Skip to main content

Chapter 16 Folding and Pigment Binding of Light-Harvesting Chlorophyll a/b Protein (LHCIIb)

  • Chapter
The Chloroplast

Part of the book series: Advances in Photosynthesis and Respiration ((AIPH,volume 31))

Summary

The major light-harvesting chlorophyll a/b protein (LHCIIb) is one of the most abundant proteins of the chloroplast in green plants. It contains roughly half of the chlorophylls involved in photosynthesis, and exhibits an unusual ability to self-organize in vitro. Simply mixing the apoprotein, native or recombinant, with its pigments, chlorophyll a, chlorophyll b, and xanthophylls, in detergent solution, suffices to trigger protein folding and the assembly of about 18 pigments in their correct binding sites. A study of the mechanism of this self-organization seems worthwhile since (1) our knowledge about membrane protein folding is scarce compared to what we know about the folding of water-soluble proteins, (2) the mechanism of LHCIIb formation in vitro may give useful clues about the so-far unknown pathway of its assembly in the chloroplast, and (3) a thorough understanding of the process may facilitate the application of recombinant LHCIIb in hybrid constructs such as photovoltaic devices or the construction of potentially useful proteins or other polymers that spontaneously bind other dyes at a similarly high density.

During the assembly of recombinant LHCIIb, the formation of protein secondary structure is triggered by the binding of pigments. Chlorophylls are bound in two apparent kinetic phases. A faster one in the range of tens of seconds reflects the binding of chlorophyll a along with xanthophylls. During the slower step in the range of minutes, mostly chlorophyll b is bound. The intermediate complex lacking chlorophyll b is unstable and susceptible to proteases. The resulting two-step model of LHCIIb formation is able to explain why LHCIIb in vivo exhibits an apparently constant chlorophyll a:b ratio although several binding sites have been found to be accessible to both of the two chlorophylls in vitro and in plants over-producing chlorophyll b. Time-resolved electron paramagnetic resonance (EPR) techniques have been established to assess protein folding beyond secondary structure formation during LHCIIb assembly, and first results of EPR-monitored kinetics are shown.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

CAO:

– chlorophyllide a oxygenase

CD:

– circular dichroism

Chl:

– chlorophyll

cpSRP:

– chloroplast signal recognition particle

EPR:

– electron paramagnetic resonance

LHCI, LHCII:

– light-harvesting Chl a/b complex of PSI and PSII, respectively

LHCIIb:

– major subunit of LHCII with apoproteins Lhcb1-3

NPQ:

– non-photochemical quenching

PSI, PSII:

– photosystems I and II, respectively

s:

– seconds

SDS:

– sodium dodecylsulfate

τ1, τ2:

– reaction times 1,2 = inverted rate constants k1, k2 in kinetic analyses

References

  • Apel K and Kloppstech K (1980) The effect of light in the biosynthesis of the light-harvesting chlorophyll a/b protein. Planta 150: 426–430

    Article  CAS  Google Scholar 

  • Bellafiore S, Barneche F, Peltier G and Rochaix JD (2005) State transitions and light adaptation require chloroplast thylakoid protein kinase STN7. Nature 433: 892–895

    Article  PubMed  CAS  Google Scholar 

  • Bellemare G, Bartlett S and Chua NH (1982) Biosynthesis of chlorophyll a/b-binding polypeptides in wild-type and the Chlorina f2 mutant of barley. J Biol Chem 257: 7762–7776

    PubMed  CAS  Google Scholar 

  • Booth PJ and Paulsen H (1996) Assembly of light-harvesting chlorophyll a/b complex in vitro. Time-resolved fluorescence measurements. Biochemistry 35: 5103–5108

    Article  PubMed  CAS  Google Scholar 

  • Bossmann B, Knötzel J and Jansson S (1997) Screening of chlorina mutants of barley (Hordeum vulgare L.) with antibodies against light harvesting proteins of PS I and PS II: absence of specific antenna proteins. Photosynth Res 52: 127–136

