Skip to main content

Metabolism of Acyclic Terpenes by Pseudomonas

  • Chapter
  • First Online:
Pseudomonas

Abstract

Pseudomonas is a highly versatile bacterial genus with the ability to grow on a wide diversity of organic compounds. The compounds that can be used as a carbon and energy source include root exudates of plants such as sugars, amino acids, and organic acids, animals in putrefaction steps, and other contaminant compounds [1]. Pseudomonas species are found in pristine waters, wild soils and extreme habitats.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lugtenberg, B.J. and Weger, L.A. (1992) Plant root colonization by Pseudomonas spp, pp. 13–19. In E. Galli, S. Silver and B. Witholt (eds.), Pseudomonas molecular biology and biotechnology. ASM Press, Washington, D.C. USA.

    Google Scholar 

  2. Wagner, V.E. and Iglewski, B.H. (2008) Pseudomonas aeruginosa biofilms in CF infection. Clin. Rev. Allergy Immunol. 35: 124–134.

    Article  CAS  PubMed  Google Scholar 

  3. Kim, S.H., Park, S.Y., Heo, Y.J. and Cho, Y.H. (2008) Drosophila melanogaster-based screening for multihost virulence factors of Pseudomonas aeruginosa PA14 and identification of a virulence-attenuating factor, HudA. Infect. Immun. 76: 4152–4162.

    Article  CAS  PubMed  Google Scholar 

  4. Adonizio, A., Leal, S.M., Jr, Ausubel, F.M. and Mathee, K. (2008) Attenuation of Pseudomonas aeruginosa virulence by medicinal plants in a Caenorhabditis elegans model system. J. Med. Microbiol. 57: 809–813.

    Article  CAS  PubMed  Google Scholar 

  5. Starkey, M. and Rahme, L.G. (2009) Modeling Pseudomonas aeruginosa pathogenesis in plant hosts. Nat. Protoc. 4: 117–124.

    Article  CAS  PubMed  Google Scholar 

  6. Vila, J.,and Martínez, J.L. (2008) Clinical impact of the over-expression of efflux pump in nonfermentative Gram-negative bacilli, development of efflux pump inhibitors. Curr. Drug Targets 9: 797–807.

    Article  CAS  PubMed  Google Scholar 

  7. Anderson, G.G. and O’Toole, G.A. (2008) Innate and induced resistance mechanisms of bacterial biofilms. Curr. Top. Microbiol. Immunol. 322: 85–105.

    Article  CAS  PubMed  Google Scholar 

  8. Seubert, W. (1960) Degradation of isoprenoid compounds by microorganisms. Isolation and characterization of an isoprenoid-degrading bacterium, Pseudomonas citronellolis n. sp. J. Bacteriol. 79: 426–434.

    CAS  PubMed  Google Scholar 

  9. Cantwell, S.G., Lau, E.P., Watt, D.S. and Fall, R.R. (1978) Biodegradation of acyclic isoprenoids by Pseudomonas species. J. Bacteriol. 153: 324–333.

    Google Scholar 

  10. Prakash, O., Kumari, K. and Lal, R. (2007) Pseudomonas delhiensis sp. nov., from a fly ash dumping site of a thermal power plant. Int. J. Syst. Evol. Microbiol. 57: 527–531.

    Article  CAS  PubMed  Google Scholar 

  11. Fall, R.R., Brown, J.L. and Schaeffer, T.L. (1979) Enzyme recruitment allows the biodegradation of recalcitrant branched hydrocarbons by Pseudomonas citronellolis. Appl. Environ. Microbiol. 38: 715–722.

    CAS  PubMed  Google Scholar 

  12. Vandenbergh, P.A. and Wright, A.M. (1983) Plasmid involvement in acyclic isoprenoid metabolism by Pseudomonas putida. Appl. Environ. Microbiol. 45: 1953–1955.

    CAS  PubMed  Google Scholar 

  13. Taylor, R.F. (1984) Bacterial Triterpenoids. Microbiol. Rev. 48: 181–198.

    CAS  PubMed  Google Scholar 

  14. Aharoni, A., Giri, A.S., Deuerlein, S., Griepink, F., de Kogel, W., Verstappen, F.W.A., Verhoeven, H.A., Jongsma, M.A., Schwab, W. and Bouwmeester, H.J. (2003) Terpenoid metabolism in wild-type and transgenic Arabidopsis plants. Plant Cell 15: 2866–2884.

