimizing the distribution of resources between enzymes of carbon metabolism can dramatically increase photosynthetic rate: A numerical simulation using an evolutionary algorithm. Plant Physiology 145: 513–526

    Article  CAS  PubMed  Google Scholar 

  • Zimmermann P, Hirsch-Hoffmann M, Hennig L and Gruissem W (2004) Genevestigator. Arabidopsis Microarray Database and Analysis Toolbox. Plant Physiology 136: 2621–2632

    Article  CAS  PubMed  Google Scholar 

  • Ziska LH and Bunce JA (2007) Predicting the impact of changing CO2 on crop yields: some thoughts on food. New Phytologist 175: 607–618

    Article  CAS  PubMed  Google Scholar 

  • Ziska LH, Bunce JA and Goins EW (2004) Characterization of an urban-rural CO2/temperature gradient and associated changes in initial plant productivity during secondary succession Oecologia 2004 139: 454–458

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We wish to thank Drs. Lisa Ainsworth, Cecilia Vasquez-Robinet, Shrinivasrao Mane, Qingqiu Gong and Shisong Ma for discussions. We are grateful to VT and UIUC for institutional support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ruth Grene .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Grene, R., Li, P., Bohnert, H.J. (2010). Chapter 21 Elevated CO2 and Ozone: Their Effects on Photosynthesis. In: Rebeiz, C.A., et al. The Chloroplast. Advances in Photosynthesis and Respiration, vol 31. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-8531-3_21

Download citation

Publish with us

Policies and ethics