    Article  CAS  Google Scholar 

  • Chen M, Eggink LL, Hoober JK and Larkum AWD (2005) Influence of structure on binding of chlorophylls to peptide ligands. J Am Chem Soc 127: 2052–2053

    Article  PubMed  CAS  Google Scholar 

  • Cline K (1986) Import of proteins into chloroplasts. J Biol Chem 261: 14804–14810

    PubMed  CAS  Google Scholar 

  • Cline K (1988) Light-harvesting chlorophyll a/b protein. Membrane insertion, proteolytic processing, assembly into LHCII, and localization to appressed membranes. Plant Physiol 86: 1120–1126

    Article  PubMed  CAS  Google Scholar 

  • Darr SC, Somerville SC and Arntzen CJ (1986) Monoclonal antibodies to the light-harvesting chlorophyll a/b protein complex of Photosystem II. J Cell Biol 103: 733–740

    Article  PubMed  CAS  Google Scholar 

  • Eggink LL and Hoober JK (2000) Chlorophyll binding to peptide maquettes containing a retention motif. J Biol Chem 275: 9087–9090

    Article  PubMed  CAS  Google Scholar 

  • Eggink LL, Park H and Hoober JK (2001) The role of chlorophyll b in photosynthesis: hypothesis. BMC Plant Biol 1: 2

    Article  PubMed  CAS  Google Scholar 

  • Engelman DM, Chen Y, Chin CN, Curran AR, Dixon AM, Dupuy AD, Lee AS, Lehnert U, Matthews EE, Reshetnyak YK, Senes A and Popot JL (2003) Membrane protein folding: beyond the two stage model – minireview. FEBS Lett 555: 122—125

    Article  PubMed  CAS  Google Scholar 

  • Harrison MA and Melis A (1992) Organization and stability of polypeptides associated with the chlorophyll a-b light-harvesting complex of photosystem II. Plant Cell Physiol 33: 627–637

    CAS  Google Scholar 

  • Harrison MA, Nemson JA and Melis A (1993) Assembly and composition of the chlorophyll a-b light-harvesting complex of barley (Hordeum vulgare L) – Immunochemical analysis of chlorophyll b-less and chlorophyll b-deficient mutants. Photosynth Res 38: 141–151

    Article  CAS  Google Scholar 

  • Hirashima M, Satoh S, Tanaka R and Tanaka A (2006) Pigment shuffling in antenna systems achieved by expressing prokaryotic chlorophyllide a oxygenase in Arabidopsis. J Biol Chem 281: 15385–15393

    Article  PubMed  CAS  Google Scholar 

  • Hobe S, Fey H, Rogl H and Paulsen H (2003) Determination of relative chlorophyll binding affinities in the major light-harvesting chlorophyll a/b complex. J Biol Chem 278: 5912–5919

    Article  PubMed  CAS  Google Scholar 

  • Hobe S, Förster R, Klingler J and Paulsen H (1995) N-proximal sequence motif in light-harvesting chlorophyll a/b-binding protein is essential for the trimerization of light-harvesting chlorophyll a/b complex. Biochemistry 34: 10224–10228

    Article  PubMed  CAS  Google Scholar 

  • Hobe S, Prytulla S, Kühlbrandt W and Paulsen H (1994) Trimerization and crystallization of reconstituted light-harvesting chlorophyll a/b complex. EMBO J 13: 3423–3429

    PubMed  CAS  Google Scholar 

  • Hoober JK and Eggink LL (1999) Assembly of light-harvesting complex II and biogenesis of thylakoid membranes in chloroplasts. Photosynth Res 61: 197–215

    Article  CAS  Google Scholar 

  • Hoober JK and Eggink LL (2001) A potential role of chlorophylls b and c in assembly of light-harvesting complexes. FEBS Lett 489: 1–3

    Article  PubMed  CAS  Google Scholar 

  • Horn R, Grundmann G and Paulsen H (2007) Consecutive binding of chlorophylls a and b during the assembly in vitro of light-harvesting chlorophyll-a/b protein (LHCIIb). J Mol Biol 366: 1045–1054