    Article  CAS  PubMed  Google Scholar 

  15. Holtzapple, E. and Schmidt-Dannert, C. (2007) Biosynthesis of isoprenoid wax ester in Marinobacter hydrocarbonoclasticus DSM 8798: identification and characterization of isoprenoid coenzyme A synthetase and wax ester synthases. J. Bacteriol. 189: 3804–3812.

    Article  CAS  PubMed  Google Scholar 

  16. Phillips, M.A., Bohlmann, J. and Gershenzon, J. (2006) Molecular regulation of induced terpenoid biosynthesis in conifers. Phytochem. Rev. 5: 179–189.

    Article  CAS  Google Scholar 

  17. Van Beilen, J.B. and Witholt, B. (2005) Diversity, function, and biocatalystic applications of alkane oxygenases, pp. 259–275. In B. Ollivier and M. Magot (eds.), Petroleum microbiology. ASM Press, Washington, D.C. USA.

    Google Scholar 

  18. Haiping, H. and Larter, S. (2005) Biodegradation of petroleum in subsurface geological reservoirs, pp. 1–121. In B.Ollivier, and M. Magot (eds.), Petroleum microbiology. ASM Press, Washington, D.C. USA.

    Google Scholar 

  19. Rontani, J.F., Gilewicz, M.J., Michotey, V.D., Zheng, T.L., Bonin, P.C. and Bertrand, J.C. (1997) Aerobic and anaerobic metabolism of 6,10,14- trimethylpentadecan-2-one by a denitrifying bacterium isolated from marine sediments. Appl. Environ. Microbiol. 63: 636–643.

    CAS  PubMed  Google Scholar 

  20. Rontani, J.F., Bonin, P.C. and Volkman, J.K. (1999) Production of Wax esters during aerobic growth of marine bacteria on isoprenoid compounds. Appl. Environ. Microbiol. 65: 221–230.

    CAS  PubMed  Google Scholar 

  21. Fujita, Y., Matsuoka, H. and Hirooka, K. (2007) Regulation of fatty acid metabolism in bacteria. Molec. Microbiol. 66: 829–839.

    Article  CAS  Google Scholar 

  22. Pirnik, M.P., Atlas, R.M. and Bartha, R. (1974) Hydrocarbon metabolism by Brevibacterium erytrogenes: normal and branched alkanes. J. Bacteriol. 119: 868–878.

    CAS  PubMed  Google Scholar 

  23. Pirnik, M.P. (1977) Microbial oxidation of methyl branched alkanes. Critical Rev. Microbiol. 5: 413–422.

    Article  CAS  Google Scholar 

  24. Förster-Fromme, K., Chattopadhyay, A. and Jendrossek, D. (2008) Biochemical characterization of AtuD from Pseudomonas aeruginosa, the first member of a new subgroup of acyl-CoA dehydrogenases with specificity for citronellyl-CoA. Microbiology 154: 789–796.

    Article  PubMed  Google Scholar 

  25. Seubert, W. and Fass, E. (1964) Studies on the bacterial degradation of isoprenoids. V. The mechanism of isoprenoid degradation. Biochem. Z. 341: 35–44.

    CAS  PubMed  Google Scholar 

  26. Diaz-Perez, A.L., Zavala-Hernandez, N.A., Cervantes, C. and Campos-Garcia, J. (2004) The gnyRDBHAL cluster is involved in acyclic isoprenoid degradation in Pseudomonas aeruginosa. Appl. Environ. Microbiol. 70: 5102–5110.

    Article  CAS  PubMed  Google Scholar 

  27. Hoschle, B., Gnau, V. and Jendrossek, D. (2005) Methylcrotonyl-CoA and geranyl-CoA carboxylases are involved in leucine/isovalerate utilization (Liu) and acyclic terpene utilization (Atu), and are encoded by liuB/liuD and atuC/atuF, in Pseudomonas aeruginosa. Microbiology 151: 3649–3656.

    Article  PubMed  Google Scholar 

  28. Aguilar, J.A., Zavala, A.N., Díaz-Pérez, C., Cervantes, C., Díaz-Pérez, A.L. and Campos-García, J. (2006) The atu and liu clusters are involved in the catabolic pathways for acyclic monoterpenes and leucine in Pseudomonas aeruginosa. Appl. Environ. Microbiol. 72: 2070–2079.