    Article  PubMed  CAS  Google Scholar 

  • Horn R and Paulsen H (2002) Folding in vitro of light-harvesting chlorophyll a/b protein is coupled with pigment binding. J Mol Biol 318: 547–556

    Article  PubMed  CAS  Google Scholar 

  • Horn R and Paulsen H (2004) Early steps in the assembly of light-harvesting chlorophyll a/b complex. J Biol Chem 279: 44400–44406

    Article  PubMed  CAS  Google Scholar 

  • Horton P, Ruban AV and Wentworth M (2000) Allosteric regulation of the light-harvesting system of photosystem II. Philos Trans R Soc Lond Ser B-Biol Sci 355: 1361–1370

    Article  CAS  Google Scholar 

  • Hubbell WL and Altenbach C (1994) Investigation of structure and dynamics in membrane proteins using site-directed spin labeling. Curr Opin Struct Biol 4: 566–573

    Article  CAS  Google Scholar 

  • Hubbell WL, Cafiso DS and Altenbach C (2000) Identifying conformational changes with site-directed spin labeling. Nat Struct Biol 7: 735–739

    Article  PubMed  CAS  Google Scholar 

  • Jackowski G, Kacprzak K and Jansson S (2001) Identification of Lhcb1/Lhcb2/Lhcb3 heterotrimers of the main light-harvesting chlorophyll a/b-protein complex of Photosystem II (LHC II). Biochim Biophys Acta 1504: 340–345

    Article  PubMed  CAS  Google Scholar 

  • Jeschke G, Bender A, Schweikardt T, Panek G, Decker H and Paulsen H (2005) Localization of the N-terminal domain in light-harvesting chlorophyll a/b protein (LHCIIb) by electron paramagnetic resonance (EPR) measurements. J Biol Chem 280: 18623–18630

    Article  PubMed  CAS  Google Scholar 

  • Kleima FJ, Hobe S, Calkoen F, Urbanus ML, Peterman EJG, van Grondelle R, Paulsen H and van Amerongen H (1999) Decreasing the chlorophyll a/b ratio in reconstituted LHCII: structural and functional consequences. Biochemistry 38: 6587–6596

    Article  PubMed  CAS  Google Scholar 

  • Krol M, Spangfort MD, Huner NPA, Oquist G, Gustafsson P and Jansson S (1995) Chlorophyll a/b-binding proteins, pigment conversions, and early light-induced proteins in a chlorophyll b-less barley mutant. Plant Physiol 107: 873–883

    Article  PubMed  CAS  Google Scholar 

  • Kruse O, Rupprecht J, Bader KP, Thomas-Hall S, Schenk PM, Finazzi G and Hankamer B (2005) Improved photobiological H2 production in engineered green algal cells. J Biol Chem 280: 34170–34177

    Article  PubMed  CAS  Google Scholar 

  • Kühlbrandt W, Wang DN and Fujiyoshi Y (1994) Atomic model of plant light-harvesting complex by electron crystallography. Nature 367: 614–621

    Article  PubMed  Google Scholar 

  • Kuttkat A, Edhofer I, Eichacker LA and Paulsen H (1997) Light harvesting chlorophyll a/b binding protein stably inserts into etioplast membranes supplemented with Zn pheophytin a/b. J Biol Chem 272: 20451–20455

    Article  PubMed  CAS  Google Scholar 

  • Kuttkat A, Grimm R and Paulsen H (1995) Light-harvesting chlorophyll a/b-binding protein inserted into isolated thylakoids binds pigments and is assembled into trimeric light-harvesting complex. Plant Physiol 109: 1267–1276

    Article  PubMed  CAS  Google Scholar 

  • Li X, Henry R, Yuan JG, Cline K and Hoffman NE (1995) A chloroplast homologue of the signal recognition particle subunit SRP54 is involved in the posttranslational integration of a protein into thylakoid membranes. Proc Natl Acad Sci USA 92: 3789–3793