    Article  CAS  PubMed  Google Scholar 

  29. Förster-Fromme, K., Höschle, B., Mack, C., Armbruster, M.W. and Jendrossek, D. (2006) Identification of genes and proteins necessary for catabolism of acyclic terpenes and leucine/isovalerate in Pseudomonas aeruginosa. Appl. Environ. Microbiol. 72: 4819–4828.

    Article  PubMed  Google Scholar 

  30. Campos-Garcia, J. and Soberon-Chavez, G. (2000) Degradtion of the methyl substituted alkene, citronellol, by Pseudomonas aeruginosa, wild type and mutant strains. Biotechnol. Lett. 22: 235–237.

    Article  CAS  Google Scholar 

  31. Hoschle, B. and Jendroseek, D. (2005) Utilization of geraniol is dependent on molybdenum in Pseudomonas aeruginosa: evidence for different metabolic routes for oxidation of geraniol and citronellol. Microbiology 151: 2277–2283.

    Article  PubMed  Google Scholar 

  32. Aguilar, J.A., Díaz-Pérez, C., Díaz-Pérez, A.L., Rodríguez-Zavala, J.S., Nikolau, B.J. and Campos-Garcia, J. (2008) Substrate specificity of the 3-methylcrotonyl Coenzyme A (CoA) and geranyl-CoA carboxylases from Pseudomonas aeruginosa. J. Bacteriol. 190: 4888–4893.

    Article  CAS  PubMed  Google Scholar 

  33. Chavez-Aviles, M., Diaz-Perez, A.L., Reyes-de la Cruz, H. and Campos-Garcia, J. (2009) The Pseudomonas aeruginosa liuE gene encodes the 3-hydroxy-3-methylglutaryl-Coenzyme A lyase, involved in leucine and acyclic terpenes catabolism. FEMS Microbiol. Lett. 296: 117–123.

    Google Scholar 

  34. Kimura, Y., Miyake, R., Tokumasu, Y. and Sato, M. (2000) Molecular cloning and characterization of two genes for the biotin carboxylase and carboxyltransferase subunits of acetyl coenzyme A carboxylase in Myxococcus xanthus. J. Bacteriol. 182: 5462–5469.

    Article  CAS  PubMed  Google Scholar 

  35. Hector, M.L. and Fall, R.R. (1976) Multiple acyl-coenzyme A carboxylases in Pseudomonas citronellolis. Biochemistry 15: 3465–3472.

    Article  CAS  PubMed  Google Scholar 

  36. Fall, R.R. (1981) 3-Methyl-crotonyl-CoA and geranyl-CoA carboxylases from Pseudomonas citronellolis. Methods Enzymol. 71: 791–799.

    Article  CAS  PubMed  Google Scholar 

  37. Guan, X., Diez, T., Prasad, T.K., Nikolau, B.J. and Wurtele, E.S. (1999) Geranoyl-CoA carboxylase: a novel biotin-containing enzyme in plants. Arch. Biochem. Biophys. 362: 12–21.

    Article  CAS  PubMed  Google Scholar 

  38. Förster-Fromme, K. and Jendrossek, D. (2008) Biochemical characterization of isovaleryl-CoA dehydrogenase (LiuA) of Pseudomonas aeruginosa and the importance of liu genes for functional catabolic pathway of methyl-branched compounds. FEMS Microbiol. Lett. 286: 78–84.

    Article  PubMed  Google Scholar 

  39. Förster-Fromme, K. and Jendrossek, D. (2006) Identification and characterization of the acyclic terpene utilization gene cluster of Pseudomonas citronellolis. FEMS Microbiol. Lett. 264: 220–225.

    Article  PubMed  Google Scholar 

  40. Diaz-Perez, A.L., Roman-Doval, C., Diaz-Perez, C., Cervantes, C., Sosa-Aguirre, C.R., Lopez-Meza, J.E. and Campos-Garcia, J. (2007) Identification of the aceA gene encoding isocitrate lyase required for the growth of Pseudomonas aeruginosa on acetate, acyclic terpenes and leucine. FEMS Microbiol. Lett. 269: 309–316.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Thanks to CONACYT (P-46547-Z) and C.I.C.-UMSNH (2.14).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jesús Campos-García .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Campos-García, J. (2010). Metabolism of Acyclic Terpenes by Pseudomonas . In: Ramos, J., Filloux, A. (eds) Pseudomonas. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-3909-5_8

Download citation

Publish with us

Policies and ethics