    Article  PubMed  CAS  Google Scholar 

  • Liu Z, Yan H, Wang K, Kuang T, Zhang J, Gul L, An X and Chang W (2004) Crystal structure of spinach major light-harvesting complex at 2.72 Å resolution. Nature 428: 287–292

    Article  PubMed  CAS  Google Scholar 

  • Masuda T, Tanaka A and Melis A (2003) Chlorophyll antenna size adjustments by irradiance in Dunaliella salina involve coordinate regulation of chlorophyll a oxygenase (CAO) and Lhcb gene expression. Plant Mol Biol 51: 757–771

    Article  PubMed  CAS  Google Scholar 

  • Melis A, Zhang LP, Forestier M, Ghirardi ML and Seibert M (2000) Sustained photobiological hydrogen gas production upon reversible inactivation of oxygen evolution in the green alga Chlamydomonas reinhardtii. Plant Physiol 122: 127–135

    Article  PubMed  CAS  Google Scholar 

  • Michel H, Tellenbach M and Boschetti A (1983) A chlorophyll b-less mutant of Chlamydomonas reinhardtii lacking in the light-harvesting chlorophyll a/b-protein complex but not in its apoprotein. Biochim Biophys Acta 725: 417–424

    Article  CAS  Google Scholar 

  • Mick V, Eggert K, Heinemann B, Geister S and Paulsen H (2004a) Single amino acids in the lumenal loop domain influence the stability of the major light-harvesting chlorophyll a/b complex. Biochemistry 43: 5467–5473

    Article  PubMed  CAS  Google Scholar 

  • Mick V, Geister S and Paulsen H (2004b) The folding state of the lumenal loop determines the thermal stability of light-harvesting chlorophyll a/b protein (LHCIIb). Biochemistry 43: 14704–14711

    Article  PubMed  CAS  Google Scholar 

  • Moore M, Goforth RL, Mori H and Henry R (2003) Functional interaction of chloroplast SRP/FtsY with the ALB3 translocase in thylakoids: substrate not required. J Cell Biol 162: 1245–1254

    Article  PubMed  CAS  Google Scholar 

  • Nilsson A, Stys D, Drakenberg T, Spangfort MD, Forsen S and Allen JF (1997) Phosphorylation controls the three dimensional structure of plant light harvesting complex II. J Biol Chem 272: 18350–18357

    Article  PubMed  CAS  Google Scholar 

  • Niyogi KK, Li XP, Rosenberg V and Jung HS (2005) Is PsbS the site of non-photochemical quenching in photosynthesis? J Exp Bot 56: 375–382

    Article  PubMed  CAS  Google Scholar 

  • Ossenbühl F, Göhre V, Meurer J, Krieger-Liszkay A, Rochaix JD and Eichacker LA (2004) Efficient assembly of photosystem II in Chlamydomonas reinhardtii requires Alb3.1p, a homolog of Arabidopsis ALBINO3. Plant Cell 16: 1790–1800

    Article  PubMed  Google Scholar 

  • Pannier M, Veit S, Godt A, Jeschke G and Spiess HW (2000) Dead-time free measurement of dipole-dipole interactions between electron spins. J Magn Reson 142: 331–340

    Article  PubMed  CAS  Google Scholar 

  • Park H, Eggink LL, Roberson RW and Hoober JK (1999) Transfer of proteins from the chloroplast to vacuoles in Chlamydomonas reinhardtii (Chlorophyta): A pathway for degradation. J Phycol 35: 528–538

    Article  CAS  Google Scholar 

  • Park H and Hoober JK (1997) Chlorophyll synthesis modulates retention of apoproteins of light-harvesting complex II by the chloroplast in Chlamydomonas reinhardtii. Physiol Plant 101: 135–142

    Article  CAS  Google Scholar 

  • Pascal AA, Liu ZF, Broess K, Van Oort B, Van Amerongen H, Wang C, Horton P, Robert B, Chang WR and Ruban A (2005) Molecular basis of photoprotection and control of photosynthetic light-harvesting. Nature 436: 134–137

    Article  PubMed  CAS  Google Scholar 

  • Paulsen H (2006) Reconstitution and pigment exchange. In: Grimm B, Porra R, Rüdiger W and Scheer H (eds) Advances in Photosynthesis and Respiration. Kluwer, Dordrecht, The Netherlands, pp. 275–285

    Google Scholar 

  • Paulsen H, Finkenzeller B and Kühlein N (1993) Pigments induce folding of light-harvesting chlorophyll a/b-binding protein. Eur J Biochem 215: 809–816

    Article  PubMed  CAS  Google Scholar 

  • Paulsen H, Rümler U and Rüdiger W (1990) Reconstitution of pigment-containing complexes from light-harvesting chlorophyll a/b-binding protein overexpressed in E. coli. Planta 181: 204–211

    Article  CAS  Google Scholar 

  • Payan LA and Cline K (1991) A stromal protein factor maintains the solubility and insertion competence of an imported thylakoid membrane protein. J Cell Biol 112: 603–613

    Article  PubMed  CAS  Google Scholar 

  • Plumley FG and Schmidt GW (1987) Reconstitution of chlorophyll a/b light-harvesting complexes: xanthophyll-dependent assembly and energy transfer. Proc Natl Acad Sci USA 84: 146–150

    Article  PubMed  CAS  Google Scholar 

  • Plumley FG and Schmidt GW (1995) Light-harvesting chlorophyll a/b complexes: interdependent pigment synthesis and protein assembly. Plant Cell 7: 689–704

    PubMed  CAS  Google Scholar 

  • Popot JL and Engelman DM (2000) Helical membrane protein folding, stability, and evolution. Annu Rev Biochem 69: 881–922

    Article  PubMed  CAS  Google Scholar 

  • Porra RJ, Schäfer W, Cmiel E, Katheder I and Scheer H (1994) The derivation of the formyl-group oxygen of chlorophyll b in higher plants from molecular oxygen – achievement of high enrichment of the 7-formyl-group oxygen from 18O2 in greening maize leaves. Eur J Biochem 219: 671–679

    Article  PubMed  CAS  Google Scholar 

  • Preiss S and Thornber JP (1995) Stability of the apoproteins of light-harvesting complex I and II during biogenesis of thylakoids in the chlorophyll b-less barley mutant chlorina f2. Plant Physiol 107: 709–717

    PubMed  CAS  Google Scholar 

  • Rabenstein MD and Shin K (1995) Determination of the distance between two spin labels attached to a macromolecule. Proc Natl Acad Sci USA 92: 8239–8243

    Article  PubMed  CAS  Google Scholar 

  • Reinbothe C, Bartsch S, Eggink LL, Hoober JK, Brusslan J, Andrade-Paz R, Monnet J and Reinbothe S (2006) A role for chlorophyllide a oxygenase in the regulated import and stabilization of light-harvesting chlorophyll a/b proteins. Proc Natl Acad Sci USA. 103: 4777–4782

    Article  PubMed  CAS  Google Scholar 

  • Remelli R, Varotto C, Sandonà D, Croce R and Bassi R (1999) Chlorophyll binding to monomeric light-harvesting complex - A mutation analysis of chromophore-binding residues. J Biol Chem 274: 33510–33521

    Article  PubMed  CAS  Google Scholar 

  • Rogl H and Kühlbrandt W (1999) Mutant trimers of light-harvesting complex II exhibit altered pigment content and spectroscopic features. Biochemistry 38: 16214–16222

    Article  PubMed  CAS  Google Scholar 

  • Satoh S, Ikeuchi M, Mimuro M and Tanaka A (2001) Chlorophyll b expressed in cyanobacteria functions as a light harvesting antenna in Photosystem I through flexibility of the proteins. J Biol Chem 276: 4293–4297

    Article  PubMed  CAS  Google Scholar 

  • Schünemann D (2004) Structure and function of the chloroplast signal recognition particle. Curr Genet 44: 295–304

    Article  PubMed  Google Scholar 

  • Shimada Y, Tanaka A, Tanaka Y, Takabe T, Takabe T and Tsuji H (1990) Formation of chlorophyll-protein complexes during greening. 1. Distribution of newly synthesized chlorophyll among apoproteins. Plant Cell Physiol 31: 639–647

    CAS  Google Scholar 

  • Simonetto R, Crimi M, Sandonà D, Croce R, Cinque G, Breton J and Bassi R (1999) Orientation of chlorophyll transition moments in the higher-plant light-harvesting complex CP29. Biochemistry 38: 12974–12983

    Article  PubMed  CAS  Google Scholar 

  • Standfuss R, van Scheltinga ACT, Lamborghini M and Kühlbrandt W (2005) Mechanisms of photoprotection and nonphotochemical quenching in pea light-harvesting complex at 2.5 Å resolution. EMBO J 24: 919–928

    Article  PubMed  CAS  Google Scholar 

  • Steinhoff HJ (2002) Methods for study of protein dynamics and protein-protein interaction in protein-ubiquitination by electron paramagnetic resonance spectroscopy. Front Biosci 7: 97–110

    Article  Google Scholar 

  • Szabó I, Bergantino E and Giacometti GM (2005) Light and oxygenic photosynthesis: Energy dissipation as a protection mechanism against photo-oxidation. EMBO Rep 6: 629–634

    Article  PubMed  Google Scholar 

  • Tanaka A and Melis A (1997) Irradiance dependent changes in the size and composition of the chlorophyll a/b light harvesting complex in the green alga Dunaliella salina. Plant Cell Physiol 38: 17–24

    Article  CAS  Google Scholar 

  • Tu CJ, Schünemann D and Hoffman NE (1999) Chloroplast FtsY, chloroplast signal recognition particle, and GTP are required to reconstitute the soluble phase of light-harvesting chlorophyll protein transport into thylakoid membranes. J Biol Chem 274: 27219–27224

    Article  PubMed  CAS  Google Scholar 

  • Wolf-Klein H, Kohl C, Müllen K and Paulsen H (2002) Biomimetic model of a plant photosystem consisting of a recombinant light-harvesting complex and a terrylene dye. Angew. Chem Int Ed 41: 3380–3382

    Article  Google Scholar 

  • Wolfe GR, Park H, Sharp WP and Hoober JK (1997) Light harvesting complex apoproteins in cytoplasmic vacuoles in Chlamydomonas reinhardtii (chlorophyta). J Phycol 33: 377–386

    Article  Google Scholar 

  • Xu H, Vavilin D and Vermaas W (2001) Chlorophyll b can serve as the major pigment in functional photosystem II complexes of cyanobacteria. Proc Natl Acad Sci USA 98: 14168–14173

    Article  PubMed  CAS  Google Scholar 

  • Yamasato A, Nagata N, Tanaka R and Tanaka A (2005) The N-terminal domain of chlorophyllide a oxygenase confers protein instability in response to chlorophyll b accumulation in Arabidopsis. Plant Cell 17: 1585–1597

    Article  PubMed  CAS  Google Scholar 

  • Yang C, Horn R and Paulsen H (2003) The light-harvesting chlorophyll a/b complex can be reconstituted in vitro from its completely unfolded apoprotein. Biochemistry 42: 4527–4533

    Article  PubMed  CAS  Google Scholar 

  • Zer H, Vink M, Shochat S, Herrmann RG, Andersson B and Ohad I (2003) Light affects the accessibility of the thylakoid light-harvesting complex II (LHCII) phosphorylation site to the membrane protein kinase(s). Biochemistry 42: 728–738

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

Work in the author’s laboratory has been funded by the Deutsche Forschungsgemeinschaft (Pa 324/3-4, SFB 625 TP B10).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Harald Paulsen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Paulsen, H., Dockter, C., Volkov, A., Jeschke, G. (2010). Chapter 16 Folding and Pigment Binding of Light-Harvesting Chlorophyll a/b Protein (LHCIIb). In: Rebeiz, C.A., et al. The Chloroplast. Advances in Photosynthesis and Respiration, vol 31. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-8531-3_16

Download citation

Publish with us

Policies and ethics